
Programming of shared memory GPUs
shared memory systems

Jean-Philippe Bergeron
School of Information Technology and Engineering

University of Ottawa
Ottawa, Ontario

Email: jberg081@uottawa.ca

Abstract—The concept of shared memory is known to engi-
neers for a long time: a large block of memory shared between
processors to allow for synchronization. But what if there where
thousands of threads with hundreds of processors accessing a
single memory block. This challenge is discussed in this paper.
There are APIs used to program the graphics processing unit
(GPU) which takes advantage of the high number of processing
elements. The memory architecture is specifically designed in
order to obtain the maximum bandwidth. A great speedup is
achieved after optimizations.

I. INTRODUCTION

In a multiprocessor system relying on shared memory, the
bottleneck is the memory modules[1]. The solution is usually
to use distributed memory to solve the scaling problem, but
this non-uniform memory access (NUMA) architecture has
other implications such as very different access time depend-
ing on the memory location. The novel approach used by
NVIDIA[2] and ATI [3] uses a single memory module, and an
array of single instruction, multiple data (SIMD) processors.
The novel approach forces the programs to be built in parallel,
the algorithms have to be rewritten. This is made possible by
using fine-grained APIs which schedule thousands of threads
with a minimal overhead. The memory scaling problem is
solved by using a thread scheduler. It orders the memory
access and allows the memory to send multiple words to
multiple threads in one operation.

II. PRIOR ART

A. What is a shared memory system?

In a shared memory system, any processor can directly
reference any memory location and there is a single memory
space accessible to the programmer. There might be an inter-
connection network between a processor and the memory, but
the processor can only connect to the memory. There cannot be
direct communication between processors in this architecture.
The only medium of communication is the shared memory.
To communicate to another processor, one processor has to
write to the memory and the following processor will read
from the same address. This access to the memory is possible
since one or multiple blocks of memory appear as one large
block to the programmer. The memory modules are organized
continuously so that the physical location is abstracted from

Fig. 1. Shared memory with multiple processor and memory [4]

the programmer; All he knows is the address of the memory
he wants.

There might be multiple memory modules. As said by [4],
in the case where there is only one module, every processor
will access that module and there might be memory contention
since multiple requests may be sent at the same time by
multiple processors. On the other hand, by following the
approach illustrated in Figure 1, where the memory contention
may be smaller by using multiple memory modules since the
requests from the processors will be distributed. The circuitry
will be a little more complex since the address needs to be
looked at to route the requests to the right memory.

The usage of shared memory for multiples processors adds
more requirements to the logic on the board. With the arrival
of multiple processors, the memory can change behind the
CPU cache by another processor. It is important for all of the
processors to have the most up-to-date value even if they are
utilizing a cache. This requirement forces the implementation
of a software or a hardware cache coherency. This will
ensure that the cache gets invalidated or updated when another
process writes to the memory.

Another important factor while programming with multiple
processors, is the possibility of having exclusivity to certain
variables. This is usually done using mutexes. To support a
mutex on a shared memory system, there is the necessity to
have atomic operations. An atomic operation is an operation
which cannot be divided or interrupted by another processor.

Monster
Note
.

Monster
Note
leave a space between the reference and the word.



B. Examples of shared memory system

Shared memory systems are popular because of their ease
of use. The central processing unit (CPU) shares the main
memory among many processors to provide a way for com-
munication between threads. On the graphics processing unit
(GPU), it typically runs hundreds to thousands of threads in
parallel, organized in SIMD blocks as written in [2].

III. FRAMEWORKS

Due to the massive number of threads, applications have
to be rewritten entirely and numerous frameworks have been
implemented to make this task easier. In the languages, kernels
of code are compiled to run in parallel on a selected platform.
In the kernel, there are variables indicating the processor id
and the number of processors. It is usually possible for the
developer to select how many processors it wants to use.

Apple created the open computing language (OpenCL) and
it was submitted to the non-profit Khronos Group in 2008
described in [5]. One of the strength of that language is the
heterogeneous computing, where the same code run on both
the CPUs, the GPUs and other processors.

NVIDIA created the compute unified device architecture
(CUDA) to allow kernels of code to run on their GPU.
They developed a large community and a large number of
samples and APIs. They have a library to perform generic
math operation named CUBLAS and a library to perform fast
Fourier transform efficiently named CUFFT.

(a) Performance comparison of
OpenCL and CUDA QMC kernels
[6]

(b) Processing speed for different
problem sizes [7]

Fig. 2. Performance of CUDA and OpenCL

TABLE I
CUDA VS OPENCL

Feature OpenCL CUDA

C Language Support Yes Yes

CPU Support Yes No

License Royalty Free Proprietary

Community size Medium Large

Speed Fast Very fast

CUBLAS (math API) No Yes

CUFFT (FFT API) Yo Yes

OpenCL and CUDA frameworks are really similar, and there
is a way to run OpenCL on top of CUDA, that is good to

(a) CPU architecture (b) GPU architecture

Fig. 3. Comparison of CPU and GPU [2]

prove that OpenCL is very portable. In Table I, one can see the
difference between OpenCL and CUDA. Both are programmed
in C, OpenCL can run on the CPU where CUDA cannot. The
community and quantity of examples are bigger in favor of
CUDA. From [6], they did a comparison of the speed between
CUDA and OpenCL on the same software code. The results
can been seen in Figure 2(a) and one can see that CUDA
is faster. [7] did the same experiment and they got the same
conclusion shown in Figure 2(b).

IV. GPU ARCHITECTURE

The CPU and the GPU are very different, in Figure 3(a) one
can see that a large portion of the chip is used for the cache
and the control logic. The control logic include the branch
prediction, instruction fetch, data path, register etc. There is a
small portion of the chip dedicated to the arithmetic logic unit
(ALU). On the other hand, the GPU has the emphasis on the
ALUs. As seen on Figure 3(b), most of the chip is dedicated
to the computation and the rest to the cache and control logic.

Fig. 4. GPU thread architecture [2]

Inside the GPU, the ALUs are split into blocks. There are



multiple microprocessors which are called blocks in the Figure
5. Each microprocessor has multiple processors or threads and
each thread runs on its ALU. On a microprocessor, each thread
runs the same instruction on its data thus the classification of
SIMD. The different microprocessor can run different code.

V. CUDA MEMORY TYPES

There are four major types of memory on an NVIDIA GPU
as seen on Figure 5. The first large memory is called the
device memory, it is a DDR memory shared amongst every
processors. That large memory is off-chip and it is very slow
since there is no cache on the majority of models. It takes
hundreds of clock cycles to access one memory address as
said by [8]. The device memory contains the texture memory,
but there is a special texture cache inside the chip. The texture
memory is of the same speed as the device memory, but the
cache is really fast and it is local to a multiprocessor. This
read only cache is special in the sense that an interpolation is
free over a texture, it takes the same time to access the pixel
(0,1) than the pixel (0,1.5) where that pixel is an interpolation
between pixel (0,1) and (0,2). A third cache is the constant
cache, it is always 8KB and it serves the purpose of caching
the constant memory on the device memory. The last important
memory type is the shared memory, there is one shared
memory per multiprocessor and it takes only one clock cycle
to access. It was of a size of 16KB in every chip and this size
has been increased on newest models to 64KB. It can serve
as a cache for the global memory.

Fig. 5. GPU thread architecture [9]

There are two different types of shared memory in a
GPU hardware. The device memory is shared among the
multiprocessor, and it supports atomic operations.On the older
device of a compute capability of less than 2, there is no cache
and it is cache coherent. On the state of the art device with a
compute capability of two or more, there is a L2 cache shared
between the multiprocessors which is cache coherent. There
is also a L1 cache private to the multiprocessors within its
shared memory and this cache is not cache coherent, but there
is the possibility to disable it.

The shared memory within a multiprocessor could be
classified as a shared memory, but it not a truly shared

memory, because it is local to a multiprocessor. It does support
atomic operations. It often serves as a manual cache for the
global memory, the programmer explicitly write to the shared
memory the data he knows it will be used in a near future.

VI. MEMORY BANDWIDTH

The memory is often the restricting factor in a system, [4]
wrote that using a single bus and a single memory module re-
stricts the system scalability, because only one processor could
access the memory at one time and it leads to serialization.
The solution on the GPU is to use a very large memory bus
width such as 384-bit in [10]. This can lead to 48 byte read in
parallel in one operation. Those bytes have to be contiguous in
the memory, the hardware scheduler sends the right byte to the
right thread. In this case, it is important that the threads request
data in this window of 48byte. If this requirement fail, multiple
read requests will be made. The software is responsible to
request data in this way.

For theoretical scenario with a GeForce 480 GTX card, the
Memory Bandwidth can be as high as 177.4 GB/sec and the
performance can be as high as 1.35 Tflops. This card can
read 44 billion floats per second and can process 1350 billion
floats per second which gives a ratio of around 30. This means
that a minimum of 30 computation is required per memory
access to overcome the cost of the access. Applications are
CPU or memory bound depending on if they pass the threshold
of 30 on that card. It is important to note that such speed
is possible only between the device memory and the GPU.
The communication between the CPU and the GPU is limited
by the PCI Express bus and it is important to minimize that
communication.

In practice, it is almost impossible to achieve the maximum
throughput because of the memory alignment requirements.
It is required that the threads request data from the memory
continuously and starting at an aligned address multiple of 16
byte. The solution is the shared memory on the multiprocessor.
Since it acts as a programmable cache, it is possible to order
the reads from the global memory and do the computation on
random data inside the faster shared memory.

VII. EXAMPLE

To validate the speedup achieved by using aligned over non-
aligned addresses, two programs were made and ran on the
GPU. In the Figure 6, the function main declares 2 array, and
allocate memory on the GPU. It calls the kernel example with
one thousand threads. In the kernel, the variable i is set to
the thread number. The variable x is used because threads are
disposed in a multidimensional array. The computation done
by the kernel it is to shift an array one position to the right
and duplicate the first element.

In the Figure 7, the main function is identical to the one
in the Figure 6. The kernel function is different and this one
declares a shared array of a thousand floats. The global array
”A” is transferred to the shared array ”S” where each thread
reads a different address next to the first thread and the first
thread read an aligned address. There is a call to syncthreads



__global__ void example(float* A, float* B)
{

int i = threadIdx.x;
if (i > 0)

B[i] = S[i - 1];
}
int main()
{

float* A, * B;
cudaMalloc(&A, 1000);
cudaMalloc(&B, 1000);
example<<<1, 1000>>>(A, B);

}

Fig. 6. CUDA code without shared memory

__global__ void example(float* A, float* B)
{

__shared__ float S[1000];
int i = threadIdx.x;
S[i] = A[i];
__syncthreads();
if (i > 0)

B[i] = S[i - 1];
}
int main()
{

float* A, * B;
cudaMalloc(&A, 1000);
cudaMalloc(&B, 1000);
example<<<1, 1000>>>(A, B);

}

Fig. 7. CUDA code with shared memory

which act as a barrier where all treads needs to be at that point
before continuing.

The program is executed on a GeForce 8800 GTS board
with a compute capability of 1.0. In Table II, the comparison
between Figure 6, Figure 7 is made and the program with
shared memory is about 10 times faster than the one without.
This fact can be explained by the fact that the Figure 6 did
298,424 memory read because it had to read each value with
a different request since the values were not aligned. In the
Figure 7, the reads are aligned since thread 0 reads the array at
address A[0]. This changed the memory request to only doing
9,376 large coalesced reads. This explanation can be seen in
the Figure 8 where it takes two 64B reads to read 256 values.
In the case of an un-aligned access, it takes 32 32B read for
the same number of values read.

VIII. CONCLUSION

The differences between CUDA and OpenCL are small,
OpenCL is perfect for portable code which can be run on
multiple platforms. CUDA is better for applications which
need higher speed or need CUBLAS or CUFFT libraries as

Fig. 8. Aligned and non-aligned memory read [2]

TABLE II
COMPARISON OF SHARED MEMORY AND DEVICE MEMORY IN TERM OF

SPEED

Time (ms) Load coalesced Load uncoalesced

Shared memory 325.6 9,376 0

Global memory 2965.98 0 298,424

seen in Table I. The memory limitations of massive shared
memory systems can be overcome by using a larger bus and
feeding multiple processors at the same time. The usage of
caching in the newest GPU cards also helps to obtain higher
speeds.

REFERENCES

[1] K. Harzallah and K. Sevcik, “Hot spot analysis in large scale shared
memory multiprocessors,” in Supercomputing ’93. Proceedings, 1993,
pp. 895 – 905.

[2] N. Corporation, “NVIDIA CUDA C Programming Guide,” pp.
1–173, 2010, http://developer.download.nvidia.com/compute/cuda/3 1/
toolkit/docs/NVIDIA CUDA C ProgrammingGuide 3.1.pdf.

[3] A. Corporation, “GPU Computing: Past, Present and Future,” pp. 1–42,
2010, http://developer.amd.com/gpu assets/GPU%20Computing%20-%
20Past%20Present%20and%20Future%20with%20ATI%20Stream%
20Technology.pdf.

[4] S. Dandamudi, “Reducing run queue contention in shared memory
multiprocessors,” Computer, vol. 30, no. 3, pp. 82 –89, Mar. 1997.

[5] K. Group, “Introduction and Overview,” pp. 1–20, 2010, http://www.
khronos.org/developers/library/overview/opencl overview.pdf.

[6] R. Weber, A. Gothandaraman, R. Hinde, and G. Peterson, “Comparing
hardware accelerators in scientific applications: A case study,” Parallel
and Distributed Systems, IEEE Transactions on, 2010.

[7] F. H. Kamran Karimi, Neil G. Dickson, “A Performance Comparison of
CUDA and OpenCL,” pp. 1–10, 2010, http://arxiv.org/abs/1005.2581v2.

[8] Y. Hung, “CUDA Advanced Memory Usage and Op5miza5on,”
pp. 66–70, 2010, http://www.math.ntu.edu.tw/∼wwang/mtxcomp2010/
download/cuda 04 ykhung.pdf.

[9] B. Oster, “Programming The CUDA Architecture: A Look At GPU
Computing,” p. 1, 2009, http://electronicdesign.com/article/embedded/
programming-the-cuda-architecture-a-look-at-gpu-co.aspx.

[10] NVIDIA, “GeForce GTX 480,” p. 1, 2010, http://www.nvidia.com/
object/product geforce gtx 480 us.html.


