
Real Time Operating Systems Implemented in
Hardware

Jake Swart
School of Information Techology

Univeristy of Ottawa
Ottawa, Ontario

Email: jswar070@uottawa.ca

Abstract—This paper describes several state-of-the-art real-
time operating systems (RTOS) implemented in hardware that
implement task scheduling, synchronization, multiprocessor dis-
patching, time management and event management. When de-
signers develop RTOS support in hardware different levels of
hardware usage are used. Many architects developing RTOS
supporting hardware are opting for designs focused around
determinism and avoid using Commercial Off The Shelf (COTS)
chips in building their RTOS supporting hardware. No matter
the level of hardware support that was implemented for RTOS
execution, real-time operating systems implemented in hardware
provide significant speed-ups over those implemented in software.

I. INTRODUCTION

A real-time operating system is an operating system ded-
icated to supporting real-time operations and are popularly
implemented in embedded systems. Embedded systems that
are used today are a complex combination of hardware and
software designed to perform a dedicated function. In this re-
port, embedded systems are reviewed for their use of hardware
in implementing support for RTOS execution. Real-time op-
erating systems implemented in hardware provide significant
speed-ups over those implemented in software. Because of
this fact, many designs for implementing RTOS support in
hardware have been proposed and are reviewed in this report.
Reviewed designs in this paper include the following: system
on chip RTOS, RTM unit, HW-RTOS using SMP, ARPA-MT
Embedded SMT Processor RTOS Hardware Accelerator and
the MERASA Project.

II. MODERN HARDWARE DESIGNS

System on Chip RTOS In [1] a framework was created
to provide developers with the ability to conFig. a target
system with or without specialized hardware for an RTOS.
They experiment between three configurations, with increasing
levels of hardware usage in implementing an RTOS created
using the framework. The first level being a purely software
RTOS implementation (ie. no hardware designed to support an
RTOS). The second level uses a System-on-Chip Lock Cache
(SoCLC). The last level of implementation uses a real-time
management unit (RTU) for RTOS support. For the purpose
of this report, focus will be emphasized on the increasing
levels of hardware implementation and not the reconfiguration
framework.

In the first level, the purely software RTOS is implemented
using Atlanta RTOS 0.4 for heterogeneous multiprocessor
shared-memory RTOS. The architecture used a SoC with
minimal hardware support and software semaphores to provide
RTOS synchronization. The second level uses the SoCLC, seen
in Fig. 1, which provides a set of lock arrays. Each array holds
single bits represented by Pi processors within the SoC and
the remaining bits contain the locked variable data represented
by LV k. When a processor bit is set within an array, it
indicates that it is waiting for access to that variable. Upon
release of the lock, all waiting processors are sent an interrupt
so that a new processor may aquire the lock. The RTOS also
receives notification on what locks have been released for task
scheduling purposes.

The RTU is the third configuration with the greatest hard-
ware support seen in Fig. 2. The Interrupt request module
(IRQ) provides intelligent interrupt handling, MsgQLib pro-
vides message handling, semaphores and temporal scheduling
and the RTC provides real-time control. Two bus interfaces are
used to access the RTU, which are the generic bus interface
(GBI) and the technology dependant bus interface (TDBI). The
TDBI allows for the module to be adapted easily to different
architectures using buses. Acceleration registers provide a
fast means of communication with the RTU. Communication
software is used to provide the handshaking between the CPU
and RTU.

Each level of hardware implementation was tested using
different task synchronization situations, where atomic actions
with variables stored in shared memory would be used during
execution.

Results show that the RTU that provides the greatest level
of hardware support for RTOS operation performed the best
with a 50% overall speedup over a pure software solution.
SoCLC also had shown good performance with 41% overall
speedup over the pure software solution. As the number of
tasks increase both speedups become lower, but the RTU
still has a 36% overall speedup twice is that of the SoCLC
implementation. The reason for the reduction in speedup with
increased workload is due to increased synchronization and
context switching. Synchronization causes delays between
tasks and may even cause a task to switch from running
to waiting. The switch is a context switch in which all the
processor registers are pushed to the stack, the next task is

Monster
Note
OK this formatting is just as weird as numbering the subsections. I wanted something non-bulletpoint. oh well.



Fig. 1. A diagram of the SoCLC lock unit [1]

Fig. 2. A simplified diagram of the RTU [1]

selected to run and the new tasks registers are retrieved for
execution.
RTM Unit [2] proposes a similar unit to that of the highest
level of hardware implemented in [1]. In [2] use a Real-
Time Task Manager (RTM) that removes expensive operations
performed by a RTOS from the main CPU. By performing the
expensive operations in the RTM such as: task management,
event management, and scheduling, significant performance
bottlenecks are reduced.

The previously listed operations are executed often and rely
on each other creating opportunities for parallelism. Since
software solutions cannot take advantage of parallel situations,
hardware implementations are used (such as the RTM). By
doing so [2] reveals that processor utilization (amount of
processing power an application is able to use) and response
times (the time between an external event occurring to the first
response by the RTOS) are reduced significantly.

Communication to the RTM is performed from the CPU
using a Memory Mapped Interface (MMI) on the address bus.
Within the RTM are a static number of records structured into
a binary tree, in this case 64 records were implemented that
hold 4 fields that include: status, priority, Event ID and delay.

Fig. 3. An example of the RTM tree structure used to determine record
priority [2]

Each record is 40 bits long and has been extended to 64-bits
for full word MMI purposes. Each records priority and status
bits determine whether a task will be scheduled next using
static-priority scheduling. Therefore when a task is ready and
has the highest priority, it will be scheduled next. For event
management, priority is determined differently by the event
ID. The event ID has a static priority mapped to it that is
used to determine schedule ordering. Time management is the
most important factor where the decrementing of each records
delay field is equal to the number clock cycle ticks. When a
records delay reaches 0, a task is ready to run. Each record
countdown delay is implemented using a 16-bit adder with an
AND gate comparator, which makes the delay update a fixed
constant rather than a linear one.

Fig. 3 shows the high-level diagram of the priority tree.
When a record is ready and its priority is the highest, it will
be the output of the topmost element of the tree. Because
the simplicity of the logic gates within a binary tree, one can
see that the RTM can be easily scaled and keep efficiency to
hold an increased number of records. Major limitations to this
startegy include chip area and higher energy consumption due
to increased gate logic.

To test the performance of the RTMs effectiveness at re-
ducing RTOS overhead, two RTOSes were used and measured
using MediaBench benchmarks with respect to processing time
and worst case response time. Table 4 displays the RTOS
system being tested and its feature support. Based on the table,
it can be clearly observed that µC/OS II will perform the best
with pre-emption and IPC support. Therefore focus will be on



Fig. 4. Basic feature comparison of realistic RTOSes [2]

the results of the µC/OS II RTOS.
Results show that the RTM was able to reduce processing

time and worst case response time by 90% and 81% respective
for µC/OS II RTOS. The reduction in processing time is
primarily due to time management of task release times
becoming constant rather than linear number of cycles by
taking advantage of the tree elements within the RTM. The
bit vectors used in task scheduling and event management
also greatly reduce the processing time to a fixed constant.
The worst case response time reduction is primarily due to
pre-emption used with the RTM and as workload increases,
the response time stays linear.
HW-RTOS using SMP In [3] implement a RTOS in
hardware for symmetric multiprocessors (SMP) by using a
dedicated units for task scheduling and communication, refer
to Fig. 5. The hardware support for an RTOS uses two ARM
processors connected to a shared bus and shared RTOS unit.
Communication with the hardware RTOS unit, used for task
scheduling, is done through dedicated ports that have send
and receive buffers. The hardware RTOS unit has access to a
lock unit containing memory mapped test-and-set semaphores
in hardware for shared variable synchronization between pro-
cesses.

Within the hardware RTOS unit are two separate hardware
schedulers, one for each processor, and task communication
buffers between them. The communication buffers provide a
means of inter-process communication using the previously
mentioned semaphores. Scheduling is done using round robin.
Tasks can be pre-empted on time slice expiration or become
blocked, which causes a context switch in the corresponding
ARM processor. When a block occurs, the hardware scheduler
within the RTOS unit moves the task to a wait port list and
the task information is moved to shared memory for later
execution. When a pre-emption occurs, a signal to the ARM
processor is generated and the next task is chosen by the
scheduler. Selection of a task is based on the wait port list and
a schedulable task list before it is sent out on the next task
port.

[3] used eCos as the RTOS software in combination with
two media related application benchmarks. Results showed
that the SMP architecture combined with the hardware RTOS
unit provides higher throughput in comparison to a purely
software solution. Most of the overhead created by software
is removed using the hardware RTOS using during context
switching (10,000 versus 947 cycles).
ARPA-MT Embedded SMT Processor RTOS Hardware
Accelerator In [4] have developed a similar implementa-
tion to that of [3], where the hardware support for real-time

Fig. 5. Detailed implementation of RTOS support hardware using SMP [3]

Fig. 6. ARPA-MT tri-processor design [4]

operating systems has been implemented in a separate module.
The major difference in the case of the Advanced Real-time
Processor Architecture - MultiThreaded (ARPA-MT) is that
is its own separate processor that handles all real-time task
management. The ARPA-MT focuses on providing special-
ized, time predictable, power efficient hard real-time systems
using an SMT based implementation. The design of the ARPA-
MT is focused towards worst-case execution time (WCET)
determinism, task scheduling and resource assignment to tasks.

Fig. 6 displays the arrangement of a three processor SMT
implementation based off the MIPS32 architecture. The central
CPU uses an integer instruction set with the five traditional
stages of pipelining (IF, ID, EX, M, WB). Co-processor-0
handles memory management, exception processing and inter-
rupt handling, while co-processor-2 handles RTOS hardware
support with a high resolution real-time clock. Focus will be
on the CPU and co-processor-2 since all support related to
real-time operation is located here.

Several techniques are used to increase the determinism
of the execution time. First, by keeping the pipelining of
instructions simplified for each task, the ARPA-MT avoids
complex techniques found in superscalar processors to reduce
pipeline stalls. Second, by executing multiple simultaneous
tasks with interleaving instructions and fine granular time
sharing, the ARPA-MT reduces processor stalls due to data
or control hazards. Lastly, by using a separate co-processor
dedicated to RTOS applications, the ARPA-MT reduces RTOS
overhead and increases CPU availability. All of the detailed

Monster
Note
not fixed grammar



Fig. 7. Detailed implementation diagram of co-processor-2 (or Cop2-OSC
seen in Fig 6) [4]

techniques are used in unison to provide better determinism
of WCET for task execution within the ARPT-MT.

Fig. 7 displays the architectural design of co-processor-
2. Task management is performed by the task handling
unit, which includes: specialized instruction implementation,
scheduling, dispatching, interrupt management, time constraint
management and table storage for task control blocks (TCB).
An applications timing constraints are transparent to co-
processor-2, which allows it to schedule tasks in real-time.
Task synchronization of shared resources is accomplished
through the use of the semaphore handling unit that contains
binary semaphores.

An important aspect of the ARPA-MT design is the removed
block and sleeping states. These are removed because the stack
resource policy (SRP) has been implemented here. The SRP
will only allow a process to pre-empt another if it can obtain
all resources required before execution rather than block or
sleep during execution. The SRP technique thus leads to a
reduction in context switching within co-processor-2.

There are three classifications of tasks within the ARPA-MT,
each with their own scheduling technique being implemented.
Below is the list of their classification type and scheduling
scheme in descending order of criticality based priority:

• Non real-time: First Come First Serve (FCFS)
• Soft real-time: Rate Monotonic policy (RM)
• Hard real-time: Earliest Deadline First (EDF)
In the case of EDF, as a task comes closer to its deadline,

its priority is raised to ensure the deadline is not missed.
Tasks in the ARPA-MT can be event or time triggered.

Focusing on the real-time clock unit within Fig. 7, it can
be observed that the periodic triggering of timing events are
controlled here using a high resolution clock. All external
events that are aperiodic are generated in the form of interrupt
requests to the task handling unit.

Using a custom API called OReK, the ARPA-MT was tested
using a purely software solution and one that uses the co-
processor-2. Both implementations were measured on the basis
of WCET and it was found that the ARPA-MT performs better
overall than a purely software solution. The overall gain was
achieved by the removal of the software overhead.
The MERASA Project The Multi-Core Execution

Fig. 8. High level design of the MERASA chip [6]

of Hard Real-Time Applications Supporting Analysability
(MERASA) processor was part of a recently completed re-
search project financed and used by partners such as Honey-
well International [5], [6]. The focus of the MERASA project
was to minimize the gap between the real and computed value
for WCET, as well as provide developers with tools for WCET
analysis. Using SMT, the MERASA processor provides tight
WCET analysis.

The MERASA chip has several different implementations,
but for the purpose of this report, only the completed FPGA
based implementation is considered. The MERASA chip im-
plemented on an FPGA features a four SMT cores with four
threads per core (16 threads in total). Fig. 8 displays the multi-
core architecture of the MERASA processor. Communication
with each core is done using a real-time bus with an arbiter
for each SMT core. The threads are split up within each core
to execute two classifications of tasks, which are listed below
in order of descending criticality:

• 3 non-hard real-time task threads (NHRTT)
• 1 hard real-time task thread (HRTT)
The MERASA processor uses a two-level scheduler that

manages threads over the multiple SMT cores. Scheduling is
performed by using the information stored in 256 byte thread
control blocks. Each control block contains a pointer to the
pervious and next thread control block to create a double
linked list structure. There are two doubly linked lists, one
for NHRTTs and another for HRTT, each is referred to by the
scheduler to determine execution order.

The first level scheduler seen in Fig. 9 uses fixed priority to



Fig. 9. MERASA core design diagram [7]

determine pipelined execution order of HRTTs and NHRTTs.
The second level scheduler provides register and program
counter initialization logic for the thread control blocks to
begin execution on a core. Note that both scheduler levels
are implemented in hardware.

The MERESA core uses an atomic read-write instruction
in hardware for synchronization of shared variables between
threads. The synchronization primitives are stored within the
real-time capable memory controller in Fig. 8. Locking access
to the bus is reduced by using an atomic read-write rather than
using a separate read, then write to the bus. In this way, WCET
is reduced and becomes more predictable. Other synchroniza-
tion primitives are available in software. The MERESA chip
was trialed to determine if it could determine the WCET of
scheduled tasks and schedule them in an effective manner to
meet deadlines. It was found with a WCET analysis tool that
the MERASA chip ensures that HRTTs meet their deadlines
while also provided service to NHRTTs.

III. CHARACTERISTICS OF RTOS SUPPORT HARDWARE

There have been several characteristics seen throughout
the review of different RTOS support implementations in
hardware. The main characteristics are highlighted in this
section.
Hardware Overhead Hardware overhead will be defined
as the amount of logic required to implement a particular
RTOS in hardware. Throughout this paper several implemen-
tations have been observed with a wide variety of hardware
usage for RTOS support. From the simplistic implementation
of logic gates [2], to dedicated real-time management units
[1], [3], and finally with the most complex being processor
based implementations [4], [5].

When designing hardware support for RTOSes numerous
factors need to be taken into consideration such as chip space,
adaptability, energy consumption, logic delays and implemen-
tation costs. From what was reviewed, the most successful
implementations seem to use dedicated real-time management
units and processors. The successful implementations require
more chip space, energy and logic to be implemented. In the
case of the processor based implementations, these are less
adaptable to different architectures. Therefore, chip designers
need to explore the trade-offs in the hardware design space
when implementing hardware support for RTOS.

Determinism and WCET A common theme among the
papers was the concepts of determinism and WCET [2], [5],
[6]. Chip designers constantly work towards increasing the
determinism of their architectural designs in order to better
predict WCET. The more accurately WCET can be predicted
for a task, application, thread etc, the better the hardware
scheduler can determine its scheduling priority. In RTOS,
the scheduling of a task to meet its deadline is paramount.
Therefore, increasing determinism in design should be an
architects primary goal in hardware based RTOS support.
Embedded vs. COTS Solutions All of the papers gath-
ered here have used embedded solutions in order to support
RTOS execution. For the purpose of this report, a COTS
solution is one that is made by chipset manufacturers such
as AMD or Intel. The use of COTS is actually explicitly
avoided for two reasons [6]. First, power consumption is much
higher and cannot be optimized for the situation it is being
implemented in. Second, is that COTS hardware does not
have deterministic behaviour. Therefore, without guaranteed
deterministic behaviour, the use of COTS processors should
be avoided in implementing hardware support for RTOS.

IV. CONCLUSION

Throughout this paper many RTOS implemented with differ-
ent levels of hardware support have been reviewed, with used
within modern multiprocessing architectures. It was found
that architects developing RTOS supporting hardware should
consider the overhead costs associated to the amount of hard-
ware being used and explore the trade-offs. Architects should
also be using designs focused around determinism and avoid
COTS chips in building their RTOS supporting hardware. No
matter the level of hardware support implemented for RTOS
execution, designers will see improved results over purely
software based solutions.

REFERENCES

[1] J. Lee, I. Mooney, V.J., A. Daleby, K. Ingstrom, T. Klevin, and L. Lindh,
“A comparison of the rtu hardware RTOS with a hardware/software
RTOS,” in Design Automation Conference, 2003. Proceedings of the ASP-
DAC 2003. Asia and South Pacific, 2003, pp. 683 – 688.

[2] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support for real-time op-
erating systems,” in Hardware/Software Codesign and System Synthesis,
2003. First IEEE/ACM/IFIP International Conference on, 2003, pp. 45 –
51.

[3] A. Nacul, F. Regazzoni, and M. Laiolo, “Hardware scheduling support
in smp architectures,” in Design, Automation Test in Europe Conference
Exhibition, 2007. DATE ’07, 2007, pp. 1 –6.

[4] A. S. R. Oliveira, L. Almeida, and A. B. Ferrari, “The ARPA-MT
embedded smt processor and its RTOS hardware accelerator,” Industrial
Electronics, IEEE Transactions on, 2009.

[5] J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff,
C. Rochange, H. Casse and, P. Sainrat, and T. Ungerer, “RTOS support for
parallel execution of hard real-time applications on the merasa multi-core
processor,” in Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), 2010 13th IEEE International Symposium on, May
2010, pp. 193 –201.

[6] F. J. Cazorla. (2010) Fpga prototype of the ba-
sic single-core merasa processor. [Online]. Available:
http://www.merasa.org/dissemination/02 architecture.pdf

[7] P. D. T. Ungerer. (2009) Merasa multicore architecture. [Online].
Available: http://www.merasa.org/downloads/Deliverable 5 1.pdf

Monster
Note
lowercase not fixed. but i told you how... :(


