[image: image1.jpg]

Université d’Ottawa · University of Ottawa

École d'ingénierie et de technologie

School of Information Technology

de l'information (EITI)

and Engineering (SITE)

CEG 4131 Computer Architecture III: QUIZ 2
	Date: October 24th
	Professor: Dr. M. Bolic

	Duration: 75 minutes
	Session: Fall 2006-2007

	Total Points = 100
	

Note: Closed book exam. Cheat-sheets are not allowed. Calculators are allowed.

Name: _______________________Student ID:_______________

QUESTION #1 (5 points each, total 30)
Answer to the following questions

a) What is SPMD?
b) What is the reason for using LL (load linked) and SC(store conditional)? How do these instructions work?

c) What does the following OpenMP program do?

void main()

{

double Res[1000];

omp_set_num_threads(4);

#pragma omp parallel for

for(int i=0;i<1000;i++) {

do_huge_comp(Res[i]);

}

printf(“all done\n”);

}
d) What does the concept of incremental parallelism in OpenMP mean?

e) Describe routing procedure in Omega networks? What type of routing is used?
f) What are split transactions in buses?
QUESTION #2 (5 points each, total 40)

Fill in the following.

What is the diameter of

a) A hypercube with 256 processors?
8

b) A 2D mesh with 64 processors?
14

c) A linear array with 32 processors?
31

d) A star network with 17 processors (1 in the middle and 16 leaf processors)?
2

e) A 2D torus with p processors (assume that routing is bidirectional) 2*

What is the bisection width of

f) A hypercube with 256 processors?
128

g) A 2d mesh with 64 processors?
8

h) A linear array with 32 processors?
1

i) A star network with 17 processors (1 in the middle and 16 leaf processors)?
8

QUESTION #3 (a) 7 points, b) 23 points, total 30 points)
Consider a following program for parallel addition of n elements of the array Z using a shared memory parallel system.

a) Do we need to place the additional BARRIER in this program in order to work correctly? Where? Why?

BARIER has to be put in order to make sure that global_sum is initialized.

b) Your task is to modify this program in order to compute cumulative sums C. Cumulative sum C is an array of n elements which are computed as C(i)=Z(1)+Z(2)+…Z(i).

The example for parallel computation of cumulative sum for 12 elements and for the number of processor M=3 is:

	Processor 0
	 Processor 1
	Processor 2
	

	C(0)=Z(0)
	C(4)=Z(4)
	C(8)=Z(8)
	

	C(1)=Z(0)+Z(1)
	C(5)=Z(4)+Z(5)
	C(9)=Z(8)+Z(9)
	

	C(2)=Z(0)+Z(1)+Z(2)
	C(6)=Z(4)+Z(5)+Z(6)
	C(10)=Z(8)+Z(9)+Z(10)
	

	C(3)=Z(0)+Z(1)+Z(2)+Z(3)
	C(7)=Z(4)+Z(5)+Z(6)+Z(7)
	C(11)=Z(8)+Z(9)+Z(10)+Z(11)
	

	
	
	
	

In the end only processor 2 has to update the cumulative sums:
	Processor 0
	 Processor 1
	Processor 2
	

	
	
	C(8)=C(8)+C(7)
	

	
	
	C(9)=C(9)+C(7)
	

	
	
	C(10)=C(10)+C(7)
	

	
	
	C(11)=C(11)+C(7)
	

Computations of C(0) to C(3) on processor 0 and C(4) to C(7) on processor 1 are done in parallel. After that, processor 1 and 3 have to update its cumulative sums:

	Processor 0
	 Processor 1
	Processor 2
	

	
	C(4)=C(4)+C(3)
	C(8)=C(8)+C(3)
	

	
	C(5)=C(5)+C(3)
	C(9)=C(9)+C(3)
	

	
	C(6)=C(6)+C(3)
	C(10)=C(10)+C(3)
	

	
	C(7)=C(7)+C(3)
	C(11)=C(11)+C(3)
	

Write a program for parallel computation of cumulative sums on M processors. Input array is Z and it has n elements. Cumulative sums C(1), …., C(n) are printed by a processor 0. Please explain and comment your program.
Sum all the elements of an array Z of size n.
INITIALIZE; //assign proc_nums and M where M is the number of processors
read_array(Z, n); //read the array and array size n from file

BARRIER(M); //waits for M processors to get to this point in the program

local_sum = 0; size_to_sum = n/M;

lower_ind = size_to_sum * proc_num;

upper_ind = size_to_sum * (proc_num + 1);

for (i = lower_ind; i < upper_ind; i++) {

C[i]=0;

C[i]= C[i-1]+Z[i];

}
BARRIER(M); //waits for M processors to get to this point in the program

for (j=M-1;j>=1;j--) {
if (proc_num>=j) {

for (i = lower_ind; i < upper_ind; i++) {

C[i]= C[i]+C[size_to_sum * j];

}
}

BARRIER (M);

}
BARRIER(M); //waits for M processors to get to this point in the program

if (proc_num == 0)

for (i=0;i<=n;i++)

printf("C[i]= %d", C[i]);

END;

PAGE
3

