

E.1

Introduction E-2

E.2

Interconnecting Two Devices E-5

E.3

Connecting More than Two Devices E-20

E.4

Network Topology E-29

E.5

Network Routing, Arbitration, and Switching E-45

E.6

Switch Microarchitecture E-55

E.7

Practical Issues for Commercial Interconnection Networks E-62

E.8

Examples of Interconnection Networks E-70

E.9

Internetworking E-80

E.10

Crosscutting Issues for Interconnection Networks E-85

E.11

Fallacies and Pitfalls E-88

E.12

Concluding Remarks E-96

E.13

Historical Perspective and References E-97

Exercises E-107

E

Interconnection Networks

Revised by Timothy M. Pinkston, University of Southern California,
and José Duato, Universitat Politècnica de València, and Simula

“The Medium is the Message” because it is the medium that shapes and
controls the search and form of human associations and actions.

Marshall McLuhan

Understanding Media

(1964)

The marvels—of film, radio, and television—are marvels of one-way
communication, which is not communication at all.

Milton Mayer

On the Remote Possibility of
Communication

 (1967)

The interconnection network is the heart of parallel architecture.

Chuan-Lin Wu and Tse-Yun Feng

Interconnection Networks for Parallel
and Distributed Processing

(1984)

Indeed, as system complexity and integration continues to increase,
many designers are finding it more efficient to route packets, not wires.

Bill Dally

Principles and Practices of
Interconnection Networks

(2004)

E-2

�

Appendix E

Interconnection Networks

Previous chapters and appendices cover the components of a single computer but
give little consideration to the interconnection of those components and how mul-
tiple computer systems are interconnected. These aspects of computer architec-
ture have gained significant importance in recent years. In this appendix we see
how to connect individual devices together into a community of communicating
devices, where the term

device

 is generically used to signify anything from a
component or set of components within a computer to a single computer to a sys-
tem of computers. Figure E.1 shows the various elements comprising this com-
munity: end nodes consisting of devices and their associated hardware and
software interfaces, links from end nodes to the interconnection network, and the
interconnection network. Interconnection networks are also called

networks,
communication subnets,

 or

communication subsystems

. The interconnection of
multiple networks is called

internetworking.

This relies on communication stan-
dards to convert information from one kind of network to another, such as with
the Internet.

There are several reasons why computer architects should devote attention to
interconnection networks. In addition to providing external connectivity, net-
works are commonly used to interconnect the components within a single com-
puter at many levels, including the processor microarchitecture. Networks have
long been used in mainframes, but today such designs can be found in personal
computers as well, given the high demand on communication bandwidth needed
to enable increased computing power and storage capacity. Switched networks
are replacing buses as the normal means of communication between computers,
between I/O devices, between boards, between chips, and even between modules
inside chips. Computer architects must understand interconnect problems and
solutions in order to more effectively design and evaluate computer systems.

Interconnection networks cover a wide range of application domains, very
much like memory hierarchy covers a wide range of speeds and sizes. Networks
implemented within processor chips and systems tend to share characteristics
much in common with processors and memory, relying more on high-speed hard-
ware solutions and less on a flexible software stack. Networks implemented
across systems tend to share much in common with storage and I/O, relying more
on the operating system and software protocols than high-speed hardware—
though we are seeing a convergence these days. Across the domains, performance
includes latency and effective bandwidth, and queuing theory is a valuable ana-
lytical tool in evaluating performance, along with simulation techniques.

This topic is vast—portions of Figure E.1 are the subject of entire books and
college courses. The goal of this appendix is to provide for the computer architect
an overview of network problems and solutions. This appendix gives introduc-
tory explanations of key concepts and ideas, presents architectural implications
of interconnection network technology and techniques, and provides useful refer-
ences to more detailed descriptions. It also gives a common framework for evalu-
ating all types of interconnection networks, using a single set of terms to describe

 E.1 Introduction

E.1 Introduction

�

E-3

the basic alternatives. As we will see, many types of networks have common pre-
ferred alternatives, but for others the best solutions are quite different. These dif-
ferences become very apparent when crossing between the networking domains.

Interconnection Network Domains

Interconnection networks are designed for use at different levels within and
across computer systems to meet the operational demands of various application
areas—high-performance computing, storage I/O, cluster/workgroup/enterprise
systems, internetworking, and so on. Depending on the number of devices to be
connected and their proximity, we can group interconnection networks into four
major networking domains:

�

On-chip networks

(OCNs)—Also referred to as network-on-chip (NoC), this
type of network is used for interconnecting microarchitecture functional
units, register files, caches, compute tiles, and processor and IP cores within
chips or multichip modules. Currently, OCNs support the connection of up to
only a few tens of such devices with a maximum interconnection distance on
the order of centimeters. Most OCNs used in high-performance chips are cus-
tom designed to mitigate chip-crossing wire delay problems caused by
increased technology scaling and transistor integration, though some propri-
etary designs are gaining wider use (e.g., IBM’s CoreConnect, ARM’s
AMBA, and Sonic’s Smart Interconnect). An example custom OCN is the

Element Interconnect Bus

used in the Cell Broadband Engine processor chip.
This network peaks at ~2400 Gbps (for a 3.2 GHz processor clock) for 12
elements on the chip.

�

System/storage area networks

(SANs)

—

This type of network is used for
interprocessor and processor-memory interconnections within multiprocessor
and multicomputer systems, and also for the connection of storage and I/O
components within server and data center environments. Typically, several

Figure E.1

 A conceptual illustration of an interconnected community of devices.

Device

Link

SW interface

End node

HW interface

Device

Link

SW interface

End node

HW interface

Device

Link

SW interface

End node

HW interface

Device

Link

SW interface

End node

HW interface

Interconnection network

E-4

�

Appendix E

Interconnection Networks

hundreds of such devices can be connected, although some supercomputer
SANs support the interconnection of many thousands of devices, like the
IBM Blue Gene/L supercomputer. The maximum interconnection distance
covers a relatively small area

—

on the order of a few tens of meters usually

—

but some SANs have distances spanning a few hundred meters. For example,

InfiniBand

, a popular SAN standard introduced in late 2000, supports system
and storage I/O interconnects at up to 120 Gbps over a distance of 300 m.

�

Local area networks

 (LANs)—This type of network is used for interconnect-
ing autonomous computer systems distributed across a machine room or
throughout a building or campus environment. Interconnecting PCs in a clus-
ter is a prime example. Originally, LANs connected only up to a hundred
devices, but with bridging, LANs can now connect up to a few thousand
devices. The maximum interconnect distance covers an area of a few kilome-
ters usually, but some have distance spans of a few tens of kilometers. For
instance, the most popular and enduring LAN,

Ethernet

, has a 10 Gbps stan-
dard version that supports maximum performance over a distance of 40 km.

�

Wide area networks

(WANs)—Also called

long-haul networks,

 WANs con-
nect computer systems distributed across the globe, which requires internet-
working support. WANs connect many millions of computers over distance
scales of many thousands of kilometers. ATM is an example of a WAN.

Figure E.2 roughly shows the relationship of these networking domains in
terms of the number of devices interconnected and their distance scales. Overlap
exists for some of these networks in one or both dimensions, which leads to prod-

Figure E.2

 Relationship of the four interconnection network domains in terms of
number of devices connected and their distance scales: on-chip network (OCN), sys-
tem/storage area network (SAN), local area network (LAN), and wide area network
(WAN).

Note that there are overlapping ranges where some of these networks com-
pete. Some supercomputer systems use proprietary custom networks to interconnect
several thousands of computers, while other systems, such as multicomputer clusters,
use standard commercial networks.

1 10 100 1000

SAN

OCN

LAN

WAN

10,000 >100,000

D
is

ta
nc

e
(m

et
er

s)

65 x 10

35 x 10

05 x 10

–35 x 10

E.2 Interconnecting Two Devices

�

E-5

uct competition. Some network solutions have become commercial standards
while others remain proprietary. Although the preferred solutions may signifi-
cantly differ from one interconnection network domain to another depending on
the design requirements, the problems and concepts used to address network
problems remain remarkably similar across the domains. No matter the target
domain, networks should be designed so as not to be the bottleneck to system
performance and cost efficiency. Hence, the ultimate goal of computer architects
is to design interconnection networks of the lowest possible cost that are capable
of transferring the maximum amount of available information in the shortest pos-
sible time.

Approach and Organization of This Appendix

Interconnection networks can be well understood by taking a top-down approach
to unveiling the concepts and complexities involved in designing them. We do
this by viewing the network initially as an opaque “black box” that simply and
ideally performs certain necessary functions. Then we systematically open vari-
ous layers of the black box, allowing more complex concepts and nonideal net-
work behavior to be revealed. We begin this discussion by first considering the
interconnection of just two devices in Section E.2, where the black box network
can be viewed as a simple

dedicated link

 network—that is, wires or collections of
wires running bidirectionally between the devices. We then consider the intercon-
nection of more than two devices in Section E.3, where the black box network
can be viewed as a

shared link

 network or as a

switched point-to-point

network
connecting the devices. We continue to peel away various other layers of the
black box by considering in more detail the network topology (Section E.4), rout-
ing, arbitration, and switching (Section E.5), and switch microarchitecture (Sec-
tion E.6). Practical issues for commercial networks are considered in Section E.7,
followed by examples illustrating the trade-offs for each type of network in Sec-
tion E.8. Internetworking is briefly discussed in Section E.9, and additional
crosscutting issues for interconnection networks are presented in Section E.10.
Section E.11 gives some common fallacies and pitfalls related to interconnection
networks, and Section E.12 presents some concluding remarks. Finally, we pro-
vide a brief historical perspective and some suggested reading in Section E.13.

This section introduces the basic concepts required to understand how communi-
cation between just two networked devices takes place. This includes concepts
that deal with situations in which the receiver may not be ready to process incom-
ing data from the sender and situations in which transport errors may occur. To
ease understanding, the black box network at this point can be conceptualized as
an ideal network that behaves as simple dedicated links between the two devices.

 E.2 Interconnecting Two Devices

E-6

�

Appendix E

Interconnection Networks

Figure E.3 illustrates this, where unidirectional wires run from device A to device
B and vice versa, and each end node contains a buffer to hold the data. Regardless
of the network complexity, whether dedicated link or not, a connection exists
from each end node device to the network to inject and receive information to/
from the network. We first describe the basic functions that must be performed at
the end nodes to commence and complete communication, and then we discuss
network media and the basic functions that must be performed by the network to
carry out communication. Later, a simple performance model is given, along with
several examples to highlight implications of key network parameters.

Network Interface Functions: Composing and Processing
Messages

Suppose we want two networked devices to read a word from each other’s mem-
ory. The unit of information sent or received is called a

message

. To acquire the
desired data, the two devices must first compose and send a certain type of mes-
sage in the form of a

request

 containing the address of the data within the other
device. The address (i.e., memory or operand location) allows the receiver to
identify where to find the information being requested. After processing the
request, each device then composes and sends another type of message, a

reply

,
containing the data. The address and data information is typically referred to as
the message

payload.

In addition to payload,

every message contains some control bits needed by
the network to deliver the message and process it at the receiver. The most typical
are bits to distinguish between different types of messages (i.e., request, reply,
request acknowledge, reply acknowledge, etc.) and bits that allow the network to
transport the information properly to the destination. These additional control
bits are encoded in the

header

 and/or

trailer

portions of the message, depending
on their location relative to the message payload

.

As an example, Figure E.4
shows the format of a message for the simple dedicated link network shown in
Figure E.3. This example shows a single-word payload, but messages in some
interconnection networks can include several thousands of words.

Before message transport over the network occurs, messages have to be com-
posed. Likewise, upon receipt from the network, they must be processed. These
and other functions described below are the role of the

network interface

 (also

Figure E.3

 A simple dedicated link network bidirectionally interconnecting two
devices.

Machine A Machine B

E.2 Interconnecting Two Devices

�

E-7

referred to as the

channel adapter

)

residing at the end nodes. Together with some
DMA engine and link drivers to transmit/receive messages to/from the network,
some dedicated memory or register(s) may be used to buffer outgoing and incom-
ing messages. Depending on the network domain and design specifications for
the network, the network interface hardware may consist of nothing more than
the communicating device itself (i.e., for OCNs and some SANs) or a separate
card that integrates several embedded processors and DMA engines with thou-
sands of megabytes of RAM (i.e., for many SANs and most LANs and WANs).

In addition to hardware, network interfaces can include software or firmware
to perform the needed operations. Even the simple example shown in Figure E.3
may invoke messaging software to translate requests and replies into messages
with the appropriate headers. This way, user applications need not worry about
composing and processing messages as these tasks can be performed automati-
cally at a lower level. An application program usually cooperates with the operat-
ing or run time system to send and receive messages. As the network is likely to
be shared by the processes running on each device, the operating system cannot
allow messages intended for one process to be received by another. Thus, the
messaging software must include protection mechanisms that distinguish
between processes. This distinction could be made by expanding the header with
a

port

 number that is known by both the sender and intended receiver processes.
In addition to composing and processing messages, additional functions

need to be performed by the end nodes to establish communication among the
communicating devices. Although hardware support can reduce the amount of
work, some can be done by software. For example, most networks specify a
maximum amount of information that can be transferred (i.e.,

maximum trans-
fer unit

) so that network buffers can be dimensioned appropriately. Messages
longer than the maximum transfer unit are divided into smaller units, called

Figure E.4

 An example packet format with header, payload, and checksum in the
trailer.

Destination port
Message ID

Data

Sequence number
Type

00 = Request
01 = Reply
10 = Request acknowledge

Checksum

Header

Payload
Trailer

E-8

�

Appendix E

Interconnection Networks

packets

 (or

datagrams

), that are transported over the network. Packets are reas-
sembled into messages at the destination end node before delivery to the appli-
cation. Packets belonging to the same message can be distinguished from
others by including a

message ID

 field in the packet header. If packets arrive
out of order at the destination, they are reordered when reassembled into a mes-
sage. Another field in the packet header containing a

sequence number

 is usu-
ally used for this purpose.

The sequence of steps the end node follows to commence and complete com-
munication over the network is called a

communication protocol

. It generally has
symmetric but reversed steps between sending and receiving information. Com-
munication protocols are implemented by a combination of software and hard-
ware to accelerate execution. For instance, many network interface cards
implement hardware timers as well as hardware support to split messages into
packets and reassemble them, compute the cyclic redundancy check (CRC)

checksum,

 handle virtual memory addresses, and so on.
Some network interfaces include extra hardware to offload protocol process-

ing from the host computer, such as TCP

offload engines

 for LANs and WANs.
But for interconnection networks such as SANs that have low latency require-
ments, this may not be enough even when lighter-weight communication proto-
cols are used such as message passing interface (MPI). Communication
performance can be further improved by bypassing the operating system (OS).
OS-bypassing can be implemented by directly allocating message buffers in the
network interface memory so that applications directly write into and read from
those buffers. This avoids extra memory-to-memory copies. The corresponding
protocols are referred to as

zero-copy

 protocols or

user-level communication

 pro-
tocols. Protection can still be maintained by calling the OS to allocate those buff-
ers at initialization and preventing unauthorized memory accesses in hardware.

In general, some or all of the following are the steps needed to send a mes-
sage at end node devices over a network:

1.

The application executes a system call, which copies data to be sent into an
operating system or network interface buffer, divides the message into pack-
ets (if needed), and composes the header and trailer for packets.

2.

The checksum is calculated and included in the header or trailer of packets.

3.

The timer is started, and the network interface hardware sends the packets.

Message reception is in the reverse order:

3.

The network interface hardware receives the packets and puts them into its
buffer or the operating system buffer.

2.

The checksum is calculated for each packet. If the checksum matches the
sender’s checksum, the receiver sends an acknowledgment back to the packet
sender. If not, it deletes the packet, assuming that the sender will resend the
packet when the associated timer expires.

1.

Once all packets pass the test, the system reassembles the message, copies the
data to the user’s address space, and signals the corresponding application.

E.2 Interconnecting Two Devices

�

E-9

The sender must still react to packet acknowledgments:

�

When the sender gets an acknowledgment, it releases the copy of the corre-
sponding packet from the buffer.

�

If the sender reaches the time-out instead of receiving an acknowledgment, it
resends the packet and restarts the timer.

Just as a protocol is implemented at network end nodes to support communi-
cation, protocols are also used across the network structure at the physical, data
link, and network layers responsible primarily for packet transport, flow control,
error handling, and other functions described next.

Basic Network Structure and Functions: Media and Form
Factor, Packet Transport, Flow Control, and Error Handling

Once a packet is ready for transmission at its source, it is injected into the net-
work using some dedicated hardware at the network interface. The hardware
includes some transceiver circuits to drive the physical network media—either
electrical or optical. The type of

media

 and

form factor

 depends largely on the
interconnect distances over which certain signaling rates (i.e., transmission
speed) should be sustainable. For centimeter or less distances on a chip or multi-
chip module, typically the middle to upper copper metal layers can be used for
interconnects at multi-Gbps signaling rates per line. A dozen or more layers of
copper traces or tracks imprinted on circuit boards, midplanes, and backplanes
can be used for Gbps differential-pair signaling rates at distances of about a meter
or so. Category 5E unshielded twisted-pair copper wiring allows 0.25 Gbps trans-
mission speed over distances of 100 meters. Coaxial copper cables can deliver
10 Mbps over kilometer distances. In these conductor lines, distance can usually
be traded off for higher transmission speed, up to a certain point. Optical media
enable faster transmission speeds at distances of kilometers. Multimode fiber
supports 100 Mbps transmission rates over a few kilometers, and more expensive
single-mode fiber supports Gbps transmission speeds over distances of several
kilometers. Wavelength division multiplexing allows several times more band-
width to be achieved in fiber (i.e., by a factor of the number of wavelengths used).

The hardware used to drive network links may also include some encoders to
encode the signal in a format other than binary that is suitable for the given trans-
port distance. Encoding techniques can use multiple voltage levels, redundancy,
data and control rotation (e.g., 4b5b encoding), and/or a guaranteed minimum
number of signal transitions per unit time to allow for clock recovery at the
receiver. The signal is decoded at the receiver end, and the packet is stored in the
corresponding buffer. All of these operations are performed at the network physi-
cal layer, the details of which are beyond the scope of this appendix. Fortunately,
we do not need to worry about them. From the perspective of the data link and
higher layers, the physical layer can be viewed as a long linear pipeline without
staging in which signals propagate as waves through the network transmission
medium. All of the above functions are generally referred to as

packet transport

.

E-10

�

Appendix E

Interconnection Networks

Besides packet transport, the network hardware and software are jointly
responsible at the data link and network protocol layers for ensuring reliable
delivery of packets. These responsibilities include (1) preventing the sender from
sending packets at a faster rate than they can be processed by the receiver and (2)
ensuring that the packet is neither garbled nor lost in transit. The first responsibil-
ity is met by either discarding packets at the receiver when its buffer is full and
later notifying the sender to retransmit them, or by notifying the sender to stop
sending packets when the buffer becomes full and to resume later once it has
room for more packets. The latter strategy is generally known as

flow control

.
There are several interesting techniques commonly used to implement flow

control beyond simple

handshaking

 between the sender and receiver. The more
popular techniques are

Xon/Xoff

 (also referred to as

Stop & Go)

 and

credit-based

flow control. Xon/Xoff consists of the receiver notifying the sender either to stop
or to resume sending packets once high and low buffer occupancy levels are
reached, respectively, with some hysteresis to reduce the number of notifications.
Notifications are sent as “stop” and “go” signals using additional control wires or
encoded in control packets. Credit-based flow control typically uses a credit
counter at the sender that initially contains a number of credits equal to the num-
ber of buffers at the receiver. Every time a packet is transmitted, the sender decre-
ments the credit counter. When the receiver consumes a packet from its buffer, it
returns a credit to the sender in the form of a control packet that notifies the
sender to increment its counter upon receipt of the credit. These techniques
essentially control the flow of packets into the network by

throttling

 packet injec-
tion at the sender when the receiver reaches a low watermark or when the sender
runs out of credits.

Xon/Xoff usually generates much less control traffic than credit-based flow
control because notifications are only sent when the high or low buffer occupancy
levels are crossed. On the other hand, credit-based flow control requires less than
half the buffer size required by Xon/Xoff. Buffers for Xon/Xoff must be large
enough to prevent overflow before the “stop” control signal reaches the sender.
Overflow cannot happen when using credit-based flow control because the sender
will run out of credits, thus stopping transmission. For both schemes, full link
bandwidth utilization is possible only if buffers are large enough for the distance
over which communication takes place.

Let’s compare the buffering requirements of the two flow control techniques
in a simple example covering the various interconnection network domains.

Example

Suppose we have a dedicated-link network with a raw data bandwidth of 8 Gbps
for each link in each direction interconnecting two devices. Packets of 100 bytes
(including the header) are continuously transmitted from one device to the other
to fully utilize network bandwidth. What is the minimum amount of credits and
buffer space required by credit-based flow control assuming interconnect dis-
tances of 1 cm, 1 m, 100 m, and 10 km if only link propagation delay is taken into
account? How does the minimum buffer space compare against Xon/Xoff?

E.2 Interconnecting Two Devices � E-11

Answer At the start, the receiver buffer is initially empty and the sender contains a num-
ber of credits equal to buffer capacity. The sender will consume a credit every
time a packet is transmitted. For the sender to continue transmitting packets at
network speed, the first returned credit must reach the sender before the sender
runs out of credits. After receiving the first credit, the sender will keep receiving
credits at the same rate it transmits packets. As we are considering only propaga-
tion delay over the link and no other sources of delay or overhead, null process-
ing time at the sender and receiver are assumed. The time required for the first
credit to reach the sender since it started transmission of the first packet is equal
to the round-trip propagation delay for the packet transmitted to the receiver and
the return credit transmitted back to the sender. This time must be less than or
equal to the packet transmission time multiplied by the initial credit count:

The speed of light is about 300,000 km/sec. Assume we can achieve 66% of that
in a conductor. Thus, the minimum number of credits for each distance is given by

As each credit represents one packet-sized buffer entry, the minimum amount of
credits (and, likewise, buffer space) needed by each device is one for the 1 cm
and 1 m distances, 10 for the 100 m distance, and 1000 packets for the 10 km dis-
tance. For Xon/Xoff, this minimum buffer size corresponds to the buffer frag-
ment from the high occupancy level to the top of the buffer and from the low
occupancy level to the bottom of the buffer. With the added hysteresis between
both occupancy levels to reduce notifications, the minimum buffer space for Xon/
Xoff turns out to be more than twice that for credit-based flow control.

Networks that implement flow control do not need to drop packets and are
sometimes referred to as lossless networks; networks that drop packets are some-
times referred to as lossy networks. This single difference in the way packets are
handled by the network drastically constrains the kinds of solutions that can be
implemented to address other related network problems, including packet rout-
ing, congestion, deadlock, and reliability, as we will see later in this appendix.
This difference also affects performance significantly as dropped packets need to
be retransmitted, thus consuming more link bandwidth and suffering extra delay.
These behavioral and performance differences ultimately restrict the interconnec-
tion network domains for which certain solutions are applicable. For instance,
most networks delivering packets over relatively short distances (e.g., OCNs and
SANs) tend to implement flow control; on the other hand, networks delivering
packets over relatively long distances (e.g., LANs and WANs) tend to be
designed to drop packets. For the shorter distances, the delay in propagating flow
control information back to the sender can be negligible, but not so for longer
distance scales. The kinds of applications that are usually run also influence the

Packet propagation delay Credit propagation delay+
Packet size
Bandwidth
-------------------------- Credit count×≤

Distance
2 3⁄ 300,000 km/sec×
--

 2× 100 bytes
8 Gbits/sec
-------------------------- Credit count×≤

E-12 � Appendix E Interconnection Networks

choice of lossless versus lossy networks. For instance, dropping packets sent by
an Internet client like a Web browser affects only the delay observed by the corre-
sponding user. However, dropping a packet sent by a process from a parallel
application may lead to a significant increase in the overall execution time of the
application if that packet’s delay is on the critical path.

The second responsibility of ensuring that packets are neither garbled nor lost
in transit can be met by implementing some mechanisms to detect and recover
from transport errors. Adding a checksum or some other error detection field to
the packet format, as shown in Figure E.4, allows the receiver to detect errors.
This redundant information is calculated when the packet is sent and checked
upon receipt. The receiver then sends an acknowledgment in the form of a control
packet if the packet passes the test. Note that this acknowledgment control packet
may simultaneously contain flow control information (e.g., a credit or stop sig-
nal), thus reducing control packet overhead. As described earlier, the most com-
mon way to recover from errors is to have a timer record the time each packet is
sent and to presume the packet is lost or erroneously transported if the timer
expires before an acknowledgment arrives. The packet is then resent.

The communication protocol across the network and network end nodes
must handle many more issues other than packet transport, flow control, and
reliability. For example, if two devices are from different manufacturers, they
might order bytes differently within a word (Big Endian versus Little Endian
byte ordering). The protocol must reverse the order of bytes in each word as
part of the delivery system. It must also guard against the possibility of dupli-
cate packets if a delayed packet were to become unstuck. Depending on the
system requirements, the protocol may have to implement pipelining among
operations to improve performance. Finally, the protocol may need to handle
network congestion to prevent performance degradation when more than two
devices are connected, as described later in Section E.7.

Characterizing Performance: Latency and Effective Bandwidth

Now that we have covered the basic steps for sending and receiving messages
between two devices, we can discuss performance. We start by discussing the
latency when transporting a single packet. Then we discuss the effective band-
width (also known as throughput) that can be achieved when the transmission of
multiple packets is pipelined over the network at the packet level.

Figure E.5 shows the basic components of latency for a single packet. Note
that some latency components will be broken down further in later sections as the
internals of the “black box” network are revealed. The timing parameters in Fig-
ure E.5 apply to many interconnection network domains: inside a chip, between
chips on a board, between boards in a chassis, between chassis within a com-
puter, between computers in a cluster, between clusters, and so on. The values
may change, but the components of latency remain the same.

The following terms are often used loosely, leading to confusion, so we
define them here more precisely:

E.2 Interconnecting Two Devices � E-13

� Bandwidth—Strictly speaking, the bandwidth of a transmission medium
refers to the range of frequencies for which the attenuation per unit length
introduced by that medium is below a certain threshold. It must be distin-
guished from the transmission speed, which is the amount of information
transmitted over a medium per unit time. For example, modems successfully
increased transmission speed in the late 1990s for a fixed bandwidth (i.e., the
3 KHz bandwidth provided by voice channels over telephone lines) by encod-
ing more voltage levels and, hence, more bits per signal cycle. However, to be
consistent with its more widely understood meaning, we use the term band-
width to refer to the maximum rate at which information can be transferred,
where information includes packet header, payload, and trailer. The units are
traditionally bits per second although bytes per second is sometimes used.
The term bandwidth is also used to mean the measured speed of the medium
(i.e., network links). Aggregate bandwidth refers to the total data bandwidth
supplied by the network, and effective bandwidth or throughput is the fraction
of aggregate bandwidth delivered by the network to an application.

� Time of flight—This is the time for the first bit of the packet to arrive at the
receiver, including the propagation delay over the links and delays due to other
hardware in the network such as link repeaters and network switches. The unit
of measure for time of flight can be in milliseconds for WANs, microseconds
for LANs, nanoseconds for SANs, and picoseconds for OCNs.

� Transmission time—This is the time for the packet to pass through the network,
not including time of flight. One way to measure it is the difference in time
between when the first bit of the packet arrives at the receiver and when the last
bit of that packet arrives at the receiver. By definition, transmission time is
equal to the size of the packet divided by the data bandwidth of network links.

Figure E.5 Components of packet latency. Depending on whether it is an OCN, SAN,
LAN, or WAN, the relative amounts of sending and receiving overhead, time of flight,
and transmission time are usually quite different from those illustrated here.

Sender
overheadSender

Receiver

Transmission
time

(bytes/bandwidth)

Time of
flight

Transmission
time

(bytes/bandwidth)
Receiver
overhead

Transport latency

Total latency

Time

E-14 � Appendix E Interconnection Networks

This measure assumes there are no other packets contending for that bandwidth
(i.e., a zero-load or no-load network).

� Transport latency—This is the sum of time of flight and transmission time.
Transport latency is the time that the packet spends in the interconnection
network. Stated alternatively, it is the time between when the first bit of the
packet is injected into the network and when the last bit of that packet arrives
at the receiver. It does not include the overhead of preparing the packet at the
sender or processing it when it arrives at the receiver.

� Sending overhead—This is the time for the end node to prepare the packet (as
opposed to the message) for injection into the network, including both hard-
ware and software components. Note that the end node is busy for the entire
time, hence the use of the term overhead. Once the end node is free, any subse-
quent delays are considered part of the transport latency. We assume that over-
head consists of a constant term plus a variable term that depends on packet
size. The constant term includes memory allocation, packet header preparation,
setting up DMA devices, and so on. The variable term is mostly due to copies
from buffer to buffer and is usually negligible for very short packets.

� Receiving overhead—This is the time for the end node to process an incom-
ing packet, including both hardware and software components. We also
assume here that overhead consists of a constant term plus a variable term that
depends on packet size. In general, the receiving overhead is larger than the
sending overhead. For example, the receiver may pay the cost of an interrupt,
or may have to reorder and reassemble packets into messages.

The total latency of a packet can be expressed algebraically by the following:

Let’s see how the various components of transport latency and the sending and
receiving overheads change in importance as we go across the interconnection
network domains: from OCNs to SANs to LANs to WANs.

Example Assume we have a dedicated link network with a data bandwidth of 8 Gbps for
each link in each direction interconnecting two devices within an OCN, SAN,
LAN, or WAN, and we wish to transmit packets of 100 bytes (including the
header) between the devices. The end nodes have a per-packet sending overhead
of x + 0.05 ns/byte and receiving overhead of 4/3(x) + 0.05 ns/byte, where x is
0 µs for the OCN, 0.3 µs for the SAN, 3 µs for the LAN, and 30 µs for the WAN,
which are typical for these network types. Calculate the total latency to send
packets from one device to the other for interconnection distances of 0.5 cm, 5 m,
5000 m, and 5000 km assuming that time of flight consists only of link propaga-
tion delay (i.e., no switching or other sources of delay).

Answer Using the above expression and the calculation for propagation delay through a
conductor given in the previous example, we can plug in the parameters for each
of the networks to find their total packet latency. For the OCN:

Latency Sending overhead Time of flight Packet size
Bandwidth
-------------------------- Receiving overhead+ + +=

E.2 Interconnecting Two Devices � E-15

Converting all terms into nanoseconds (ns) leads to the following for the OCN:

Substituting in the appropriate values for the SAN gives the following latency:

Substituting in the appropriate values for the LAN gives the following latency:

Substituting in the appropriate values for the WAN gives the following latency:

The increased fraction of the latency required by time of flight for the longer
distances along with the greater likelihood of errors over the longer distances are
among the reasons why WANs and LANs use more sophisticated and time-con-
suming communication protocols, which increase sending and receiving over-
heads. The need for standardization is another reason. Complexity also increases
due to the requirements imposed on the protocol by the typical applications that
run over the various interconnection network domains as we go from tens to hun-
dreds to thousands to many thousands of devices. We will consider this in later
sections when we discuss connecting more than two devices. The above example
shows that the propagation delay component of time of flight for WANs and
some LANs is so long that other latency components—including the sending and
receiving overheads—can practically be ignored. This is not so for SANs and
OCNs where the propagation delay pales in comparison to the overheads and
transmission delay. Remember that time of flight latency owing to switches and
other hardware in the network besides sheer propagation delay through the links
is neglected in the above example. For noncongested networks, switch latency

Latency Sending overhead Time of flight Packet size
Bandwidth
-------------------------- Receiving overhead+ + +=

5ns 0.5 cm
2 3⁄ 300,000 km/sec×
-- 100 bytes

8 Gbits/sec
-------------------------- 5 ns+ + +=

Total latency (OCN) 5 ns
0.5 cm

2 3⁄ 300,000 km/sec×
--

100 8×
8

------------------ ns 5 ns+ + +=

5 ns 0.025 ns + 100 ns + 5 ns +=

110.025 ns=

Total latency (SAN) 0.305 µs 5 m
2 3

⁄

300,000 km/sec

×

 -- 100 bytes
8 Gbits/sec
--------------------------- 0.405 µs+ + +=

0.305 µs + 0.025 µs + 0.1 µs + 0.405 µs=

0.835 µs=

Total latency (LAN) 3.005 µs 5 km
2 3

⁄

300,000 km/sec

×

 -- 100 bytes
8 Gbits/sec
--------------------------- 4.005 µs+ + +=

3.005 µs + 25 µs + 0.1 µs + 4.005 µs=

32.11 µs=

Total latency (WAN) 30.005 µs 5000 km
2 3

⁄

300,000 km/sec

×

 -- 100 bytes
8 Gbits/sec
--------------------------- 40.005 µs+ + +=

30.005 µs + 25000 µs + 0.1 µs + 40.005 µs=

25.07 ms=

E-16

�

Appendix E

Interconnection Networks

generally is small compared to the overheads and propagation delay through the
links in WANs and LANs, but this is not necessarily so for multiprocessor SANs
and multicore OCNs, as we will see in later sections.

So far, we have considered the transport of a single packet and computed the
associated end-to-end total packet latency. In order to compute the effective
bandwidth for two networked devices, we have to consider a continuous stream
of packets transported between them. We must keep in mind that, in addition to
minimizing packet latency, the goal of any network optimized for a given cost
and power consumption target is to transfer the maximum amount of available
information in the shortest possible time, as measured by the effective bandwidth
delivered by the network. For applications that do not require a response before
sending the next packet, the sender can overlap the sending overhead of later
packets with the transport latency and receiver overhead of prior packets. This
essentially pipelines the transmission of packets over the network, also known as

link pipelining

. Fortunately, as discussed in prior chapters of this book, there are
many application areas where communication from either several applications or
several threads from the same application can run concurrently (e.g., a Web
server concurrently serving thousands of client requests or streaming media),
thus allowing a device to send a stream of packets without having to wait for an
acknowledgment or a reply. Also, as long messages are usually divided into pack-
ets of maximum size before transport, a number of packets are injected into the
network in succession for such cases. If such overlap were not possible, packets
would have to wait for prior packets to be acknowledged before being transmitted
and, thus, suffer significant performance degradation.

Packets transported in a pipelined fashion can be acknowledged quite
straightforwardly simply by keeping a copy at the source of all unacknowledged
packets that have been sent and keeping track of the correspondence between
returned acknowledgments and packets stored in the buffer. Packets will be
removed from the buffer when the corresponding acknowledgment is received by
the sender. This can be done by including the message ID and packet sequence
number associated with the packet in the packet’s acknowledgment. Furthermore,
a separate timer must be associated with each buffered packet, allowing the
packet to be resent if the associated time-out expires.

Pipelining packet transport over the network has many similarities with pipe-
lining computation within a processor. However, among some differences are that it
does not require any staging latches. Information is simply propagated through net-
work links as a sequence of signal waves. Thus, the network can be considered as a
logical pipeline consisting of as many stages as are required so that the time of
flight does not affect the effective bandwidth that can be achieved. Transmission of
a packet can start immediately after the transmission of the previous one, thus over-
lapping the sending overhead of a packet with the transport and receiver latency of
previous packets. If the sending overhead is smaller than the transmission time,
packets follow each other back-to-back, and the effective bandwidth approaches
the raw link bandwidth when continuously transmitting packets. On the other hand,
if the sending overhead is greater than the transmission time, the effective band-

E.2 Interconnecting Two Devices

�

E-17

width at the injection point will remain well below the raw link bandwidth. The
resulting

link injection bandwidth

, BW

LinkInjection

, for each link injecting a continu-
ous stream of packets into a network is calculated with the following expression:

We must also consider what happens if the receiver is unable to consume packets
at the same rate they arrive. This occurs if the receiving overhead is greater than
the sending overhead and the receiver cannot process incoming packets fast
enough. In this case, the

link reception bandwidth

, BW

LinkReception

, for each
reception link of the network is less than the link injection bandwidth and is
obtained with this expression:

When communication takes place between two devices interconnected by
dedicated links, all the packets sent by one device will be received by the other. If
the receiver cannot process packets fast enough, the receiver buffer will become
full, and flow control will throttle transmission at the sender. As this situation is
produced by causes external to the network, we will not consider it further here.
Moreover, if the receiving overhead is greater than the sending overhead, the
receiver buffer will fill up and flow control will, likewise, throttle transmission at
the sender. In this case, the effect of flow control is, on average, the same as if we
replace sending overhead with receiving overhead. Assuming an ideal network
that behaves like two dedicated links running in opposite directions at the full
link bandwidth between the two devices—which is consistent with our black box
view of the network to this point—the resulting effective bandwidth is the small-
est among twice the injection bandwidth (to account for the two injection links,
one for each device) and twice the reception bandwidth. This results in the fol-
lowing expression for effective bandwidth:

where Overhead = max(Sending overhead, Receiving overhead). Taking into
account the expression for the transmission time, it is obvious that the effective
bandwidth delivered by the network is identical to the aggregate network band-
width when the transmission time is greater than the overhead. Therefore, full
network utilization is achieved regardless of the value for the time of flight and,
thus, regardless of the distance traveled by packets, assuming ideal network
behavior (i.e., enough credits and buffers are provided for credit-based and Xon/
Xoff flow control). This analysis assumes that the sender and receiver network
interfaces can process only one packet at a time. If multiple packets can be pro-
cessed in parallel (e.g., as is done in IBM’s Federation network interfaces), the

BWLinkInjection
Packet size

max Sending overhead Transmission time,()
--=

BWLinkReception
Packet size

max Receiving overhead Transmission time,()
---=

Effective bandwidth min 2 BWLinkInjection× 2 BWLinkReception×,() 2 Packet size×
max Overhead Transmission time,()
---= =

E-18

�

Appendix E

Interconnection Networks

overheads for those packets can be overlapped, which increases effective band-
width by that overlap factor up to the amount bounded by the transmission time.

Let’s use the equation on page E-17 to explore the impact of packet size,
transmission time, and overhead on BW

Link Injection

, BW

LinkReception

, and effective
bandwidth for the various network domains: OCNs, SANs, LANs, and WANs.

Example

As in the previous example, assume we have a dedicated link network with a data
bandwidth of 8 Gbps for each link in each direction interconnecting the two
devices within an OCN, SAN, LAN, or WAN. Plot effective bandwidth versus
packet size for each type of network for packets ranging in size from 4 bytes (i.e.,
a single 32-bit word) to 1500 bytes (i.e., the maximum transfer unit for Ethernet),
assuming that end nodes have the same per-packet sending and receiving over-
heads as before:

x

+ 0.05 ns/byte and 4/3(

x

) + 0.05 ns/byte, respectively, where

x

is 0

µ

s for the OCN, 0.3

µ

s for the SAN, 3

µ

s for the LAN, and 30

µ

s for the
WAN. What limits the effective bandwidth, and for what packet sizes is the effec-
tive bandwidth within 10% of the aggregate network bandwidth?

Answer

Figure E.6 plots effective bandwidth versus packet size for the four network
domains using the simple equation and parameters given above. For all packet
sizes in the OCN, transmission time is greater than overhead (sending or receiv-
ing), allowing full utilization of the aggregate bandwidth, which is 16 Gbps—that
is, injection link (alternatively, reception link) bandwidth times two to account
for both devices. For the SAN, overhead—specifically, receiving overhead—is
larger than transmission time for packets less than about 800 bytes; consequently,
packets of 655 bytes and larger are needed to utilize 90% or more of the aggre-
gate bandwidth. For LANs and WANs, most of the link bandwidth is not utilized
since overhead in this example is many times larger than transmission time for all
packet sizes.

This example highlights the importance of reducing the sending and receiv-
ing overheads relative to packet transmission time in order to maximize the effec-

tive bandwidth delivered by the network.

The analysis above suggests that it is possible to provide some upper bound
for the effective bandwidth by analyzing the path followed by packets and deter-
mining where the bottleneck occurs. We can extend this idea beyond the network
interfaces by defining a model that considers the entire network from end to end
as a pipe and identifying the narrowest section of that pipe. There are three areas
of interest in that pipe: the aggregate of all network injection links and the corre-
sponding

network injection bandwidth

 (BW

NetworkInjection

), the aggregate of all
network reception links and the corresponding

network reception bandwidth

(BW

NetworkReception

), and the aggregate of all network links and the corresponding

network bandwidth

 (BW

Network

). Expressions for these will be given in later sec-
tions as various layers of the black box view of the network are peeled away.

E.2 Interconnecting Two Devices

�

E-19

To this point, we have assumed that for just two interconnected devices the
black box network behaves ideally and, thus, the network bandwidth is equal to
the aggregate raw network bandwidth. In reality, it can be much less than the
aggregate bandwidth as we will see in the following sections. In general, the
effective bandwidth delivered end-to-end by the network to an application is
upper bounded by the minimum across all three potential bottleneck areas:

We will expand upon this expression further in the following sections as we
reveal more about interconnection networks and consider the more general case
of interconnecting more than two devices.

In some sections of this appendix, we show how the concepts introduced in
the section take shape in example high-end commercial products. Figure E.7 lists
several commercial computers that, at one point in time in their existence, were
among the highest-performing systems in the world within their class. Although
these systems are capable of interconnecting more than two devices, they imple-
ment the basic functions needed for interconnecting only two devices. In addition
to being applicable to the SANs used in those systems, the issues discussed in
this section also apply to other interconnect domains: from OCNs to WANs.

Figure E.6

Effective bandwidth versus packet size plotted in semi-log form for the
four network domains.

Overhead can be amortized by increasing the packet size, but
for too large of an overhead (e.g., for WANs and some LANs) scaling the packet size is of
little help. Other considerations come into play that limit the maximum packet size.

E
ffe

ct
iv

e
ba

nd
w

id
th

 (
G

bi
ts

/s
ec

)

100

10

1

4

0.01

0.1

0.001

Packet size (bytes)

140012001000800600400200

OCN
SAN
LAN
WAN

Effective bandwidth min BWNetworkInjection BWNetwork BWNetworkReception, ,()=

E-20

�

Appendix E

Interconnection Networks

To this point, we have considered the connection of only two devices communi-
cating over a network viewed as a black box, but what makes interconnection net-
works interesting is the ability to connect hundreds or even many thousands of
devices together. Consequently, what makes them interesting also makes them
more challenging to build. In order to connect more than two devices, a suitable
structure and more functionality must be supported by the network. This section
continues with our black box approach by introducing, at a conceptual level,
additional network structure and functions that must be supported when intercon-
necting more than two devices. More details on these individual subjects are
given in Sections E.4 through E.7. Where applicable, we relate the additional
structure and functions to network media, flow control, and other basics pre-
sented in the previous section. In this section, we also classify networks into two

C
o

m
p

an
y

Sy
st

em
[n

et
w

o
rk

] n
am

e

In
tr

o
 y

ea
r

M
ax

. n
u

m
b

er
 o

f
co

m
p

u
te

 n
o

d
es

[

×

 #
 C

P
U

s]

Sy
st

em
 fo

o
tp

ri
n

t
fo

r
m

ax
. c

o
n

fi
g

u
ra

ti
o

n

Pa
ck

et
 [h

ea
d

er
]

m
ax

 s
iz

e
(b

yt
es

)

In
je

ct
io

n
 [r

ec
ep

ti
o

n
]

n
o

d
e

B
W

 in

M
B

/s
ec

M
in

im
u

m
 s

en
d

/
re

ce
iv

e
o

ve
rh

ea
d

M
ax

im
u

m
 c

o
p

p
er

lin
k

le
n

g
th

; fl
o

w

co
n

tr
o

l;
er

ro
r

Intel ASCI Red
Paragon

2001 4510 [× 2] 2500
sq. feet

1984
[4]

400
[400]

few µs handshaking;
CRC + parity

IBM ASCI White
SP Power3
[Colony]

2001 512 [× 16] 10,000
sq. feet

1024
[6]

500
[500]

~ 3 µs 25 m; credit-
based; CRC

Intel Thunder
Itanium2
Tiger4
[QsNetII]

2004 1024 [× 4] 120 m2 2048
[14]

928
[928]

0.240 µs 13 m; credit-
based; CRC
for link, dest.

Cray XT3
[SeaStar]

2004 30,508 [× 1] 263.8 m2 80
[16]

3200
[3200]

few µs 7 m; credit-
based; CRC

Cray X1E 2004 1024 [× 1] 27 m2 32
[16]

1600
[1600]

0 (direct LD ST
accesses)

5 m; credit-
based; CRC

IBM ASC Purple
pSeries 575
[Federation]

2005 >1280 [× 8] 6720
sq. feet

2048
[7]

2000
[2000]

~ 1 µs with up
to 4 packets
processed in ||

25 m; credit-
based; CRC

IBM Blue Gene/L
eServer Sol.
[Torus Net.]

2005 65,536 [× 2] 2500 sq. feet
(.9 × .9 × 1.9
m3/1K node
rack)

256
[8]

612.5
[1050]

~ 3 µs
(2300 cycles)

8.6 m; credit-
based; CRC
(header/pkt)

Figure E.7 Basic characteristics of interconnection networks in commercial high-performance computer systems.

 E.3 Connecting More than Two Devices

E.3 Connecting More than Two Devices � E-21

broad categories based on their connection structure—shared-media versus
switched-media networks—and we compare them. Finally, expanded expressions
for characterizing network performance are given, followed by an example.

Additional Network Structure and Functions: Topology,
Routing, Arbitration, and Switching

Networks interconnecting more than two devices require mechanisms to physi-
cally connect the packet source to its destination in order to transport the packet
and deliver it to the correct destination. These mechanisms can be implemented
in different ways and significantly vary across interconnection network domains.
However, the types of network structure and functions performed by those mech-
anisms are very much the same, regardless of the domain.

When multiple devices are interconnected by a network, the connections
between them oftentimes cannot be permanently established with dedicated
links. This could either be too restrictive as all the packets from a given source
would go to the same one destination (and not to others) or prohibitively expen-
sive as a dedicated link would be needed from every source to every destination
(we will evaluate this further in the next section). Therefore, networks usually
share paths among different pairs of devices, but how those paths are shared is
determined by the network connection structure, commonly referred to as the
network topology. Topology addresses the important issue of “What paths are
possible for packets?” in order for packets to reach their intended destination.

Every network that interconnects more than two devices also requires some
mechanism to deliver each packet to the correct destination. The associated
function is referred to as routing, which can be defined as the set of operations
that need to be performed to compute a valid path from the packet source to its
destination. Routing addresses the important issue of “Which of the possible
paths are allowable (valid) for packets?” in order for packets to reach their
intended destination. Depending on the network, this function may be executed
at the packet source to compute the entire path, at some intermediate devices to
compute fragments of the path on-the-fly, or even at every possible destination
device to verify whether that device is the intended destination for the packet.
Usually the packet header shown in Figure E.4 is extended to include the neces-
sary routing information.

In general, as networks usually contain shared paths or parts thereof among
different pairs of devices, packets may request some shared resources. When sev-
eral packets request the same resources at the same time, an arbitration function
is required to resolve the conflict. Arbitration, along with flow control, addresses
the important issue of “When are paths available for packets?” Every time arbi-
tration is performed, there is a winner and, possibly, several losers. The losers are
not granted access to the requested resources and are typically buffered. As indi-
cated in the previous section, flow control may be implemented to prevent buffer
overflow. The winner proceeds toward its destination once the granted resources
are switched in, providing a path for the packet to advance. This function is

E-22 � Appendix E Interconnection Networks

referred to as switching. Switching addresses the important issue of “How are
paths allocated to packets?” To achieve better utilization of existing communica-
tion resources, most networks do not establish an entire end-to-end path at once.
Instead, as explained in Section E.5, paths are usually established one fragment at
a time.

These three network functions—routing, arbitration, and switching—must be
implemented in every network connecting more than two devices, no matter what
form the network topology takes. This is in addition to the basic functions men-
tioned in the previous section. However, the complexity of these functions and
the order in which they are performed depends on the category of network topol-
ogy, as discussed below. In general, routing, arbitration, and switching are
required to establish a valid path from source to destination from among the pos-
sible paths provided by the network topology. Once the path has been estab-
lished, the packet transport functions previously described are used to reliably
transmit packets and receive them at the corresponding destination. Flow control,
if implemented, prevents buffer overflow by throttling the sender. It can be imple-
mented at the end-to-end level, the link-level within the network, or both.

Shared-Media Networks

The simplest way to connect multiple devices is to have them share the network
media, as shown for the bus in Figure E.8 (a). This has been the traditional way of
interconnecting devices. The shared media can operate in half-duplex mode,
where data can be carried in either direction over the media but simultaneous
transmission and reception of data by the same device is not allowed, or in full-
duplex, where the data can be carried in both directions and simultaneously trans-
mitted and received by the same device. Until very recently, I/O devices in most

Figure E.8 (a) A shared-media network versus (b) a switched-media network.
Ethernet was originally a shared media network, but switched Ethernet is now avail-
able. All nodes on the shared-media must dynamically share the raw bandwidth of one
link, but switched-media networks can support multiple links, providing higher raw
aggregate bandwidth.

Node Node

Shared-media network

Switched-media network

(b)

Switch fabric

(a)

Node

Node Node

Node Node

E.3 Connecting More than Two Devices � E-23

systems typically shared a single I/O bus, and early system-on-chip (SoC)
designs made use of a shared bus to interconnect on-chip components. The most
popular LAN, Ethernet, was originally implemented as a half-duplex bus shared
by up to a hundred computers, although now switched-media versions also exist.

Given that network media are shared, there must be a mechanism to coordi-
nate and arbitrate the use of the shared media so that only one packet is sent at a
time. If the physical distance between network devices is small, it may be possi-
ble to have a central arbiter to grant permission to send packets. In this case, the
network nodes may use dedicated control lines to interface with the arbiter. Cen-
tralized arbitration is impractical, however, for networks with a large number of
nodes spread over large distances, so distributed forms of arbitration are also
used. This is the case for the original Ethernet shared-media LAN.

A first step toward distributed arbitration of shared media is “looking before
you leap.” A node first checks the network to avoid trying to send a packet while
another packet is already in the network. Listening before transmission to avoid
collisions is called carrier sensing. If the interconnection is idle, the node tries to
send. Looking first is not a guarantee of success, of course, as some other node
may also decide to send at the same instant. When two nodes send at the same
time, a collision occurs. Let’s assume that the network interface can detect any
resulting collisions by listening to hear if the data becomes garbled by other data
appearing on the line. Listening to detect collisions is called collision detection.
This is the second step of distributed arbitration.

The problem is not solved yet. If, after detecting a collision, every node on
the network waited exactly the same amount of time, listened to be sure there was
no traffic, and then tried to send again, we could still have synchronized nodes
that would repeatedly bump heads. To avoid repeated head-on collisions, each
node whose packet gets garbled waits (or backs off) a random amount of time
before resending. Randomization breaks the synchronization. Subsequent colli-
sions result in exponentially increasing time between attempts to retransmit, so as
not to tax the network.

Although this approach controls congestion on the shared media, it is not
guaranteed to be fair—some subsequent node may transmit while those that col-
lided are waiting. If the network does not have high demand from many nodes,
this simple approach works well. Under high utilization, however, performance
degrades since the media are shared and fairness is not ensured. Another distrib-
uted approach to arbitration of shared media that can support fairness is to pass a
token between nodes. The function of the token is to grant the acquiring node the
right to use the network. If the token circulates in a cyclic fashion between the
nodes, a certain amount of fairness is ensured in the arbitration process.

Once arbitration has been performed and a device has been granted access to
the shared media, the function of switching is straightforward. The granted
device simply needs to connect itself to the shared media, thus establishing a path
to every possible destination. Also, routing is very simple to implement. Given
that the media are shared and attached to all the devices, every device will see
every packet. Therefore, each device just needs to check whether or not a given

E-24 � Appendix E Interconnection Networks

packet is intended for that device. A beneficial side effect of this strategy is that a
device can send a packet to all the devices attached to the shared media through a
single transmission. This style of communication is called broadcasting, in con-
trast to unicasting, in which each packet is intended for only one device. The
shared media make it easy to broadcast a packet to every device or, alternatively,
to a subset of devices, called multicasting.

Switched-Media Networks

The alternative to sharing the entire network media at once across all attached
nodes is to switch between disjoint portions of it shared by the nodes. Those por-
tions consist of passive point-to-point links between active switch components
that dynamically establish communication between sets of source-destination
pairs. These passive and active components make up what is referred to as the
network switch fabric or network fabric, to which end nodes are connected. This
approach is shown conceptually in Figure E.8 (b). The switch fabric is described
in greater detail in Sections E.4 through E.7, where various black box layers for
switched-media networks are further revealed. Nevertheless, the high-level view
shown in Figure E.8 (b) illustrates the potential bandwidth improvement of
switched-media networks over shared-media networks: aggregate bandwidth can
be many times higher than that of shared-media networks, allowing the possibil-
ity of greater effective bandwidth to be achieved. At best, only one node at a time
can transmit packets over the shared media, whereas it is possible for all attached
nodes to do so over the switched-media network.

Like their shared-media counterparts, switched-media networks must imple-
ment the three additional functions previously mentioned: routing, arbitration,
and switching. Every time a packet enters the network, it is routed in order to
select a path toward its destination provided by the topology. The path requested
by the packet must be granted by some centralized or distributed arbiter, which
resolves conflicts among concurrent requests for resources along the same path.
Once the requested resources are granted, the network “switches in” the required
connections to establish the path and allow the packet to be forwarded toward its
destination. If the requested resources are not granted, the packet is usually buff-
ered, as mentioned previously. Routing, arbitration, and switching functions are
usually performed within switched networks in this order, whereas in shared-
media networks routing typically is the last function performed.

Comparison of Shared- and Switched-Media Networks

In general, the advantage of shared-media networks is their low cost, but, conse-
quently, their aggregate network bandwidth does not scale at all with the number
of interconnected devices. Also, a global arbitration scheme is required to resolve
conflicting demands, possibly introducing another type of bottleneck and again
limiting scalability. Moreover, every device attached to the shared media
increases the parasitic capacitance of the electrical conductors, thus increasing

E.3 Connecting More than Two Devices � E-25

the time of flight propagation delay accordingly and, possibly, clock cycle time.
In addition, it is more difficult to pipeline packet transmission over the network
as the shared media are continuously granted to different requesting devices.

The main advantage of switched-media networks is that the amount of net-
work resources implemented scales with the number of connected devices,
increasing the aggregate network bandwidth. These networks allow multiple
pairs of nodes to communicate simultaneously, allowing much higher effective
network bandwidth than that provided by shared-media networks. Also,
switched-media networks allow the system to scale to very large numbers of
nodes, which is not feasible when using shared media. Consequently, this scaling
advantage can, at the same time, be a disadvantage if network resources grow
superlinearly. Networks of superlinear cost that provide an effective network
bandwidth that grows only sublinearly with the number of interconnected devices
are inefficient designs for many applications and interconnection network
domains.

Characterizing Performance: Latency and Effective Bandwidth

The routing, switching, and arbitration functionality described above introduces
some additional components of packet transport latency that must be taken into
account in the expression for total packet latency. Assuming there is no conten-
tion for network resources—as would be the case in an unloaded network—total
packet latency is given by the following:

Here TR, TA, and TS are the total routing time, arbitration time, and switching
time experienced by the packet, respectively, and are either measured quantities
or calculated quantities derived from more detailed analyses. These components
are added to the total propagation delay through the network links, TTotalProp, to
give the overall time of flight of the packet.

The expression above gives only a lower bound for the total packet latency as
it does not account for additional delays due to contention for resources that may
occur. When the network is heavily loaded, several packets may request the same
network resources concurrently, thus causing contention that degrades perfor-
mance. Packets that lose arbitration have to be buffered, which increases packet
latency by some contention delay amount of waiting time. This additional delay
is not included in the above expression. When the network or part of it
approaches saturation, contention delay may be several orders of magnitude
greater than the total packet latency suffered by a packet under zero load or even
under slightly loaded network conditions. Unfortunately, it is not easy to compute
analytically the total packet latency when the network is more than moderately
loaded. Measurement of these quantities using cycle-accurate simulation of a
detailed network model is a better and more precise way of estimating packet
latency under such circumstances. Nevertheless, the expression given above is
useful in calculating best-case lower bounds for packet latency.

Latency Sending overhead T TotalProp T R T A T S+ + +() Packet size
Bandwidth
-------------------------- Receiving overhead+ + +=

E-26 � Appendix E Interconnection Networks

For similar reasons, effective bandwidth is not easy to compute exactly, but we
can estimate best-case upper bounds for it by appropriately extending the model
presented at the end of the previous section. What we need to do is to find the nar-
rowest section of the end-to-end network pipe by finding the network injection
bandwidth (BWNetworkInjection), the network reception bandwidth (BWNetworkRecep-

tion), and the network bandwidth (BWNetwork) across the entire network interconnect-
ing the devices.

The BWNetworkInjection can be calculated simply by multiplying the expression
for link injection bandwidth, BWLinkInjection, by the total number of network injec-
tion links. The BWNetworkReception is calculated similarly using BWLinkReception, but
it must also be scaled by a factor that reflects application traffic and other character-
istics. For more than two interconnected devices, it is no longer valid to assume a
one-to-one relationship among sources and destinations when analyzing the effect
of flow control on link reception bandwidth. It could happen, for example, that sev-
eral packets from different injection links arrive concurrently at the same reception
link for applications that have many-to-one traffic characteristics, which causes
contention at the reception links. This effect can be taken into account by an aver-
age reception factor parameter, σ, which is either a measured quantity or a calcu-
lated quantity derived from detailed analysis. It is defined as the average fraction or
percentage of packets arriving at reception links that can be accepted. Only those
packets can be immediately delivered, thus reducing network reception bandwidth
by that factor. This reduction occurs as a result of application behavior regardless of
internal network characteristics. Finally, BWNetwork takes into account the internal
characteristics of the network, including contention. We will progressively derive
expressions in the following sections that will enable us to calculate this as more
details are revealed about the internals of our black box interconnection network.

Overall, the effective bandwidth delivered by the network end-to-end to an
application is determined by the minimum across the three sections, as described
by the following:

Let’s use the above expressions to compare the latency and effective bandwidth
of shared-media networks against switched-media networks for the four intercon-
nection network domains: OCNs, SANs, LANs, and WANs.

Example Plot the total packet latency and effective bandwidth as the number of intercon-
nected nodes, N, scales from 4 to 1024 for shared-media and switched-media
OCNs, SANs, LANs, and WANs. Assume that all network links, including the
injection and reception links at the nodes, each have a data bandwidth of 8 Gbps,
and unicast packets of 100 bytes are transmitted. Shared-media networks share
one link, and switched-media networks have at least as many network links as

Effective bandwidth min BWNetworkInjection BWNetwork σ BWNetworkReception×, ,()=

min N BWLinkInjection× BWNetwork σ N× BWLinkReception×, ,()=

E.3 Connecting More than Two Devices � E-27

there are nodes. For both, ignore latency and bandwidth effects due to contention
within the network. End nodes have per-packet sending and receiving overheads
of x + 0.05 ns/byte and 4/3(x) + 0.05 ns/byte, respectively, where x is 0 µs for the
OCN, 0.3 µs for the SAN, 3 µs for the LAN, and 30 µs for the WAN, and inter-
connection distances are 0.5 cm, 5 m, 5000 m, and 5000 km, respectively. Also
assume that the total routing, arbitration, and switching times are constants or
functions of the number of interconnected nodes: TR = 2.5 ns, TA = 2.5(N) ns, and
TS = 2.5 ns for shared-media networks and TR = TA = TS = 2.5(log2 N) ns for
switched-media networks. Finally, taking into account application traffic charac-
teristics for the network structure, the average reception factor, σ, is assumed to
be N-1 for shared media and polylogarithmic (log2 N)–1/4 for switched media.

Answer All components of total packet latency are the same as in the example given in
the previous section except for time of flight, which now has additional routing,
arbitration, and switching delays. For shared-media networks, the additional
delays total 5 + 2.5(N) ns; for switched-media networks, they total 7.5(log2 N) ns.
Latency is plotted only for OCNs and SANs in Figure E.9 as these networks give
the more interesting results. For OCNs, TR, TA, and TS combine to dominate time
of flight and are much greater than each of the other latency components for a
moderate to large number of nodes. This is particularly so for the shared-media

Figure E.9 Latency versus number of interconnected nodes plotted in semi-log
form for OCNs and SANs. Routing, arbitration, and switching have more of an impact
on latency for networks in these two domains, particularly for networks with a large
number of nodes, given the low sending and receiving overheads and low propagation
delay.

La
te

nc
y

(n
s)

10,000

1000

4
100

Number of nodes (N)

512 10242561286432168

SAN— shared
OCN— shared
SAN— switched
OCN— switched

E-28 � Appendix E Interconnection Networks

network. The latency increases much more dramatically with the number of
nodes for shared media as compared to switched media given the difference in
arbitration delay between the two. For SANs, TR, TA, and TS dominate time of
flight for most network sizes but are greater than each of the other latency com-
ponents in shared-media networks only for large-sized networks; they are less
than the other latency components for switched-media networks but are not neg-
ligible. For LANs and WANs, time of flight is dominated by propagation delay,
which dominates other latency components as calculated in the previous section;
thus, TR, TA, and TS are negligible for both shared and switched media.

Figure E.10 plots effective bandwidth versus number of interconnected nodes
for the four network domains. The effective bandwidth for all shared-media net-
works is constant through network scaling as only one unicast packet can be
received at a time over all the network reception links, and that is further limited
by the receiving overhead of each network for all but the OCN. The effective
bandwidth for all switched-media networks increases with the number of inter-
connected nodes, but it is scaled down by the average reception factor. The
receiving overhead further limits effective bandwidth for all but the OCN.

Figure E.10 Effective bandwidth versus number of interconnected nodes plotted in semi-log form for the four
network domains. The disparity in effective bandwidth between shared- and switched-media networks for all inter-
connect domains widens significantly as the number of nodes in the network increases. Only the switched on-chip
network is able to achieve an effective bandwidth equal to the aggregate bandwidth for the parameters given in this
example.

E
ffe

ct
iv

e
ba

nd
w

id
th

 (
G

bi
ts

/s
ec

)

10,000

1000

100

10

1

1

0.1

0.01

Number of nodes (N)

12001000800600400200

OCN— switched
SAN— switched
LAN— switched
WAN— switched
OCN— shared
SAN— shared
LAN— shared
WAN— shared

E.4 Network Topology � E-29

Given the obvious advantages, why weren’t switched networks always used?
Earlier computers were much slower and could share the network media with lit-
tle impact on performance. In addition, the switches for earlier LANs and WANs
took up several large boards and were about as large as an entire computer. As a
consequence of Moore’s Law, the size of switches has reduced considerably, and
systems have a much greater need for high-performance communication.
Switched networks allow communication to harvest the same rapid advance-
ments from silicon as processors and main memory. Whereas switches from tele-
communication companies were once the size of mainframe computers, today we
see single-chip switches and even entire switched networks within a chip. Thus,
technology and application trends favor switched networks today. Just as single-
chip processors led to processors replacing logic circuits in a surprising number
of places, single-chip switches and switched on-chip networks are increasingly
replacing shared-media networks (i.e., buses) in several application domains. As
an example, PCI-Express (PCIe)—a switched network—was introduced in 2005
to replace the traditional PCI-X bus on personal computer motherboards.

The previous example also highlights the importance of optimizing the rout-
ing, arbitration, and switching functions in OCNs and SANs. For these network
domains in particular, the interconnect distances and overheads typically are
small enough to make latency and effective bandwidth much more sensitive to
how well these functions are implemented, particularly for larger-sized networks.
This leads mostly to implementations based mainly on the faster hardware solu-
tions for these domains. In LANs and WANs, implementations based on the
slower but more flexible software solutions suffice given that performance is
largely determined by other factors. The design of the topology for switched-
media networks also plays a major role in determining how close to the lower
bound on latency and the upper bound on effective bandwidth the network can
achieve for OCN and SAN domains.

The next three sections touch on these important issues in switched networks,
with the next section focused on topology.

When the number of devices is small enough, a single switch is sufficient to inter-
connect them within a switched-media network. However, the number of switch
ports is limited by existing VLSI technology, cost considerations, power con-
sumption, and so on. When the number of required network ports exceeds the
number of ports supported by a single switch, a fabric of interconnected switches
is needed. To embody the necessary property of full access (i.e., connectedness),
the network switch fabric must provide a path from every end node device to
every other device. All the connections to the network fabric and between
switches within the fabric use point-to-point links as opposed to shared links—
that is, links with only one switch or end node device on either end. The intercon-
nection structure across all the components—including switches, links, and end
node devices—is referred to as the network topology.

 E.4 Network Topology

E-30 � Appendix E Interconnection Networks

The number of network topologies described in the literature would be diffi-
cult to count, but the number that have been used commercially is no more than
about a dozen or so. During the 1970s and early 1980s, researchers struggled to
propose new topologies that could reduce the number of switches through which
packets must traverse, referred to as the hop count. In the 1990s, thanks to the
introduction of pipelined transmission and switching techniques, the hop count
became less critical. Nevertheless, today, topology is still important, particularly
for OCNs and SANs, as subtle relationships exist between topology and other
network design parameters that impact performance, especially when the number
of end nodes is very large (e.g., 64K in the Blue Gene/L supercomputer) or when
the latency is critical (e.g., in multicore processor chips). Topology also greatly
impacts the implementation cost of the network.

Topologies for parallel supercomputer SANs have been the most visible and
imaginative, usually converging on regularly structured ones to simplify routing,
packaging, and scalability. Those for LANs and WANs tend to be more haphaz-
ard or ad hoc, having more to do with the challenges of long distance or connect-
ing across different communication subnets. Switch-based topologies for OCNs
are only recently emerging but are quickly gaining in popularity. This section
describes the more popular topologies used in commercial products. Their advan-
tages, disadvantages, and constraints are also briefly discussed.

Centralized Switched Networks

As mentioned above, a single switch suffices to interconnect a set of devices
when the number of switch ports is equal to or larger than the number of devices.
This simple network is usually referred to as a crossbar or crossbar switch.
Within the crossbar, crosspoint switch complexity increases quadratically with
the number of ports, as illustrated in Figure E.11 (a). Thus, a cheaper solution is
desirable when the number of devices to be interconnected scales beyond the
point supportable by implementation technology.

A common way of addressing the crossbar scaling problem consists of split-
ting the large crossbar switch into several stages of smaller switches intercon-
nected in such a way that a single pass through the switch fabric allows any
destination to be reached from any source. Topologies arranged in this way are
usually referred to as multistage interconnection networks or multistage switch
fabrics, and these networks typically have complexity that increases in propor-
tion to N log N. Multistage interconnection networks (MINs) were initially pro-
posed for telephone exchanges in the 1950s and have since been used to build the
communication backbone for parallel supercomputers, symmetric multiproces-
sors, multicomputer clusters, and IP router switch fabrics.

The interconnection pattern or patterns between MIN stages are permutations
that can be represented mathematically by a set of functions, one for each stage.
Figure E.11 (b) shows a well-known MIN topology, the Omega, which uses the
perfect-shuffle permutation as its interconnection pattern for each stage, followed
by exchange switches, giving rise to a perfect-shuffle exchange for each stage. In

E.4 Network Topology � E-31

this example, eight input-output ports are interconnected with three stages of 2 ×
2 switches. It is easy to see that a single pass through the three stages allows any
input port to reach any output port. In general, when using k × k switches, a MIN
with N input-output ports requires at least logk N stages, each of which contains
N/k switches, for a total of N/k (logk N) switches.

Despite their internal structure, MINs can be seen as centralized switch fab-
rics that have end node devices connected at the network periphery, hence the
name centralized switched network. From another perspective, MINs can be
viewed as interconnecting nodes through a set of switches that may not have any
nodes directly connected to them, which gives rise to another popular name for
centralized switched networks—indirect networks.

Example Compute the cost of interconnecting 4096 nodes using a single crossbar switch
relative to doing so using a MIN built from 2 × 2, 4 × 4, and 16 × 16 switches.
Consider separately the relative cost of the unidirectional links and the relative
cost of the switches. Switch cost is assumed to grow quadratically with the num-
ber of input (alternatively, output) ports, k, for k × k switches.

Answer The switch cost of the network when using a single crossbar is proportional to
40962. The unidirectional link cost is 8192, which accounts for the set of links
from the end nodes to the crossbar and also from the crossbar back to the end
nodes. When using a MIN with k × k switches, the cost of each switch is propor-
tional to k2 but there are 4096/k (logk 4096) total switches. Likewise, there are

Figure E.11 Popular centralized switched networks: (a) the crossbar network requires N2 crosspoint switches,
shown as black dots; (b) the Omega, a MIN, requires N/2 log2 N switches, shown as vertical rectangles. End node
devices are shown as numbered squares (total of eight). Links are unidirectional—data enter at the left and exit out
the top or right.

(b)(a)

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

7

E-32 � Appendix E Interconnection Networks

(logk 4096) stages of N unidirectional links per stage from the switches plus N
links to the MIN from the end nodes. Therefore, the relative costs of the crossbar
with respect to each MIN is given by the following:

Relative cost (2 × 2)switches = 40962 / (22 × 4096/2 × log2 4096) = 170

Relative cost (4 × 4)switches = 40962 / (42 × 4096/4 × log4 4096) = 170

Relative cost (16 × 16)switches = 40962 / (162 × 4096/16 × log16 4096) = 85

Relative cost (2 × 2)links = 8192/ (4096 × (log2 4096 + 1)) = 2/13 = 0.1538

Relative cost (4 × 4)links = 8192/ (4096 × (log4 4096 + 1)) = 2/7 = 0.2857

Relative cost (16 × 16)links = 8192/ (4096 × (log16 4096 + 1)) = 2/4 = 0.5

In all cases, the single crossbar has much higher switch cost than the MINs. The
most dramatic reduction in cost comes from the MIN composed from the small-
est sized but largest number of switches, but it is interesting to see that the MINs
with 2 × 2 and 4 × 4 switches yield the same relative switch cost. The relative link
cost of the crossbar is lower than the MINs, but by less than an order of magni-
tude in all cases. We must keep in mind that end node links are different from
switch links in their length and packaging requirements, so they usually have dif-
ferent associated costs. Despite the lower link cost, the crossbar has higher over-
all relative cost.

The reduction in switch cost of MINs comes at the price of performance: con-
tention is more likely to occur on network links, thus degrading performance.
Contention in the form of packets blocking in the network arises due to paths
from different sources to different destinations simultaneously sharing one or
more links. The amount of contention in the network depends on communication
traffic behavior. In the Omega network shown in Figure E.11 (b), for example, a
packet from port 0 to port 1 blocks in the first stage of switches while waiting for
a packet from port 4 to port 0. In the crossbar, no such blocking occurs as links
are not shared among paths to unique destinations. The crossbar, therefore, is
nonblocking. Of course, if two nodes try to send packets to the same destination,
there will be blocking at the reception link even for crossbar networks. This is
accounted for by the average reception factor parameter (σ) when analyzing per-
formance, as discussed at the end of the previous section.

To reduce blocking in MINs, extra switches must be added or larger ones
need to be used to provide alternative paths from every source to every destina-
tion. The first commonly used solution is to add a minimum of logk N − 1 extra
switch stages to the MIN in such a way that they mirror the original topology.
The resulting network is rearrangeably nonblocking as it allows nonconflicting
paths among new source-destination pairs to be established, but it also doubles
the hop count and could require the paths of some existing communicating pairs
to be rearranged under some centralized control. The second solution takes a dif-
ferent approach. Instead of using more switch stages, larger switches—which can

E.4 Network Topology � E-33

be implemented by multiple stages if desired—are used in the middle of two
other switch stages in such a way that enough alternative paths through the
middle-stage switches allow for nonconflicting paths to be established between
the first and last stages. The best-known example of this is the Clos network,
which is nonblocking. The multipath property of the three-stage Clos topology
can be recursively applied to the middle-stage switches to reduce the size of all
the switches down to 2 × 2, assuming that switches of this size are used in the
first and last stages to begin with. What results is a Beneŝ topology consisting of
2(log2 N) − 1 stages, which is rearrangeably nonblocking. Figure E.12 (a) illus-
trates both topologies, where all switches not in the first and last stages comprise
the middle-stage switches (recursively) of the Clos network.

The MINs described so far have unidirectional network links, but bidirec-
tional forms are easily derived from symmetric networks such as the Clos and
Beneŝ simply by folding them. The overlapping unidirectional links run in differ-
ent directions, thus forming bidirectional links, and the overlapping switches
merge into a single switch with twice the ports (i.e., 4 × 4 switch). Figure E.12
(b) shows the resulting folded Beneŝ topology but in this case with the end nodes
connected to the innermost switch stage of the original Beneŝ. Ports remain free
at the other side of the network but can be used for later expansion of the network
to larger sizes. These kind of networks are referred to as bidirectional multistage
interconnection networks. Among many useful properties of these networks are
their modularity and their ability to exploit communication locality, which saves
packets from having to hop across all network stages. Their regularity also

Figure E.12 Two Beneŝ networks. (a) A 16-port Clos topology, where the middle-stage switches shown in the
darker shading are implemented with another Clos network whose middle-stage switches shown in the lighter shad-
ing are implemented with yet another Clos network, and so on, until a Beneŝ network is produced that uses only
2 × 2 switches everywhere. (b) A folded Beneŝ network (bidirectional) in which 4 × 4 switches are used; end nodes
attach to the innermost set of the Beneŝ network (unidirectional) switches. This topology is equivalent to a fat tree,
where tree vertices are shown in shades.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12

(a) (b)

13

14
15

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

E-34 � Appendix E Interconnection Networks

reduces routing complexity and their multipath property enables traffic to be
routed more evenly across network resources and to tolerate faults.

Another way of deriving bidirectional MINs with nonblocking (rearrange-
able) properties is to form a balanced tree, where end node devices occupy leaves
of the tree and switches occupy vertices within the tree. Enough links in each tree
level must be provided such that the total link bandwidth remains constant across
all levels. Also, except for the root, switch ports for each vertex typically grow as
ki × ki, where i is the tree level. This can be accomplished by using ki-1 total
switches at each vertex, where each switch has k input and k output ports, or k
bidirectional ports (i.e., k × k input-output ports). Networks having such topolo-
gies are called fat tree networks. As only half of the k bidirectional ports are used
in each direction, 2N/k switches are needed in each stage, totaling 2N/k (logk/2 N)
switches in the fat tree. The number of switches in the root stage can be halved as
no forward links are needed, reducing switch count by N/k. Figure E.12 (b)
shows a fat tree for 4 × 4 switches. As can be seen, this is identical to the folded
Beneŝ.

The fat tree is the topology of choice across a wide range of network sizes for
most commercial systems that use multistage interconnection networks. Most
SANs used in multicomputer clusters and many used in the most powerful super-
computers are based on fat trees. Commercial communication subsystems
offered by Myrinet, Mellanox, and Quadrics are also built from fat trees.

Distributed Switched Networks

Switched-media networks provide a very flexible framework to design communi-
cation subsystems external to the devices that need to communicate, as presented
above. However, there are cases where it is convenient to more tightly integrate
the end node devices with the network resources used to enable them to commu-
nicate. Instead of centralizing the switch fabric in an external subsystem, an alter-
native approach is to distribute the network switches among the end nodes, which
then become network nodes or simply nodes, yielding a distributed switched net-
work. As a consequence, each network switch has one or more end node devices
directly connected to it, thus forming a network node. These nodes are directly
connected to other nodes without indirectly going through some external switch,
giving rise to another popular name for these networks—direct networks.

The topology for distributed switched networks takes on a form much different
from centralized switched networks in that end nodes are connected across the area
of the switch fabric, not just at one or two of the peripheral edges of the fabric. This
causes the number of switches in the system to be equal to the total number of
nodes. A quite obvious way of interconnecting nodes consists of connecting a dedi-
cated link between each node and every other node in the network. This fully con-
nected topology provides the best connectivity (full connectivity in fact), but it is
more costly than a crossbar network, as the following example shows.

E.4 Network Topology � E-35

Example Compute the cost of interconnecting N nodes using a fully connected topology
relative to doing so using a crossbar topology. Consider separately the relative
cost of the unidirectional links and the relative cost of the switches. Switch cost is
assumed to grow quadratically with the number of unidirectional ports for k × k
switches but to grow only linearly with 1 × k switches.

Answer The crossbar topology requires an N × N switch, so the switch cost is propor-
tional to N2. The link cost is 2N, which accounts for the unidirectional links
from the end nodes to the centralized crossbar, and vice versa. In the fully con-
nected topology, two sets of 1 × (N − 1) switches (possibly merged into one set)
are used in each of the N nodes to connect nodes directly to and from all other
nodes. Thus, the total switch cost for all N nodes is proportional to 2N(N − 1).
Regarding link cost, each of the N nodes requires two unidirectional links in
opposite directions between its end node device and its local switch. In addi-
tion, each of the N nodes has N − 1 unidirectional links from its local switch to
other switches distributed across all the other end nodes. Thus, the total number
of unidirectional links is 2N + N(N − 1), which is equal to N(N + 1) for all N
nodes. The relative costs of the fully connected topology with respect to the
crossbar is, therefore, the following:

Relative costswitches = 2N(N − 1) / N2 = 2(N − 1) / N = 2(1 − 1/N)

Relative costlinks = N(N + 1) / 2N = (N + 1)/2

As the number of interconnected devices increases, the switch cost of the fully
connected topology is nearly double the crossbar, with both being very high (i.e.,
quadratic growth). Moreover, the fully connected topology always has higher rel-
ative link cost, which grows linearly with the number of nodes. Again, keep in
mind that end node links are different from switch links in their length and pack-
aging, particularly for direct networks, so they usually have different associated
costs. Despite its higher cost, the fully connected topology provides no extra per-
formance benefits over the crossbar as both are nonblocking. Thus, crossbar net-
works are usually used in practice instead of fully connected networks.

A lower-cost alternative to fully connecting all nodes in the network is to
directly connect nodes in sequence along a ring topology, as shown in
Figure E.13. For bidirectional rings, each of the N nodes now uses only 3 × 3
switches and just two bidirectional network links (shared by neighboring nodes),
for a total of N switches and N bidirectional network links. This linear cost excludes
the N injection-reception bidirectional links required within nodes.

Unlike shared-media networks, rings can allow many simultaneous transfers:
the first node can send to the second while the second sends to the third, and so
on. However, as dedicated links do not exist between logically nonadjacent node
pairs, packets must hop across intermediate nodes before arriving at their destina-
tion, increasing their transport latency. For bidirectional rings, packets can be

E-36 � Appendix E Interconnection Networks

transported in either direction, with the shortest path to the destination usually
being the one selected. In this case, packets must travel N/4 network switch hops,
on average, with total switch hop count being one more to account for the local
switch at the packet source node. Along the way, packets may block on network
resources due to other packets contending for the same resources simultaneously.

Fully connected and ring connected networks delimit the two extremes of dis-
tributed switched topologies, but there are many points of interest in between for
a given set of cost-performance requirements. Generally speaking, the ideal
switched-media topology has cost approaching that of a ring but performance
approaching that of a fully connected topology. Figure E.14 illustrates three pop-
ular direct network topologies commonly used in systems spanning the cost-
performance spectrum. All of them consist of sets of nodes arranged along multi-
ple dimensions with a regular interconnection pattern among nodes that can be
expressed mathematically. In the mesh or grid topology, all the nodes in each
dimension form a linear array. In the torus topology, all the nodes in each dimen-
sion form a ring. Both of these topologies provide direct communication to
neighboring nodes with the aim of reducing the number of hops suffered by pack-
ets in the network with respect to the ring. This is achieved by providing greater
connectivity through additional dimensions, typically no more than three in com-
mercial systems. The hypercube or n-cube topology is a particular case of the
mesh in which only two nodes are interconnected along each dimension, leading
to a number of dimensions, n, that must be large enough to interconnect all N
nodes in the system (i.e., n = log2 N). The hypercube provides better connectivity
than meshes and tori at the expense of higher link and switch costs, in terms of
the number of links and number of ports per node.

Example Compute the cost of interconnecting N devices using a torus topology relative to
doing so using a fat tree topology. Consider separately the relative cost of the
bidirectional links and the relative cost of the switches—which is assumed to
grow quadratically with the number of bidirectional ports. Provide an approxi-
mate expression for the case of switches being similar in size.

Figure E.13 A ring network topology, folded to reduce the length of the longest
link. Shaded circles represent switches, and black squares represent end node devices.
The gray rectangle signifies a network node consisting of a switch, a device, and its con-
necting link.

E.4 Network Topology � E-37

Answer Using k × k switches, the fat tree requires 2N/k (logk/2 N) switches, assuming the
last stage (the root) has the same number of switches as each of the other stages.
Given that the number of bidirectional ports in each switch is k (i.e., there are k
input ports and k output ports for a k × k switch) and that the switch cost grows
quadratically with this, total network switch cost is proportional to 2kN logk/2 N.
The link cost is N logk/2 N as each of the logk/2 N stages requires N bidirectional
links, including those between the devices and the fat tree. The torus requires as
many switches as nodes, each of them having 2n + 1 bidirectional ports, includ-
ing the port to attach the communicating device, where n is the number of dimen-
sions. Hence, total switch cost for the torus is (2n + 1)2N. Each of the torus nodes
requires 2n + 1 bidirectional links for the n different dimensions and the connec-
tion for its end node device, but as the dimensional links are shared by two nodes,
the total number of links is (2n/2 + 1)N = (n + 1)N bidirectional links for all N
nodes. Thus, the relative costs of the torus topology with respect to the fat tree is

Figure E.14 Direct network topologies that have appeared in commercial systems,
mostly supercomputers. The shaded circles represent switches, and the black squares
represent end node devices. Switches have many bidirectional network links, but at
least one link goes to the end node device. These basic topologies can be supple-
mented with extra links to improve performance and reliability. For example, connect-
ing the switches on the periphery of the 2-D mesh using the unused ports on each
switch forms a 2-D torus. The hypercube topology is an n-dimensional interconnect for
2n nodes, requiring n + 1 ports per switch: one for the n nearest neighbor nodes and
one for the end node device.

(a) 2D grid or mesh of 16 nodes (b) 2D torus of 16 nodes

(c) Hypercube of 16 nodes (16 = 24 so n = 4)

E-38 � Appendix E Interconnection Networks

Relative costswitches = (2n + 1)2N / 2kN logk/2 N = (2n + 1)2 / 2k logk/2 N

Relative costlinks = (n + 1)N / N logk/2 N = (n + 1) / logk/2 N

When switch sizes are similar, 2n + 1 ≅ k. In this case, the relative cost is

Relative costswitches = (2n + 1)2 / 2k logk/2 N = (2n + 1) / 2logk/2 N = k / 2logk/2 N

When the number of switch ports (also called switch degree) is small, tori have
lower cost, particularly when the number of dimensions is low. This is an espe-
cially useful property when N is large. On the other hand, when larger switches
and/or a high number of tori dimensions are used, fat trees are less costly and
preferable. For example, when interconnecting 256 nodes, a fat tree is four times
more expensive in terms of switch and link costs when 4 × 4 switches are used.
This higher cost is compensated for by lower network contention, on average.
The fat tree is comparable in cost to the torus when 8 × 8 switches are used (e.g.,
for interconnecting 256 nodes). For larger switch sizes beyond this, the torus
costs more than the fat tree as each node includes a switch. This cost can be
amortized by connecting multiple end node devices per switch, called bristling.

The topologies depicted in Figure E.14 all have in common the interesting
characteristic of having their network links arranged in several orthogonal dimen-
sions in a regular way. In fact, these topologies all happen to be particular
instances of a larger class of direct network topologies known as k-ary n-cubes,
where k signifies the number of nodes interconnected in each of the n dimen-
sions. The symmetry and regularity of these topologies simplify network imple-
mentation (i.e, packaging) and packet routing as the movement of a packet along
a given network dimension does not modify the number of remaining hops in any
other dimension toward its destination. As we will see in the next section, this
topological property can be readily exploited by simple routing algorithms.

Like their indirect counterpart, direct networks can introduce blocking among
packets that concurrently request the same path, or part of it. The only exception
is fully connected networks. The same way that the number of stages and switch
hops in indirect networks can be reduced by using larger switches, the hop count
in direct networks can likewise be reduced by increasing the number of topologi-
cal dimensions via increased switch degree.

It may seem to be a good idea always to maximize the number of dimensions
for a system of a certain size and switch cost. However, this is not necessarily the
case. Most electronic systems are built within our three-dimensional (3D) world
using planar (2D) packaging technology such as integrated circuit chips, printed
circuit boards, and backplanes. Direct networks with up to three dimensions can
be implemented using relatively short links within this 3D space, independent of
system size. Links in higher-dimensioned networks would require increasingly
longer wires or fiber. This increase in link length with system size is also indica-
tive of MINs, including fat trees, which require either long links within all the
stages or increasingly longer links as more stages are added. As we saw in the
first example given in Section E.2, flow-controlled buffers increase in size pro-

E.4 Network Topology � E-39

portionally to link length, thus requiring greater silicon area. This is among the
reasons why the supercomputer with the largest number of compute nodes exist-
ing in 2005, the IBM Blue Gene/L, implements a 3D torus network for interpro-
cessor communication. A fat tree would have required much longer links,
rendering a 64K node system less feasible. This highlights the importance of cor-
rectly selecting the proper network topology that meets system requirements.

Besides link length, other constraints derived from implementing the topol-
ogy may also limit the degree to which a topology can scale. These are available
pin-out and achievable bisection bandwidth. Pin count is a local restriction on the
bandwidth of a chip, printed circuit board, and backplane (or chassis) connector.
In a direct network that integrates processor cores and switches on a single chip
or multichip module, pin bandwidth is used both for interfacing with main mem-
ory and for implementing node links. In this case, limited pin count could reduce
the number of switch ports or bit lines per link. In an indirect network, switches
are implemented separate from processor cores, allowing most of the pins to be
dedicated to communication bandwidth. However, as switches are grouped onto
boards, the aggregate of all input-output links of the switch fabric on a board for
a given topology must not exceed the board connector pin-outs.

The bisection bandwidth is a more global restriction that gives the intercon-
nect density and bandwidth that can be achieved by a given implementation
(packaging) technology. Interconnect density and clock frequency are related to
each other: when wires are packed closer together, crosstalk and parasitic capaci-
tance increase, which usually impose a lower clock frequency. For example, the
availability and spacing of metal layers limit wire density and frequency of on-
chip networks, and copper track density limits wire density and frequency on a
printed circuit board. To be implementable, the topology of a network must not
exceed the available bisection bandwidth of the implementation technology.
Most networks implemented to date are constrained more so by pin-out limita-
tions rather than bisection bandwidth, particularly with the recent move to blade-
based systems. Nevertheless, bisection bandwidth largely affects performance.

For a given topology, bisection bandwidth, BWBisection, is calculated by divid-
ing the network into two roughly equal parts—each with half the nodes—and
summing the bandwidth of the links crossing the imaginary dividing line. For
nonsymmetric topologies, bisection bandwidth is the smallest of all pairs of
equal-sized divisions of the network. For a fully connected network, the bisection
bandwidth is proportional to N2/ 2 unidirectional links (or N2/ 4 bidirectional
links), where N is the number of nodes. For a bus, bisection bandwidth is the
bandwidth of just the one shared half-duplex link. For other topologies, values lie
in between these two extremes. Network injection and reception bisection band-
width is commonly used as a reference value, which is N/2 for a network with N
injection and reception links, respectively. Any network topology that provides
this bisection bandwidth is said to have full bisection bandwidth.

Figure E.15 summarizes the number of switches and links required, the corre-
sponding switch size, the maximum and average switch hop distances between
nodes, and the bisection bandwidth in terms of links for several topologies dis-
cussed in this section for interconnecting 64 nodes.

E-40 � Appendix E Interconnection Networks

Effects of Topology on Network Performance

Switched network topologies require packets to take one or more hops to reach
their destination, where each hop represents the transport of a packet through a
switch and one of its corresponding links. Interestingly, each switch and its corre-
sponding links can be modeled as a black box network connecting more than two
devices, as was described in the previous section, where the term “devices” here
refers to end nodes or other switches. The only differences are that the sending
and receiving overheads are null through the switches, and the routing, switching,
and arbitration delays are not cumulative but, instead, are delays associated with
each switch.

As a consequence of the above, if the average packet has to traverse d hops to
its destination, then TR + TA + TS = (Tr + Ta + Ts) × d, where Tr, Ta, and Ts are the
routing, arbitration, and switching delays, respectively, of a switch. With the
assumption that pipelining over the network is staged on each hop at the packet
level (this assumption will be challenged in the next section), the transmission
delay is also increased by a factor of the number of hops. Finally, with the simplify-
ing assumption that all injection links to the first switch or stage of switches and all
links (including reception links) from the switches have approximately the same
length and delay, the total propagation delay through the network TTotalProp is the
propagation delay through a single link, TLinkProp, multiplied by d + 1, which is the
hop count plus one to account for the injection link. Thus, the best-case lower-
bound expression for average packet latency in the network (i.e., the latency in the
absence of contention) is given by the following expression:

Evaluation category Bus Ring 2D mesh 2D torus Hypercube Fat tree Fully connected

Performance

BWBisection in # links
Max (ave.) hop count

1
1 (1)

2
32 (16)

8
14 (7)

16
8 (4)

32
6 (3)

32
11 (9)

1024
1 (1)

Cost

I/O ports per switch
Number of switches

NA
NA

3
64

5
64

5
64

7
64

4
192

 64
64

Number of net. links
Total number of links

1
1

64
128

112
176

128
192

192
256

320
384

2016
2080

Figure E.15 Performance and cost of several network topologies for 64 nodes. The bus is the standard reference
at unit network link cost and bisection bandwidth. Values are given in terms of bidirectional links and ports. Hop
count includes a switch and its output link, but not the injection link at end nodes. Except for the bus, values are
given for the number of network links and total number of links, including injection/reception links between end
node devices and the network.

Latency Sending overhead T LinkProp d 1+()× T r T a T s+ +() d× Packet size
Bandwidth
-------------------------- d 1+() Receiving overhead+×+ + +=

E.4 Network Topology � E-41

Again, the expression on page E-40 assumes that switches are able to pipeline
packet transmission at the packet level.

Following the method presented previously, we can estimate the best-case
upper bound for effective bandwidth by finding the narrowest section of the end-
to-end network pipe. Focusing on the internal network portion of that pipe, net-
work bandwidth is determined by the blocking properties of the topology. Non-
blocking behavior can be achieved only by providing many alternative paths
between every source-destination pair, leading to an aggregate network band-
width that is many times higher than the aggregate network injection or reception
bandwidth. This is quite costly. As this solution usually is prohibitively expen-
sive, most networks have different degrees of blocking, which reduces the utiliza-
tion of the aggregate bandwidth provided by the topology. This, too, is costly but
not in terms of performance.

The amount of blocking in a network depends on its topology and the traffic
distribution. Assuming the bisection bandwidth, BWBisection, of a topology is
implementable (as typically is the case), it can be used as a constant measure of
the maximum degree of blocking in a network. In the ideal case, the network
always achieves full bisection bandwidth irrespective of the traffic behavior, thus
transferring the bottlenecking point to the injection or reception links. However,
as packets destined to locations in the other half of the network necessarily must
cross the bisection links, those links pose as potential bottleneck links—poten-
tially reducing the network bandwidth to below full bisection bandwidth. Fortu-
nately, not all of the traffic must cross the network bisection, allowing more of
the aggregate network bandwidth provided by the topology to be utilized. Also,
network topologies with a higher number of bisection links tend to have less
blocking as more alternative paths are possible to reach destinations and, hence, a
higher percentage of the aggregate network bandwidth can be utilized. If only a
fraction of the traffic must cross the network bisection, as captured by a bisection
traffic fraction parameter γ (0 < γ ≤ 1), the network pipe at the bisection is, effec-
tively, widened by the reciprocal of that fraction, assuming a traffic distribution
that loads the bisection links at least as heavily, on average, as other network
links. This defines the upper limit on achievable network bandwidth, BWNetwork:

Accordingly, the expression for effective bandwidth becomes the following when
network topology is taken into consideration:

It is important to note that γ depends heavily on the traffic patterns generated by
applications. It is a measured quantity or calculated from detailed traffic analysis.

Example A common communication pattern in scientific programs is to have nearest
neighbor elements of a two-dimensional array to communicate in a given direc-
tion. This pattern is sometimes called NEWS communication, standing for north,

BWNetwork

BWBi tionsec

γ
------------------------------=

Effective bandwidth min N BWLinkInjection×
BWBi tionsec

γ
------------------------------ σ N× BWLinkReception×, ,

 =

E-42 � Appendix E Interconnection Networks

east, west, and south—the directions on a compass. Map an 8 × 8 array of ele-
ments one-to-one onto 64 end node devices interconnected in the following
topologies: bus, ring, 2D mesh, 2D torus, hypercube, fully connected, and fat
tree. How long does it take in the best case for each node to send one message to
its northern neighbor and one to its eastern neighbor, assuming packets are
allowed to use any minimal path provided by the topology? What is the corre-
sponding effective bandwidth? Ignore elements that have no northern or eastern
neighbors. To simplify the analysis, assume all networks experience unit packet
transport time for each network hop—that is, TLinkProp, Tr, Ta, Ts, and packet
transmission time for each hop sum to one. Also assume the delay through injec-
tion links is included in this unit time, and sending/receiving overhead is null.

Answer This communication pattern requires us to send 2 × (64 – 8) or 112 total pack-
ets—that is, 56 packets in each of the two communication phases: northward and
eastward. The number of hops suffered by packets depends on the topology.
Communication between sources and destinations are one-to-one, so σ is 100%.
The injection and reception bandwidth cap the effective bandwidth to a maxi-
mum of 64 BW units (even though the communication pattern requires only
56 BW units). However, this maximum may get scaled down by the achievable
network bandwidth, which is determined by the bisection bandwidth and the
fraction of traffic crossing it, γ, both of which are topology dependent. Here are
the various cases:

� Bus—The mapping of the 8 × 8 array elements to nodes makes no difference
for the bus as all nodes are equally distant at one hop away. However, the 112
transfers are done sequentially, taking a total of 112 time units. The bisection
bandwidth is 1, and γ is 100%. Thus, effective bandwidth is only 1 BW unit.

� Ring—Assume the first row of the array is mapped to nodes 0 to 7, the sec-
ond row to nodes 8 to 15, and so on. It takes just one time unit for all nodes
simultaneously to send to their eastern neighbor (i.e., a transfer from node i to
node i + 1). With this mapping, the northern neighbor for each node is exactly
eight hops away so it takes eight time units, which also is done in parallel for
all nodes. Total communication time is, therefore, 9 time units. The bisection
bandwidth is 2 bidirectional links (assuming a bidirectional ring), which is
less than the full bisection bandwidth of 32 bidirectional links. For eastward
communication, because only 2 of the eastward 56 packets must cross the
bisection in the worst case, the bisection links do not pose as bottlenecks. For
northward communication, 8 of the 56 packets must cross the two bisection
links, yielding a γ of 10/112 = 8.93%. Thus, the network bandwidth is 2/.0893
= 22.4 BW units. This limits the effective bandwidth at 22.4 BW units as
well, which is less than half the bandwidth required by the communication
pattern.

� 2D mesh—There are eight rows and eight columns in our grid of 64 nodes,
which is a perfect match to the NEWS communication. It takes a total of just
2 time units for all nodes to send simultaneously to their northern neighbors

E.4 Network Topology � E-43

followed by simultaneous communication to their eastern neighbors. The
bisection bandwidth is 8 bidirectional links, which is less than full bisection
bandwidth. However, the perfect matching of this nearest-neighbor commu-
nication pattern on this topology allows the maximum effective bandwidth to
be achieved regardless. For eastward communication, 8 of the 56 packets
must cross the bisection in the worst case, which does not exceed the bisec-
tion bandwidth. None of the northward communications cross the same net-
work bisection, yielding a γ of 8/112 = 7.14% and a network bandwidth of 8/
0.0714 = 112 BW units. The effective bandwidth is, therefore, limited by the
communication pattern at 56 BW units as opposed to the mesh network.

� 2D torus—Wrap-around links of the torus are not used for this communica-
tion pattern, so the torus has the same mapping and performance as the mesh.

� Hypercube—Assume elements in each row are mapped to the same location
within the eight 3-cubes comprising the hypercube such that consecutive row
elements are mapped to nodes only one hop away. Northern neighbors can be
similarly mapped to nodes only one hop away in an orthogonal dimension.
Thus, the communication pattern takes just 2 time units. The hypercube pro-
vides full bisection bandwidth of 32 links, but at most only 8 of the 112 pack-
ets must cross the bisection. Thus, effective bandwidth is limited only by the
communication pattern to be 56 BW units, not by the hypercube network.

� Fully connected—Here, nodes are equally distant at one hop away, regard-
less of the mapping. Parallel transfer of packets in both the northern and
eastern directions would take only 1 time unit if the injection and reception
links could source and sink two packets at a time. As this is not the case, 2
time units are required. Effective bandwidth is limited by the communica-
tion pattern at 56 BW units, so the 1024 network bisection links largely go
underutilized.

� Fat tree—Assume the same mapping of elements to nodes as is done for the
ring and the use of switches with eight bidirectional ports. This allows simul-
taneous communication to eastern neighbors that takes at most three hops
and, therefore, 3 time units through the three bidirectional stages intercon-
necting the eight nodes in each of the eight groups of nodes. The northern
neighbor for each node resides in the adjacent group of eight nodes, which
requires five hops, or 5 time units. Thus, the total time required on the fat tree
is 8 time units. The fat tree provides full bisection bandwidth, so in the worst
case of half the traffic needing to cross the bisection, an effective bandwidth
of 56 BW units (as limited by the communication pattern and not by the fat-
tree network) is achieved when packets are continually injected.

The above example should not lead one to the wrong conclusion that meshes
are just as good as tori, hypercubes, fat trees, and other networks with higher
bisection bandwidth. A number of simplifications that benefit low-bisection net-
works were assumed to ease the analysis. In practice, packets typically are larger
than the link width and occupy links for many more than just one network cycle.

E-44 � Appendix E Interconnection Networks

Also, many communication patterns do not map so cleanly to the 2D mesh net-
work topology; instead, usually they are more global and irregular in nature.
These and other factors combine to increase the chances of packets blocking in
low-bisection networks, increasing latency and reducing effective bandwidth.

To put this discussion on topologies into further perspective, Figure E.16 lists
various attributes of topologies used in commercial high-performance computers.

Company

System
[network]
name

Max. num-
ber of nodes
[× # CPUs]

Basic
network
topology

Injection
[reception]
node BW in
MB/sec

of data
bits per
link per
direction

Raw net-
work link BW
per direction
in MB/sec

Raw network
bisection BW
(bidirectional)
in GB/sec

Intel ASCI Red
Paragon

4816 [× 2] 2D mesh
64 × 64

400
[400]

16 bits 400 51.2

IBM ASCI White
SP Power3
[Colony]

512 [× 16] bidirectional
MIN with 8-port
bidirectional
switches
(typically a
fat tree or
Omega)

500
[500]

8 bits
(+ 1 bit of
control)

500 256

Intel Thunder
Itanium2
Tiger4
[QsNetII]

1024 [× 4] fat tree
with 8-port
bidirectional
switches

928
[928]

8 bits (+ 2
of control
for 4b/5b
encoding)

1333 1365

Cray XT3
[SeaStar]

30,508 [× 1] 3D torus
40 × 32 × 24

3200
[3200]

12 bits 3800 5836.8

Cray X1E 1024 [× 1] 4-way bristled
2D torus (~ 23 ×
11) with express
links

1600
[1600]

16 bits 1600 51.2

IBM ASC Purple
pSeries 575
[Federation]

>1280 [× 8] bidirectional
MIN with 8-port
bidirectional
switches
(typically a
fat tree or
Omega)

2000
[2000]

8 bits
(+ 2 bits
of control
for novel
5b/6b
encoding
scheme)

2000 2560

IBM Blue Gene/L
eServer Sol.
[Torus Net.]

65,536 [× 2] 3D torus
32 × 32 × 64

612.5
[1050]

1 bit
(bit serial)

175 358.4

Figure E.16 Topological characteristics of interconnection networks used in commercial high-performance
machines.

E.5 Network Routing, Arbitration, and Switching � E-45

Routing, arbitration, and switching are performed at every switch along a
packet’s path in a switched media network, no matter what the network topology.
Numerous interesting techniques for accomplishing these network functions have
been proposed in the literature. In this section, we focus on describing a represen-
tative set of approaches used in commercial systems for the more commonly used
network topologies. Their impact on performance is also highlighted.

Routing

The routing algorithm defines which network path, or paths, are allowed for each
packet. Ideally, the routing algorithm supplies shortest paths to all packets such
that traffic load is evenly distributed across network links to minimize contention.
However, some paths provided by the network topology may not be allowed in
order to guarantee that all packets can be delivered, no matter what the traffic
behavior. Paths that have an unbounded number of allowed nonminimal hops
from packet sources, for instance, may result in packets never reaching their des-
tinations. This situation is referred to as livelock. Likewise, paths that cause a set
of packets to block in the network forever waiting only for network resources
(i.e., links or associated buffers) held by other packets in the set also prevent
packets from reaching their destinations. This situation is referred to as deadlock.
As deadlock arises due to the finiteness of network resources, the probability of
its occurrence increases with increased network traffic and decreased availability
of network resources. For the network to function properly, the routing algorithm
must guard against this anomaly, which can occur in various forms—for exam-
ple, routing deadlock, request-reply (protocol) deadlock, and fault-induced
(reconfiguration) deadlock, etc. At the same time, for the network to provide the
highest possible performance, the routing algorithm must be efficient—allowing
as many routing options to packets as there are paths provided by the topology, in
the best case.

The simplest way of guarding against livelock is to restrict routing such that
only minimal paths from sources to destinations are allowed or, less restrictively,
only a limited number of nonminimal hops. The strictest form has the added ben-
efit of consuming the minimal amount of network bandwidth, but it prevents
packets from being able to use alternative nonminimal paths in case of contention
or faults along the shortest (minimal) paths.

Deadlock is more difficult to guard against. Two common strategies are used
in practice: avoidance and recovery. In deadlock avoidance, the routing algorithm
restricts the paths allowed by packets to only those that keep the global network
state deadlock-free. A common way of doing this consists of establishing an
ordering between a set of resources—the minimal set necessary to support net-
work full access—and granting those resources to packets in some total or partial
order such that cyclic dependency cannot form on those resources. This allows an

 E.5 Network Routing, Arbitration, and Switching

E-46 � Appendix E Interconnection Networks

escape path always to be supplied to packets no matter where they are in the net-
work to avoid entering a deadlock state. In deadlock recovery, resources are
granted to packets without regard for avoiding deadlock. Instead, as deadlock is
possible, some mechanism is used to detect the likely existence of deadlock. If
detected, one or more packets are removed from resources in the deadlock set—
possibly by regressively dropping the packets or by progressively redirecting the
packets onto special deadlock recovery resources. The freed network resources
are then granted to other packets needing them to resolve the deadlock.

Let us consider routing algorithms designed for distributed switched net-
works. Figure E.17 (a) illustrates one of many possible deadlocked configura-
tions for packets within a region of a 2D mesh network. The routing algorithm
can avoid all such deadlocks (and livelocks) by allowing only the use of minimal
paths that cross the network dimensions in some total order. That is, links of a
given dimension are not supplied to a packet by the routing algorithm until no
other links are needed by the packet in all of the preceding dimensions for it to
reach its destination. This is illustrated in Figure E.17 (b), where dimensions are
crossed in XY dimension order. All the packets must follow the same order when
traversing dimensions, exiting a dimension only when links are no longer
required in that dimension. This well-known algorithm is referred to as dimen-
sion-order routing (DOR) or e-cube routing in hypercubes. It is used in many
commercial systems built from distributed switched networks and on-chip net-
works. As this routing algorithm always supplies the same path for a given
source-destination pair, it is a deterministic routing algorithm.

Figure E.17 A mesh network with packets routing from sources, si, to destinations, di. (a) Deadlock forms from
packets destined to d1 through d4 blocking on others in the same set that fully occupy their requested buffer
resources one hop away from their destinations. This deadlock cycle causes other packets needing those resources
also to block, like packets from s5 destined to d5 that have reached node s3. (b) Deadlock is avoided using dimension-
order routing. In this case, packets exhaust their routes in the X dimension before turning into the Y dimension in
order to complete their routing.

(a) (b)

1s 2s

3d 4d 5d

2d 1d

4s 5s 3s

1s 2s

3d 4d 5d

2d 1d

4s 5s 3s

E.5 Network Routing, Arbitration, and Switching � E-47

Crossing dimensions in order on some minimal set of resources required to
support network full access avoids deadlock in meshes and hypercubes. How-
ever, for distributed switched topologies that have wrap-around links (e.g., rings
and tori), a total ordering on a minimal set of resources within each dimension is
also needed if resources are to be used to full capacity. Alternatively, some empty
resources or bubbles along the dimensions would be required to remain below
full capacity and avoid deadlock. To allow full access, either the physical links
must be duplicated or the logical buffers associated with each link must be dupli-
cated, resulting in physical channels or virtual channels, respectively, on which
the ordering is done. Ordering is not necessary on all network resources to avoid
deadlock—it is needed only on some minimal set required to support network
full access (i.e., some escape resource set). Routing algorithms based on this
technique (called Duato’s Protocol) can be defined that allow alternative paths
provided by the topology to be used for a given source-destination pair in addi-
tion to the escape resource set. One of those allowed paths must be selected, pref-
erably the most efficient one. Adapting the path in response to prevailing network
traffic conditions enables the aggregate network bandwidth to be better utilized
and contention to be reduced. Such routing capability is referred to as adaptive
routing and is used in many commercial systems.

Example How many of the possible dimensional turns are eliminated by dimension-order
routing on an n-dimensional mesh network? What is the fewest number of turns
that actually need to be eliminated while still maintaining connectedness and
deadlock freedom? Explain using a 2D mesh network.

Answer The dimension-order routing algorithm eliminates exactly half of the possible
dimensional turns as it is easily proven that all turns from any lower-ordered
dimension into any higher-ordered dimension are allowed, but the converse is not
true. For example, of the eight possible turns in the 2D mesh shown in
Figure E.17, the four turns from X+ to Y+, X+ to Y–, X– to Y+, and X– to Y– are
allowed, where the signs (+ or –) refer to the direction of travel within a dimen-
sion. The four turns from Y+ to X+, Y+ to X–, Y– to X+, and Y– to X– are disal-
lowed turns. The elimination of these turns prevents cycles of any kind from
forming—and, thus, avoids deadlock—while keeping the network connected.
However, it does so at the expense of not allowing any routing adaptivity.

The Turn Model routing algorithm proves that the minimum number of elim-
inated turns to prevent cycles and maintain connectedness is a quarter of the pos-
sible turns, but the right set of turns must be chosen. Only some particular set of
eliminated turns allow both requirements to be satisfied. With the elimination of
the wrong set of a quarter of the turns, it is possible for combinations of allowed
turns to emulate the eliminated ones (and, thus, form cycles and deadlock) or for
the network not to be connected. For the 2D mesh, for example, it is possible to
eliminate only the two turns ending in the westward direction (i.e., Y+ to X– and
Y– to X–) by requiring packets to start their routes in the westward direction (if
needed) to maintain connectedness. Alternatives to this West-First routing for 2D

E-48 � Appendix E Interconnection Networks

meshes are Negative-First routing and North-Last routing. For these, the extra
quarter of turns beyond that supplied by DOR allows for partial adaptivity in
routing, making these adaptive routing algorithms.

Routing algorithms for centralized switched networks can similarly be
defined to avoid deadlocks by restricting the use of resources in some total or par-
tial order. For fat trees, resources can be totally ordered along paths starting from
the input leaf stage upward to the root and then back down to the output leaf
stage. The routing algorithm can allow packets to use resources in increasing par-
tial order, first traversing up the tree until they reach some least common ancestor
(LCA) of the source and destination, and then back down the tree until they reach
their destinations. As there are many least common ancestors for a given destina-
tion, multiple alternative paths are allowed while going up the tree, making the
routing algorithm adaptive. However, only a single deterministic path to the des-
tination is provided by the fat tree topology from a least common ancestor. This
self-routing property is common to many MINs and can be readily exploited: the
switch output port at each stage is given simply by shifts of the destination node
address.

More generally, a tree graph can be mapped onto any topology—whether
direct or indirect—and links between nodes at the same tree level can be allowed
by assigning directions to them, where “up” designates paths moving toward the
tree root and “down” designates paths moving away from the root node. This
allows for generic up*/down* routing to be defined on any topology such that
packets follow paths (possibly adaptively) consisting of zero or more up links fol-
lowed by zero or more down links to their destination. Up/down ordering pre-
vents cycles from forming, avoiding deadlock. This routing technique was used
in Autonet—a self-configuring switched LAN—and in early Myrinet SANs.

Routing algorithms are implemented in practice by a combination of the rout-
ing information placed in the packet header by the source node and the routing
control mechanism incorporated in the switches. For source routing, the entire
routing path is precomputed by the source—possibly by table lookup—and
placed in the packet header. This usually consists of the output port or ports sup-
plied for each switch along the predetermined path from the source to the desti-
nation, which can be stripped off by the routing control mechanism at each
switch. An additional bit field can be included in the header to signify whether
adaptive routing is allowed (i.e., that any one of the supplied output ports can be
used). For distributed routing, the routing information usually consists of the des-
tination address. This is used by the routing control mechanism in each switch
along the path to determine the next output port, either by computing it using a
finite-state machine or by looking it up in a local routing table (i.e., forwarding
table). Compared to distributed routing, source routing simplifies the routing con-
trol mechanism within the network switches, but it requires more routing bits in
the header of each packet, thus increasing the header overhead.

E.5 Network Routing, Arbitration, and Switching � E-49

Arbitration

The arbitration algorithm determines when requested network paths are avail-
able for packets. Ideally, arbiters maximize the matching of free network
resources and packets requesting those resources. At the switch level, arbiters
maximize the matching of free output ports and packets located in switch input
ports requesting those output ports. When all requests cannot be granted simulta-
neously, switch arbiters resolve conflicts by granting output ports to packets in a
fair way such that starvation of requested resources by packets is prevented. This
could happen to packets in shorter queues if a serve-longest-queue (SLQ) scheme
is used. For packets having the same priority level, simple round-robin (RR) or
age-based schemes are sufficiently fair and straightforward to implement.

Arbitration can be distributed to avoid centralized bottlenecks. A straightfor-
ward technique consists of two phases: a request phase and a grant phase. Let us
assume that each switch input port has an associated queue to hold incoming
packets and that each switch output port has an associated local arbiter imple-
menting a round-robin strategy. Figure E.18 (a) shows a possible set of requests
for a four-port switch. In the request phase, packets at the head of each input port
queue send a single request to the arbiters corresponding to the output ports
requested by them. Then, each output port arbiter independently arbitrates among
the requests it receives, selecting only one. In the grant phase, one of the requests
to each arbiter is granted the requested output port. When two packets from dif-
ferent input ports request the same output port, only one receives a grant, as
shown in the figure. As a consequence, some output port bandwidth remains
unused even though all input queues have packets to transmit.

The simple two-phase technique can be improved by allowing several simul-
taneous requests to be made by each input port, possibly coming from different
virtual channels or from multiple adaptive routing options. These requests are

Figure E.18 Two arbitration techniques. (a) Two-phased arbitration in which two of
the four input ports are granted requested output ports. (b) Three-phased arbitration in
which three of the four input ports are successful in gaining the requested output
ports, resulting in higher switch utilization.

(a) (b)

Request Grant AcknowledgmentRequest Grant

E-50 � Appendix E Interconnection Networks

sent to different output port arbiters. By submitting more than one request per
input port, the probability of matching increases. Now, arbitration requires three
phases: request, grant, and acknowledgment. Figure E.18 (b) shows the case in
which up to two requests can be made by packets at each input port. In the
request phase, requests are submitted to output port arbiters and these arbiters
select one of the received requests, as is done for the two-phase arbiter. Likewise,
in the grant phase, the selected requests are granted to the corresponding request-
ers. Taking into account that an input port can submit more than one request, it
may receive more than one grant. Thus, it selects among possibly multiple grants
using some arbitration strategy such as round-robin. The selected grants are con-
firmed to the corresponding output port arbiters in the acknowledgment phase.

As can be seen in Figure E.18 (b), it could happen that an input port that sub-
mits several requests does not receive any grants, while some of the requested
ports remain free. Because of this, a second arbitration iteration can improve the
probability of matching. In this iteration, only the requests corresponding to non-
matched input and output ports are submitted. Iterative arbiters with multiple
requests per input port are able to increase the utilization of switch output ports
and, thus, the network link bandwidth. However, this comes at the expense of
additional arbiter complexity and increased arbitration delay, which could
increase the router clock cycle time if it is on the critical path.

Switching

The switching technique defines how connections are established in the network.
Ideally, connections between network resources are established or “switched in”
only for as long as they are actually needed and exactly at the point that they are
ready and needed to be used, considering both time and space. This allows effi-
cient use of available network bandwidth by competing traffic flows and minimal
latency. Connections at each hop along the topological path allowed by the rout-
ing algorithm and granted by the arbitration algorithm can be established in three
basic ways: prior to packet arrival using circuit switching, upon receipt of the
entire packet using store-and-forward packet switching, or upon receipt of only
portions of the packet with unit size no smaller than that of the packet header
using cut-through packet switching.

Circuit switching establishes a circuit a priori such that network bandwidth is
allocated for packet transmissions along an entire source-destination path. It is
possible to pipeline packet transmission across the circuit using staging at each
hop along the path, a technique known as pipelined circuit switching. As routing,
arbitration, and switching are performed only once for one or more packets, rout-
ing bits are not needed in the header of packets, thus reducing latency and over-
head. This can be very efficient when information is continuously transmitted
between devices for the same circuit setup. However, as network bandwidth is
removed from the shared pool and preallocated regardless of whether sources are
in need of consuming it or not, circuit switching can be very inefficient and
highly wasteful of bandwidth.

E.5 Network Routing, Arbitration, and Switching � E-51

Packet switching enables network bandwidth to be shared and used more effi-
ciently when packets are transmitted intermittently, which is the more common
case. Packet switching comes in two main varieties—store-and-forward and cut-
through switching, both of which allow network link bandwidth to be multi-
plexed on packet-sized or smaller units of information. This better enables band-
width sharing by packets originating from different sources. The finer granularity
of sharing, however, increases the overhead needed to perform switching: rout-
ing, arbitration, and switching must be performed for every packet, and routing
and flow control bits are required for every packet if flow control is used.

Store-and-forward packet switching establishes connections such that a
packet is forwarded to the next hop in sequence along its source-destination path
only after the entire packet is first stored (staged) at the receiving switch. As
packets are completely stored at every switch before being transmitted, links are
completely decoupled, allowing full link bandwidth utilization even if links have
very different bandwidths. This property is very important in WANs, but the price
to pay is packet latency; the total routing, arbitration, and switching delay is mul-
tiplicative with the number of hops, as we have seen in Section E.4 when analyz-
ing performance under this assumption.

Cut-through packet switching establishes connections such that a packet can
“cut through” switches in a pipelined manner once the header portion of the
packet (or equivalent amount of payload trailing the header) is staged at receiving
switches. That is, the rest of the packet need not arrive before switching in the
granted resources. This allows routing, arbitration, and switching delay to be
additive with the number of hops rather than multiplicative to reduce total packet
latency. Cut-through comes in two varieties, the main differences being the size
of the unit of information on which flow control is applied and, consequently, the
buffer requirements at switches. Virtual cut-through switching implements flow
control at the packet level, whereas wormhole switching implements it on flow
units, or flits, which are smaller than the maximum packet size but usually at least
as large as the packet header. Since wormhole switches need to be capable of
storing only a small portion of a packet, packets that block in the network may
span several switches. This can cause other packets to block on the links they
occupy, leading to premature network saturation and reduced effective bandwidth
unless some centralized buffer is used within the switch to store them—a tech-
nique called buffered wormhole switching. As chips can implement relatively
large buffers in current technology, virtual cut-through is the more commonly
used switching technique. However, wormhole switching may still be preferred
in OCNs designed to minimize silicon resources.

Premature network saturation caused by wormhole switching can be miti-
gated by allowing several packets to share the physical bandwidth of a link simul-
taneously via time-multiplexed switching at the flit level. This requires physical
links to have a set of virtual channels (i.e., the logical buffers mentioned previ-
ously) at each end, into which packets are switched. Before, we saw how virtual
channels can be used to decouple physical link bandwidth from buffered packets
in such a way as to avoid deadlock. Now, virtual channels are multiplexed in such

E-52 � Appendix E Interconnection Networks

a way that bandwidth is switched in and used by flits of a packet to advance even
though the packet may share some links in common with a blocked packet ahead.
This, again, allows network bandwidth to be used more efficiently, which, in turn,
reduces the average packet latency.

Impact on Network Performance

Routing, arbitration, and switching can impact the packet latency of a loaded net-
work by reducing the contention delay experienced by packets. For an unloaded
network that has no contention, the algorithms used to perform routing and arbi-
tration have no impact on latency other than to determine the amount of delay
incurred in implementing those functions at switches—typically, the pin-to-pin
latency of a switch chip is several tens of nanoseconds. The only change to the
best-case packet latency expression given in the previous section comes from the
switching technique. Store-and-forward packet switching was assumed before in
which transmission delay for the entire packet is incurred on all d hops plus at the
source node. For cut-through packet switching, transmission delay is pipelined
across the network links comprising the packet’s path at the granularity of the
packet header instead of the entire packet. Thus, this delay component is reduced,
as shown in the following lower-bound expression for packet latency:

The effective bandwidth is impacted by how efficiently routing, arbitration,
and switching allow network bandwidth to be used. The routing algorithm can
distribute traffic more evenly across a loaded network to increase the utilization
of the aggregate bandwidth provided by the topology—particularly, by the bisec-
tion links. The arbitration algorithm can maximize the number of switch output
ports that accept packets, which also increases the utilization of network band-
width. The switching technique can increase the degree of resource sharing by
packets, which further increases bandwidth utilization. These combine to affect
network bandwidth, BWNetwork, by an efficiency factor, ρ, where :

The efficiency factor ρ is difficult to calculate or to quantify by means other
than simulation. Nevertheless, with this parameter we can estimate the best-case
upper-bound effective bandwidth by using the following expression that takes
into account the effects of routing, arbitration, and switching:

We note that ρ also depends on how well the network handles the traffic gener-
ated by applications. For instance, ρ could be higher for circuit switching than for
cut-through switching if large streams of packets are continually transmitted
between a source-destination pair, whereas the converse could be true if packets
are transmitted intermittently.

Latency Sending overhead T LinkProp d 1+()× T r T a T s+ +() d× Packet d Header×()+
Bandwidth

--- Receiving overhead+ + + +=

0 ρ 1≤<

BWNetwork ρ
BWBi tionsec

γ
------------------------------×=

Effective bandwidth min N BWLinkInjection× ρ
BWBi tionsec

γ
------------------------------× σ N× BWLinkReception×, ,

 =

E.5 Network Routing, Arbitration, and Switching � E-53

Example Compare the performance of deterministic routing versus adaptive routing for a
3D torus network interconnecting 4096 nodes. Do so by plotting latency versus
applied load and throughput versus applied load. Also compare the efficiency of
the best and worst of these networks. Assume virtual cut-through switching,
three-phase arbitration, and virtual channels are implemented. Consider sepa-
rately the cases for two and four virtual channels, respectively. Assume that one
of the virtual channels uses bubble flow control in dimension order so as to avoid
deadlock; the other virtual channel(s) are used either in dimension order (for
deterministic routing) or minimally along shortest paths (for adaptive routing), as
is done in the IBM Blue Gene/L torus network.

Answer It is very difficult to compute analytically the performance of routing algorithms
given that their behavior depends on several network design parameters with
complex interdependences among them. As a consequence, designers typically
resort to cycle-accurate simulators to evaluate performance. One way to evaluate
the effect of a certain design decision is to run sets of simulations over a range of
network loads, each time modifying one of the design parameters of interest
while keeping the remaining ones fixed. The use of synthetic traffic loads is quite
frequent in these evaluations as it allows the network to stabilize at a certain
working point and for behavior to be analyzed in detail. This is the method we
use here (alternatively, trace-driven or execution-driven simulation can be used).

Figure E.19 shows the typical interconnection network performance plots. On
the left, average packet latency (expressed in network cycles) is plotted as a func-
tion of applied load (traffic generation rate) for the two routing algorithms with
two and four virtual channels each; on the right, throughput (traffic delivery rate)
is similarly plotted. Applied load is normalized by dividing it by the number of
nodes in the network (i.e., bytes per cycle per node). Simulations are run under
the assumption of uniformly distributed traffic consisting of 256-byte packets,
where flits are byte sized. Routing, arbitration, and switching delays are assumed
to sum to 1 network cycle per hop while time of flight delay over each link is
assumed to be 10 cycles. Link bandwidth is 1 byte per cycle, thus providing
results that are independent of network clock frequency.

As can be seen, the plots within each graph have similar characteristic shapes,
but they have different values. For the latency graph, all start at the no-load
latency as predicted by the latency expression given above, then slightly increase
with traffic load as contention for network resources increases. At higher applied
loads, latency increases exponentially, and the network approaches its saturation
point as it is unable to absorb the applied load, causing packets to queue up at
their source nodes awaiting injection. In these simulations, the queues keep
growing over time, making latency tend toward infinity. However, in practice,
queues reach their capacity and trigger the application to stall further packet gen-
eration, or the application throttles itself waiting for acknowledgments/responses
to outstanding packets. Nevertheless, latency grows at a slower rate for adaptive
routing as alternative paths are provided to packets along congested resources.

E-54 � Appendix E Interconnection Networks

For this same reason, adaptive routing allows the network to reach a higher
peak throughput for the same number of virtual channels as compared to deter-
ministic routing. At nonsaturation loads, throughput increases fairly linearly with
applied load. When the network reaches its saturation point, however, it is unable
to deliver traffic at the same rate at which traffic is generated. The saturation
point, therefore, indicates the maximum achievable or “peak” throughput, which
would be no more than that predicted by the effective bandwidth expression
given above. Beyond saturation, throughput tends to drop as a consequence of
massive head-of-line blocking across the network (as will be explained further in
Section E.6), very much like cars tend to advance more slowly at rush hour. This
is an important region of the throughput graph as it shows how significant of a
performance drop the routing algorithm can cause if congestion management
techniques (discussed briefly in Section E.7) are not used effectively. In this case,
adaptive routing has more of a performance drop after saturation than determinis-
tic routing, as measured by the postsaturation sustained throughput.

For both routing algorithms, more virtual channels (i.e., four) give packets a
greater ability to pass over blocked packets ahead, allowing for a higher peak
throughput as compared to fewer virtual channels (i.e., two). For adaptive routing

Figure E.19 Deterministic routing is compared against adaptive routing, both with either two or four virtual
channels, assuming uniformly distributed traffic on a 4K node 3D torus network with virtual cut-through switch-
ing and bubble flow control to avoid deadlock. (a) Average latency is plotted versus applied load, and (b) through-
put is plotted versus applied load (the upper grayish plots show peak throughput, and the lower black plots show
sustained throughput). Simulation data were collected by P. Gilabert and J. Flich at the Universidad Politècnica de
València, Spain (2006).

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

10,000

8000

6000

4000

0.01

2000

0

Applied load (bytes/ cycle/ node)

(a)

0.410.330.250.170.09
T

hr
ou

gh
pu

t (
by

te
s/

cy
cl

e/
no

de
)

0.4

0.3

0.2

0.1

0.01
0

Applied load (bytes/ cycle/ node)

(b)

0.970.49 0.61 0.73 0.850.25 0.370.13

Deterministic DOR, 2 VC
Deterministic DOR, 4 VC
Adaptive routing, 2 VC
Adaptive routing, 4 VC

Adaptive routing, 4 VC
Deterministic DOR, 4 VC
Adaptive routing, 2 VC
Deterministic DOR, 2 VC

E.6 Switch Microarchitecture � E-55

with four virtual channels, the peak throughput of 0.43 bytes/cycle/node is near
the maximum of 0.5 bytes/cycle/node that can be obtained with 100% efficiency
(i.e., ρ = 100%), assuming there is enough injection and reception bandwidth to
make the network bisection the bottlenecking point. In that case, the network
bandwidth is simply 100% times the network bisection bandwidth (BWBisection)
divided by the fraction of traffic crossing the bisection (γ), as given by the expres-
sion above. Taking into account that the bisection splits the torus into two equally
sized halves, γ is equal to 0.5 for uniform traffic as only half the injected traffic is
destined to a node at the other side of the bisection. The BWBisection for a 4096-
node 3D torus network is 16 × 16 × 4 unidirectional links times the link band-
width (i.e., 1 byte/cycle). If we normalize the bisection bandwidth by dividing it
by the number of nodes (as we did with network bandwidth), the BWBisection is
0.25 bytes/cycle/node. Dividing this by γ gives the ideal maximally obtainable
network bandwidth of 0.5 bytes/cycle/node.

We can find the efficiency factor, ρ, of the simulated network simply by divid-
ing the measured peak throughput by the ideal throughput. The efficiency factor
for the network with fully adaptive routing and four virtual channels is 0.43/(0.25
/0.5) = 86%, whereas for the network with deterministic routing and two virtual
channels it is 0.37/(0.25/0.5) = 74%. Besides the 12% difference in efficiency
between the two, another 14% gain in efficiency might be obtained with even bet-
ter routing, arbitration, switching, and virtual channel designs.

To put this discussion on routing, arbitration, and switching in perspective,
Figure E.20 lists the techniques used in SANs designed for commercial high-per-
formance computers. In addition to being applied to the SANs as shown in the
figure, the issues discussed in this section also apply to other interconnect
domains: from OCNs to WANs.

Network switches implement the routing, arbitration, and switching functions of
switched-media networks. Switches also implement buffer management mecha-
nisms and, in the case of lossless networks, the associated flow control. For some
networks, switches also implement part of the network management functions
that explore, configure, and reconfigure the network topology in response to
boot-up and failures. Here, we reveal the internal structure of network switches
by describing a basic switch microarchitecture and various alternatives suitable
for different routing, arbitration, and switching techniques presented previously.

Basic Switch Microarchitecture

The internal data path of a switch provides connectivity among the input and out-
put ports. Although a shared bus or a multiported central memory could be used,
these solutions are insufficient or too expensive, respectively, when the required

 E.6 Switch Microarchitecture

E-56 � Appendix E Interconnection Networks

aggregate switch bandwidth is high. Most high-performance switches implement
an internal crossbar to provide nonblocking connectivity within the switch, thus
allowing concurrent connections between multiple input-output port pairs. Buff-
ering of blocked packets can be done using FIFO or circular queues, which can
be implemented as dynamically allocatable multi-queues (DAMQs) in static

Company

System
[network]
name

Max. num-
ber of nodes
[× # CPUs]

Basic
network
topology

Switch
queuing
(buffers)

Network
routing
algorithm

Switch
arbitration
technique

Network
switching
technique

Intel ASCI Red
Paragon

4510 [× 2] 2D mesh
64 × 64

input
buffered
(1 flit)

distributed
dimension-
order routing

2-phased RR,
distributed
across switch

wormhole
with no
virtual
channels

IBM ASCI White
SP Power3
[Colony]

512 [× 16] bidirectional
MIN with
8-port
bidirectional
switches
(typically a
fat-tree or
Omega)

input and
central
buffer
with
output
queuing
(8-way
speedup)

source-based
LCA adaptive,
shortest-path
routing and
table-based
multicast
routing

2-phased RR,
centralized
and distributed
at outputs for
bypass paths

buffered
wormhole
and virtual
cut-through
for
multicasting,
no virtual
channels

Intel Thunder
Itanium2
Tiger4
[QsNetII]

1024 [× 4] fat tree
with 8-port
bidirectional
switches

input
buffered

source-based
LCA adaptive,
shortest-path
routing

2-phased RR,
priority, aging,
distributed at
output ports

wormhole
with 2 virtual
channels

Cray XT3
[SeaStar]

30,508 [× 1] 3D torus
40 × 32 × 24

input
with
staging
output

distributed
table-based
dimension-
order routing

2-phased RR,
distributed at
output ports

virtual cut-
through with
4 virtual
channels

Cray X1E 1024 [× 1] 4-way bristled
2D torus
(~ 23 × 11)
with express
links

input
with
virtual
output
queuing

distributed
table-based
dimension-
order routing

2-phased
wavefront
(pipelined)
global arbiter

virtual cut-
through with
4 virtual
channels

IBM ASC Purple
pSeries 575
[Federation]

>1280 [× 8] bidirectional
MIN with
8-port
bidirectional
switches
(typically a
fat tree or
Omega)

input and
central
buffer
with
output
queuing
(8-way
speedup)

source and
distributed
table-based
LCA adaptive,
shortest-path
routing and
multicast

2-phased RR,
centralized
and distributed
at outputs for
bypass paths

buffered
wormhole
and virtual
cut-through
for
multicasting
with 8 virtual
channels

IBM Blue Gene/L
eServer
Solution
[Torus Net.]

65,536 [× 2] 3D torus
32 × 32 × 64

input-
output
buffered

distributed,
adaptive with
bubble escape
virtual channel

2-phased SLQ,
distributed at
input and
output

virtual cut-
through with
4 virtual
channels

Figure E.20 Routing, arbitration, and switching characteristics of interconnections networks in commercial
machines.

E.6 Switch Microarchitecture � E-57

RAM to provide high capacity and flexibility. These queues can be placed at
input ports (i.e., input buffered switch), output ports (i.e., output buffered switch),
centrally within the switch (i.e., centrally buffered switch), or at both the input
and output ports of the switch (i.e., input-output buffered switch). Figure E.21
shows a block diagram of an input-output buffered switch.

Routing can be implemented using a finite-state machine or forwarding table
within the routing control unit of switches. In the former case, the routing infor-
mation given in the packet header is processed by a finite-state machine that
determines the allowed switch output port (or ports if routing is adaptive),
according to the routing algorithm. Portions of the routing information in the
header are usually stripped off or modified by the routing control unit after use to
simplify processing at the next switch along the path. When routing is imple-
mented using forwarding tables, the routing information given in the packet
header is used as an address to access a forwarding table entry that contains the
allowed switch output port(s) provided by the routing algorithm. Forwarding
tables must be preloaded into the switches at the outset of network operation. The
routing control unit is usually implemented as a centralized resource, although it
could be replicated at every input port so as not to become a bottleneck. Routing
is done only once for every packet, and packets typically are large enough to take
several cycles to flow through the switch, so a centralized routing control unit
rarely becomes a bottleneck. Figure E.21 assumes a centralized routing control
unit within the switch.

Arbitration is required when two or more packets concurrently request the
same output port, as described in the previous section. Switch arbitration can be
implemented in a centralized or distributed way. In the former case, all of the

Figure E.21 Basic microarchitectural components of an input-output-buffered switch.

Link
control

Physical
channel

Input
buffers

D
em

ux

M
ux

C
ro

ss
ba

r

D
em

ux
D

em
uxLink

control

Physical
channel

Link
control

Link
control

Input
buffers

D
em

ux

Routing control and
arbitration unit

M
ux

Physical
channel

Physical
channel

Output
buffers

M
ux

Output
buffers

M
ux

E-58 � Appendix E Interconnection Networks

requests and status information are transmitted to the central switch arbitration
unit; in the latter case, the arbiter is distributed across the switch, usually among
the input and/or output ports. Arbitration may be performed multiple times on
packets, and there may be multiple queues associated with each input port,
increasing the number of arbitration requests that must be processed. Thus, many
implementations use a hierarchical arbitration approach, where arbitration is first
performed locally at every input port to select just one request among the corre-
sponding packets and queues, and later arbitration is performed globally to pro-
cess the requests made by each of the local input port arbiters. Figure E.21
assumes a centralized arbitration unit within the switch.

The basic switch microarchitecture depicted in Figure E.21 functions in the
following way. When a packet starts to arrive at a switch input port, the link con-
troller decodes the incoming signal and generates a sequence of bits, possibly
deserializing data to adapt them to the width of the internal data path if different
from the external link width. Information is also extracted from the packet header
or link control signals to determine the queue to which the packet should be buff-
ered. As the packet is being received and buffered (or after the entire packet has
been buffered, depending on the switching technique), the header is sent to the
routing unit. This unit supplies a request for one or more output ports to the arbi-
tration unit. Arbitration for the requested output port succeeds if the port is free
and has enough space to buffer the entire packet or flit, depending on the switch-
ing technique. If wormhole switching with virtual channels is implemented, addi-
tional arbitration and allocation steps may be required for the transmission of
each individual flit. Once the resources are allocated, the packet is transferred
across the internal crossbar to the corresponding output buffer and link if no other
packets are ahead of it and the link is free. Link-level flow control implemented
by the link controller prevents input queue overflow at the neighboring switch on
the other end of the link. If virtual channel switching is implemented, several
packets may be time-multiplexed across the link on a flit-by-flit basis. As the var-
ious input and output ports operate independently, several incoming packets may
be processed concurrently in the absence of contention.

Buffer Organizations

As mentioned above, queues can be located at the switch input, output, or both
sides. Output-buffered switches have the advantage of completely eliminating
head-of-line blocking. Head-of-line (HOL) blocking occurs when two or more
packets are buffered in a queue, and a blocked packet at the head of the queue
blocks other packets in the queue that would otherwise be able to advance if they
were at the queue head. This cannot occur in output-buffered switches as all the
packets in a given queue have the same status; they require the same output port.
However, it may be the case that all the switch input ports simultaneously receive
a packet for the same output port. As there are no buffers at the input side, output
buffers must be able to store all those incoming packets at the same time. This
requires implementing output queues with an internal switch speedup of k. That

E.6 Switch Microarchitecture � E-59

is, output queues must have a write bandwidth k times the link bandwidth, where
k is the number of switch ports. This oftentimes is too expensive. Hence, this
solution by itself has rarely been implemented in lossless networks. As the proba-
bility of concurrently receiving many packets for the same output port is usually
small, commercial systems that use output-buffered switches typically implement
only moderate switch speedup, dropping packets on rare buffer overflow.

Switches with buffers on the input side are able to receive packets without
having any switch speedup. However, HOL blocking can occur within input port
queues, as illustrated in Figure E.22 (a). This can reduce switch output port utili-
zation to less than 60% even when packet destinations are uniformly distributed.
As shown in Figure E.22 (b), the use of virtual channels (two in this case) can
mitigate HOL blocking but does not eliminate it. A more effective solution is to

Figure E.22 (a) Head-of-line blocking in an input buffer, (b) the use of two virtual channels to reduce HOL block-
ing, and (c) the use of virtual output queuing to eliminate HOL blocking with a switch. The shaded input buffer is
the one to which the crossbar is currently allocated. This assumes each input port has only one access port to the
switch’s internal crossbar.

Input buffers

Crossbar

(a)

Input port i

Output port X+

D
em

uxY– Y+Y+ X– X+

X+

Output port X–

Output port Y+

Output port Y–

Input buffers

Crossbar

(b)

Input port i

Output port X+

X– X+

Y+Y– Y+

X+

Output port X–

Output port Y+

Output port Y–

D
em

ux

Input buffers

Crossbar

(c)

Input port i

Output port X+

X+

X–

Y+Y+

Y–

X+

Output port X–

Output port Y+

Output port Y–

E-60 � Appendix E Interconnection Networks

organize the input queues as virtual output queues (VOQs), shown in Figure E.22
(c). With this, each input port implements as many queues as there are output
ports, thus providing separate buffers for packets destined to different output
ports. This is a popular technique widely used in ATM switches and IP routers.
The main drawback of VOQs, however, is cost and lack of scalability: the number
of VOQs grows quadratically with switch ports. Moreover, although VOQs elim-
inate HOL blocking within a switch, HOL blocking occurring at the network
level end-to-end is not solved. Of course, it is possible to design a switch with
VOQ support at the network level also—that is, to implement as many queues per
switch input port as there are output ports across the entire network—but this is
extremely expensive. An alternative is to dynamically assign only a fraction of
the queues to store (cache) separately only those packets headed for congested
destinations.

Combined input-output-buffered switches minimize HOL blocking when
there is sufficient buffer space at the output side to buffer packets, and they mini-
mize the switch speedup required due to buffers being at the input side. This solu-
tion has the further benefit of decoupling packet transmission through the internal
crossbar of the switch from transmission through the external links. This is espe-
cially useful for cut-through switching implementations that use virtual channels,
where flit transmissions are time-multiplexed over the links. Many designs used
in commercial systems implement input-output-buffered switches.

Pipelining the Switch Microarchitecture

Performance can be enhanced by pipelining the switch microarchitecture. Pipe-
lined processing of packets in a switch has similarities with pipelined execution
of instructions in a vector processor. In a vector pipeline, a single instruction indi-
cates what operation to apply to all the vector elements executed in a pipelined
way. Similarly, in a switch pipeline, a single packet header indicates how to pro-
cess all of the internal data path physical transfer units (or phits) of a packet,
which are processed in a pipelined fashion. Also, as packets at different input
ports are independent of each other, they can be processed in parallel similar to
the way multiple independent instructions or threads of pipelined instructions can
be executed in parallel.

The switch microarchitecture can be pipelined by analyzing the basic func-
tions performed within the switch and organizing them into several stages.
Figure E.23 shows a block diagram of a five-stage pipelined organization for the
basic switch microarchitecture given in Figure E.21, assuming cut-through
switching and the use of a forwarding table to implement routing. After receiving
the header portion of the packet in the first stage, the routing information (i.e.,
destination address) is used in the second stage to look up the allowed routing
option(s) in the forwarding table. Concurrent with this, other portions of the
packet are received and buffered in the input port queue at the first stage. Arbitra-
tion is performed in the third stage. The crossbar is configured to allocate the

E.6 Switch Microarchitecture � E-61

granted output port for the packet in the fourth stage, and the packet header is
buffered in the switch output port and ready for transmission over the external
link in the fifth stage. Note that the second and third stages are used only by the
packet header; the payload and trailer portions of the packet use only three of the
stages—those used for data flow-thru once the internal data path of the switch is
set up.

A virtual channel switch usually requires an additional stage for virtual chan-
nel allocation. Moreover, arbitration is required for every flit before transmission
through the crossbar. Finally, depending on the complexity of the routing and
arbitration algorithms, several clock cycles may be required for these operations.

Figure E.23 Pipelined version of the basic input-output-buffered switch. The notation in the figure is as follows: IB
is the input link control and buffer stage, RC is the route computation stage, SA is the crossbar switch arbitration
stage, ST is the crossbar switch traversal stage, and OB is the output buffer and link control stage. Packet fragments
(flits) coming after the header remain in the IB stage until the header is processed and the crossbar switch resources
are provided.

Link
control

Physical
channel

Input
buffers

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

D
em

ux

M
ux

C
ro

ss
ba

r

D
em

ux

Arbitration
unit Crossbar

control
Output
port #

Forwarding
table

Header
fill

D
em

uxLink
control

Physical
channel

Packet header

Payload fragment

Payload fragment

Payload fragment

IB

Link
control

Link
control

Input
buffers

D
em

ux

Routing
control unit

M
ux

Physical
channel

Physical
channel

Output
buffers

M
ux

Output
buffers

M
ux

RC SA ST OB

IB IB IB ST OB

IB IB IB ST OB

IB IB IB ST OB

E-62 � Appendix E Interconnection Networks

Other Switch Microarchitecture Enhancements

As mentioned earlier, internal switch speedup is sometimes implemented to
increase switch output port utilization. This speedup is usually implemented by
increasing the clock frequency and/or the internal data path width (i.e., phit size)
of the switch. An alternative solution consists of implementing several parallel
data paths from each input port’s set of queues to the output ports. One way of
doing this is by increasing the number of crossbar input ports. In case of imple-
menting several physical queues per input port, this can be achieved by devoting
a separate crossbar port to each input queue. For example, the IBM Blue Gene/L
implements two crossbar access ports and two read ports per switch input port.

Another way of implementing parallel data paths between input and output
ports is to move the buffers to the crossbar crosspoints. This switch architecture
is usually referred to as a buffered crossbar switch. A buffered crossbar provides
independent data paths from each input port to the different output ports, thus
making it possible to send up to k packets at a time from a given input port to k
different output ports. By implementing independent crosspoint memories for
each input-output port pair, HOL blocking is eliminated at the switch level.
Moreover, arbitration is significantly simpler than in other switch architectures.
Effectively, each output port can receive packets from only a disjoint subset of
the crosspoint memories. Thus, a completely independent arbiter can be imple-
mented at each switch output port, each of those arbiters being very simple.

A buffered crossbar would be the ideal switch architecture if it were not so
expensive. The number of crosspoint memories increases quadratically with the
number of switch ports, dramatically increasing its cost and reducing its scalabil-
ity with respect to the basic switch architecture. In addition, each crosspoint
memory must be large enough to efficiently implement link-level flow control. To
reduce cost, most designers prefer input-buffered or combined input-output-buff-
ered switches enhanced with some of the mechanisms described previously.

There are practical issues in addition to the technical issues described thus far
that are important considerations for interconnection networks within certain
domains. We mention a few of these below.

Connectivity

The type and number of devices that communicate and their communication
requirements affect the complexity of the interconnection network and its proto-
cols. The protocols must target the largest network size and handle the types of
anomalous systemwide events that might occur. Among some of the issues are
the following: How lightweight should the network interface hardware/software

 E.7 Practical Issues for Commercial Interconnection
Networks

E.7 Practical Issues for Commercial Interconnection Networks � E-63

be? Should it attach to the memory network or the I/O network? Should it support
cache coherence? If the operating system must get involved for every network
transaction, the sending and receiving overhead becomes quite large. If the net-
work interface attaches to the I/O network (PCI-Express or HyperTransport inter-
connect), the injection and reception bandwidth will be limited to that of the I/O
network. This is the case for the Cray XT3 SeaStar, Intel Thunder Tiger 4
QsNetII, and many other supercomputer and cluster networks. To support coher-
ence, the sender may have to flush the cache before each send, and the receiver
may have to flush its cache before each receive to prevent the stale-data problem.
Such flushes further increase sending and receiving overhead, often causing the
network interface to be the network bottleneck.

Computer systems typically have a multiplicity of interconnects with differ-
ent functions and cost-performance objectives. For example, processor-memory
interconnects usually provide higher bandwidth and lower latency than I/O inter-
connects and are more likely to support cache coherence, but they are less likely
to follow or become standards. The personal computer in 2006 had a processor-
memory interconnect and an I/O interconnect (e.g., PCI-X 2.0, PCIe or Hyper-
Transport) designed to connect both fast and slow devices (e.g., USB 2.0, Gigabit
Ethernet LAN, Firewire 800, etc.). The Blue Gene/L supercomputer uses five
interconnection networks, only one of which is the 3D torus used for most of the
interprocessor application traffic. The others include a tree-based collective com-
munication network for broadcast and multicast; a tree-based barrier network for
combining results (scatter, gather); a control network for diagnostics, debugging,
and initialization; and a Gigabit Ethernet network for I/O between the nodes and
disk. The University of Texas at Austin’s TRIPS Edge processor has eight spe-
cialized on-chip networks—some with bidirectional channels as wide as 128 bits
and some with 168 bits in each direction—to interconnect the 106 heterogeneous
tiles composing the two processor cores with L2 on-chip cache. It also has a chip-
to-chip switched network to interconnect multiple chips in a multiprocessor con-
figuration. Two of the on-chip networks are switched networks: one is used for
operand transport and the other is used for on-chip memory communication. The
others are essentially fan-out trees or recombination dedicated link networks used
for status and control. The portion of chip area allocated to the interconnect is
substantial, with five of the seven metal layers used for global network wiring.

Standardization: Cross-Company Interoperability

Standards are useful in many places in computer design, including interconnec-
tion networks. Advantages of successful standards include low cost and stability.
The customer has many vendors to choose from, which keeps price close to cost
due to competition. It makes the viability of the interconnection independent of
the stability of a single company. Components designed for a standard intercon-
nection may also have a larger market, and this higher volume can reduce the
vendors’ costs, further benefiting the customer. Finally, a standard allows many
companies to build products with interfaces to the standard, so the customer does

E-64 � Appendix E Interconnection Networks

not have to wait for a single company to develop interfaces to all the products of
interest.

One drawback of standards is the time it takes for committees and special-
interest groups to agree on the definition of standards, which is a problem when
technology is changing rapidly. Another problem is when to standardize: on the
one hand, designers would like to have a standard before anything is built; on the
other hand, it would be better if something were built before standardization to
avoid legislating useless features or omitting important ones. When done too
early, it is often done entirely by committee, which is like asking all of the chefs
in France to prepare a single dish of food—masterpieces are rarely served. Stan-
dards can also suppress innovation at that level, since standards fix the inter-
faces—at least until the next version of the standards surface, which can be every
few years or longer. More often, we are seeing consortiums of companies getting
together to define and agree on technology that serve as “de facto” industry stan-
dards. This was the case for InfiniBand.

LANs and WANs use standards and interoperate effectively. WANs involve
many types of companies and must connect to many brands of computers, so it is
difficult to imagine a proprietary WAN ever being successful. The ubiquitous
nature of the Ethernet shows the popularity of standards for LANs as well as
WANs, and it seems unlikely that many customers would tie the viability of their
LAN to the stability of a single company. Some SANs are standardized such as
Fibre Channel, but most are proprietary. OCNs for the most part are proprietary
designs, with a few gaining widespread commercial use in system-on-chip (SoC)
applications, such as IBM’s CoreConnect and ARM’s AMBA.

Congestion Management

Congestion arises when too many packets try to use the same link or set of links.
This leads to a situation in which the bandwidth required exceeds the bandwidth
supplied. Congestion by itself does not degrade network performance: simply,
the congested links are running at their maximum capacity. Performance degra-
dation occurs in the presence of HOL blocking where, as a consequence of pack-
ets going to noncongested destinations getting blocked by packets going to
congested destinations, some link bandwidth is wasted and network throughput
drops, as illustrated in the example given at the end of Section E.4. Congestion
control refers to schemes that reduce traffic when the collective traffic of all
nodes is too large for the network to handle.

One advantage of a circuit-switched network is that once a circuit is estab-
lished, it ensures there is sufficient bandwidth to deliver all the information sent
along that circuit. Interconnection bandwidth is reserved as circuits are estab-
lished, and if the network is full, no more circuits can be established. Other
switching techniques generally do not reserve interconnect bandwidth in
advance, so the interconnection network can become clogged with too many
packets. Just as with poor rush-hour commuters, a traffic jam of packets increases
packet latency, and in extreme cases, fewer packets per second get delivered by

E.7 Practical Issues for Commercial Interconnection Networks � E-65

the interconnect. In order to handle congestion in packet-switched networks,
some form of congestion management must be implemented. The two kinds of
mechanisms used are those that control congestion and those that eliminate the
performance degradation introduced by congestion.

There are three basic schemes used for congestion control in interconnection
networks, each with its own weaknesses: packet discarding, flow control, and
choke packets. The simplest scheme is packet discarding, which we discussed
briefly in Section E.2. If a packet arrives at a switch and there is no room in the
buffer, the packet is discarded. This scheme relies on higher-level software that
handles errors in transmission to resend lost packets. This leads to significant
bandwidth wastage due to (re)transmitted packets that are later discarded and,
therefore, is typically used only in lossy networks like the Internet.

The second scheme relies on flow control, also discussed previously. When
buffers become full, link-level flow control provides feedback that prevents the
transmission of additional packets. This backpressure feedback rapidly propa-
gates backward until it reaches the sender(s) of the packets producing congestion,
forcing a reduction in the injection rate of packets into the network. The main
drawbacks of this scheme are that sources become aware of congestion too late
when the network is already congested, and nothing is done to alleviate conges-
tion. Backpressure flow control is common in lossless networks like SANs used
in supercomputers and enterprise systems.

A more elaborate way of using flow control is by implementing it directly
between the sender and the receiver end nodes, generically called end-to-end flow
control. Windowing is one version of end-to-end credit-based flow control where
the window size should be large enough to efficiently pipeline packets through
the network. The goal of the window is to limit the number of unacknowledged
packets, thus bounding the contribution of each source to congestion, should it
arise. The TCP protocol uses a sliding window. Note that end-to-end flow control
describes the interaction between just two nodes of the interconnection network,
not the entire interconnection network between all end nodes. Hence, flow con-
trol helps congestion control, but it is not a global solution.

 Choke packets are used in the third scheme, which is built upon the premise
that traffic injection should be throttled only when congestion exists across the
network. The idea is for each switch to see how busy it is and to enter into a
warning state when it passes a threshold. Each packet received by a switch in the
warning state is sent back to the source via a choke packet that includes the
intended destination. The source is expected to reduce traffic to that destination
by a fixed percentage. Since it likely will have already sent other packets along
that path, the source node waits for all the packets in transit to be returned before
acting on the choke packets. In this scheme, congestion is controlled by reducing
the packet injection rate until traffic reduces, just as metering lights that guard
on-ramps control the rate of cars entering a freeway. This scheme works effi-
ciently when the feedback delay is short. When congestion notification takes a
long time, usually due to long time of flight, this congestion control scheme may
become unstable—reacting too slowly or producing oscillations in packet injec-
tion rate, both of which lead to poor network bandwidth utilization.

E-66 � Appendix E Interconnection Networks

An alternative to congestion control consists of eliminating the negative con-
sequences of congestion. This can be done by eliminating HOL blocking at every
switch in the network as discussed previously. Virtual output queues can be used
for this purpose. However, it would be necessary to implement as many queues at
every switch input port as devices attached to the network. This solution is very
expensive, and not scalable at all. Fortunately, it is possible to achieve good
results by dynamically assigning a few set-aside queues to store only the con-
gested packets that travel through some hot-spot regions of the network, very
much like caches are intended to store only the more frequently accessed mem-
ory locations. This strategy is referred to as regional explicit congestion notifica-
tion (RECN).

Fault Tolerance

The probability of system failures increases as transistor integration density and
the number of devices in the system increases. Consequently, system reliability
and availability have become major concerns and will be even more important in
future systems with the proliferation of interconnected devices. A practical issue
arises, therefore, as to whether or not the interconnection network relies on all the
devices being operational in order for the network to work properly. Since soft-
ware failures are generally much more frequent than hardware failures, another
question surfaces as to whether a software crash on a single device can prevent
the rest of the devices from communicating. Although some hardware designers
try to build fault-free networks, in practice it is only a question of the rate of fail-
ures, not whether they can be prevented. Thus, the communication subsystem
must have mechanisms for dealing with faults when—not if—they occur.

There are two main kinds of failure in an interconnection network: transient
and permanent. Transient failures are usually produced by electromagnetic inter-
ference and can be detected and corrected using the techniques described in Sec-
tion E.2. Oftentimes, these can be dealt with simply by retransmitting the packet
either at the link level or end-to-end. Permanent failures occur when some com-
ponent stops working within specifications. Typically, these are produced by
overheating, overbiasing, overuse, aging, and so on, and cannot be recovered
from simply by retransmitting packets with the help of some higher-layer soft-
ware protocol. Either an alternative physical path must exist in the network and
be supplied by the routing algorithm to circumvent the fault or the network will
be crippled, unable to deliver packets whose only paths are through faulty
resources.

Three major categories of techniques are used to deal with permanent fail-
ures: resource sparing, fault-tolerant routing, and network reconfiguration. In the
first technique, faulty resources are switched off or bypassed, and some spare
resources are switched in to replace the faulty ones. As an example, the Server-
Net interconnection network is designed with two identical switch fabrics, only
one of which is usable at any given time. In case of failure in one fabric, the other
is used. This technique can also be implemented without switching in spare
resources, leading to a degraded mode of operation after a failure. The IBM Blue

E.7 Practical Issues for Commercial Interconnection Networks � E-67

Gene/L supercomputer, for instance, has the facility to bypass failed network
resources while retaining its base topological structure and routing algorithm.
The main drawback of this technique is the relatively large number of healthy
resources (i.e., midplane node boards) that may need to be switched off after a
failure in order to retain the base topological structure (i.e., a 3D torus).

Fault-tolerant routing, on the other hand, takes advantage of the multiple
paths already existing in the network topology to route messages in the presence
of failures without requiring spare resources. Alternative paths for each supported
fault combination are identified at design time and incorporated into the routing
algorithm. When a fault is detected, a suitable alternative path is used. The main
difficulty when using this technique is guaranteeing that the routing algorithm
will remain deadlock-free when using the alternative paths, given that arbitrary
fault patterns may occur. This is especially difficult in direct networks whose reg-
ularity can be compromised by the fault pattern. The Cray T3E is an example sys-
tem that successfully applies this technique on its 3D torus direct network. There
are many examples of this technique in systems using indirect networks, such as
with the bidirectional multistage networks in the ASCI White and ASC Purple.
Those networks provide multiple minimal paths between end nodes and, inher-
ently, have no routing deadlock problems (see Section E.5). In these networks,
alternative paths are selected at the source node in case of failure.

Network reconfiguration is yet another, more general technique to handle vol-
untary and involuntary changes in the network topology due either to failures or
to some other cause. In order for the network to be reconfigured, the nonfaulty
portions of the topology must first be discovered, followed by computation of the
new routing tables and distribution of the routing tables to the corresponding net-
work locations (i.e., switches and/or end node devices). Network reconfiguration
requires the use of programmable switches and/or network interfaces, depending
on how routing is performed. It may also make use of generic routing algorithms
(e.g., up*/down* routing) that can be configured for all the possible network
topologies that may result after faults. This strategy relieves the designer from
having to supply alternative paths for each possible fault combination at design
time. Programmable network components provide a high degree of flexibility but
at the expense of higher cost and latency. Most standard and proprietary intercon-
nection networks for clusters and SANs—including Myrinet, Quadrics, Infini-
Band, Advanced Switching, and Fibre Channel—incorporate software for
(re)configuring the network routing in accordance with the prevailing topology.

Another practical issue ties to node failure tolerance. If an interconnection
network can survive a failure, can it also continue operation while a new node is
added to or removed from the network, usually referred to as hot swapping? If
not, each addition or removal of a new node disables the interconnection net-
work, which is impractical for WANs and LANs, and is usually intolerable for
most SANs. Online system expansion requires hot swapping, so most networks
allow for it. Hot swapping is usually supported by implementing dynamic net-
work reconfiguration, in which the network is reconfigured without having to
stop user traffic. The main difficulty with this is guaranteeing deadlock-free rout-
ing while routing tables for switches and/or end node devices are dynamically

E-68 � Appendix E Interconnection Networks

and asynchronously updated as more than one routing algorithm may be alive
(and, perhaps, clashing) in the network at the same time. Most WANs solve this
problem by dropping packets whenever required, but dynamic network reconfig-
uration is much more complex in lossless networks. Several theories and practi-
cal techniques have recently been developed to address this problem efficiently.

Example Figure E.24 shows the number of failures of 58 desktop computers on a local area
network for a period of just over one year. Suppose that one local area network is
based on a network that requires all machines to be operational for the intercon-
nection network to send data; if a node crashes, it cannot accept messages, so the
interconnection becomes choked with data waiting to be delivered. An alternative
is the traditional local area network, which can operate in the presence of node
failures; the interconnection simply discards messages for a node that decides not
to accept them. Assuming that you need to have both your workstation and the
connecting LAN to get your work done, how much greater are your chances of
being prevented from getting your work done using the failure-intolerant LAN
versus traditional LANs? Assume the downtime for a crash is less than 30 min-
utes. Calculate using the one-hour intervals from this figure.

Answer Assuming the numbers for Figure E.24, the percentage of hours that you can’t get
your work done using the failure-intolerant network is

The percentage of hours that you can’t get your work done using the traditional
network is just the time your workstation has crashed. If these failures are equally
distributed among workstations, the percentage is

Hence, you are more than 30 times more likely to be prevented from getting your
work done with the failure-intolerant LAN than with the traditional LAN,
according to the failure statistics in Figure E.24. Stated alternatively, the person
responsible for maintaining the LAN would receive a 30-fold increase in phone
calls from irate users!

Intervals with failures
Total intervals

-- Total intervals – Intervals with no failures
Total intervals

---=

8974 8605–
8974

------------------------------ 369
8974
------------ 4.1%= ==

Failures/Machines
Total intervals

--
654/58
8974

---------------- 11.28
8974
------------- 0.13%===

E.7 Practical Issues for Commercial Interconnection Networks

�

E-69

Failed machines
per time interval

One-hour intervals
with number of failed

machines in
first column

Total failures per
one-hour interval

One-day intervals
with number of failed

machines in first column
Total failures per
one-day interval

0 8605 0 184 0

1 264 264 105 105

2 50 100 35 70

3 25 75 11 33

4 10 40 6 24

5 7 35 9 45

6 3 18 6 36

7 1 7 4 28

8 1 8 4 32

9 2 18 2 18

10 2 20

11 1 11 2 22

12 1 12

17 1 17

20 1 20

21 1 21 1 21

31 1 31

38 1 38

58 1 58

Total 8974 654 373 573

Figure E.24

Measurement of reboots of 58 DECstation 5000s running Ultrix over a 373-day period.

These
reboots are distributed into time intervals of one hour and one day. The first column sorts the intervals according to
the number of machines that failed in that interval. The next two columns concern one-hour intervals, and the last
two columns concern one-day intervals. The second and fourth columns show the number of intervals for each num-
ber of failed machines. The third and fifth columns are just the product of the number of failed machines and the
number of intervals. For example, there were 50 occurrences of one-hour intervals with 2 failed machines, for a total
of 100 failed machines, and there were 35 days with 2 failed machines, for a total of 70 failures. As we would expect,
the number of failures per interval changes with the size of the interval. For example, the day with 31 failures might
include one hour with 11 failures and one hour with 20 failures. The last row shows the total number of each column;
the number of failures doesn’t agree because multiple reboots of the same machine in the same interval do not
result in separate entries. (Randy Wang of U.C. Berkeley collected these data.)

E-70

�

Appendix E

Interconnection Networks

To further provide mass to the concepts described in the previous sections, we
look at five example networks from the four interconnection network domains
considered in this appendix. In addition to one for each of the OCN, LAN, and
WAN areas, we look at two examples from the SAN area: one for system area
networks and one for system/storage area networks. The first two examples are
proprietary networks used in high-performance systems; the latter three examples
are network standards widely used in commercial systems.

On-Chip Network: Cell Broadband Engine’s Element
Interconnect

With continued increases in transistor integration as predicted by Moore’s Law,
processor designers are under the gun to find ways of combating chip-crossing
wire delay and other problems associated with deep submicron technology scal-
ing.

Multicore

 microarchitectures are gaining popularity, given their advantages
of simplicity, modularity, and ability to exploit parallelism beyond that which can
be achieved through aggressive pipelining and multiple instruction/data issuing
on a single core. No matter whether the processor consists of a single core or
multiple cores, higher and higher demands are being placed on intrachip commu-
nication bandwidth to keep pace—not to mention interchip bandwidth. This has
spurred a great amount of interest in OCN designs that efficiently support com-
munication of instructions, register operands, memory, and I/O data within and
between processor cores both on and off the chip. Here we focus on one such on-
chip network: the Cell Broadband Engine’s Element Interconnect Bus.

The Cell Broadband Engine (Cell BE) is a heterogeneous multicore processor
designed for high performance on multimedia and game applications requiring
real-time responsiveness to users. Development of the processor started in 2000
by Sony, IBM, and Toshiba, with the first products shipped in 2005. The 200
GFLOPS (peak) Cell BE chip incorporates a 64-bit Power processor element
(PPE), eight 128-bit SIMD synergistic processor elements (SPEs) with local
store, a memory interface controller (MIC) element, and two configurable I/O
interface elements—one of which supports a coherent protocol. Using the coher-
ent I/O interface configurable to 20 GB/sec bandwidth, up to two Cell BEs can be
directly connected or up to four Cell BEs can be assembled into a four-way sym-
metric multiprocessor system via an external switch. Figure E.25 shows a die
photo and high-level block diagram of the Cell BE.

The 12 elements within the Cell BE are interconnected over a 235 mm

2

 chip
area with a proprietary on-chip network: the Element Interconnect Bus (EIB).
The data portion of the EIB consists of four separate but identical alternating uni-
directional rings, two in each direction interleaved with power and ground to
reduce coupling noise. Each ring interconnecting the 12 nodes operates more like
a dynamically segmentable shared bus than a point-to-point switched network.
All data links comprising the rings are 128 bits wide and are clocked at 1.6 GHz

 E.8 Examples of Interconnection Networks

E.8 Examples of Interconnection Networks

�

E-71

(half the processor clock rate) to provide a data bandwidth of 25.6 GB/sec,
including injection and reception links. These links occupy two of the eight metal
layers of the 1236-pin chip, where most of the chip pin-outs are used for power
and ground, leaving approximately 506 for signal pins.

Each SPE has a synergistic memory flow control unit that acts as a DMA
engine, allowing up to 16 outstanding data transfers. Packets range in size from
16 bytes to a maximum of 128 bytes, where 2 bytes of tag control on separate
control lines accompany each ring data transmission. Packets have no headers.
Routing paths are preestablished ahead of time during a separate EIB arbitration
and routing phase. Pipelined circuit switching is used once paths are established,
where each ring switch has room to store only one 16-byte phit. No error detec-
tion or correction is supported on the EIB.

Credit-based flow control is used to manage the allocation of resources,
including the EIB. Requestors first gain permission (in the form of receiving
tokens or credits) from a central token manager to use the EIB and then issue a
set of commands to ensure a coherent cache/memory state before arbitrating for
the EIB to do a coherent read or write data transfer. The coherence actions are
needed to make the ring topology transparent to the element data interface. They
can take over 40 network cycles but are done on separate address concentrator
control networks, each implemented in a treelike structure. This minimizes the
wiring resources, distributes the control, and allows data transfers on the EIB to
occur concurrently with command transfers. A two-stage, dual round-robin cen-
tralized network arbiter is used to grant access to one of the EIB rings, taking into
account end-to-end as well as link-level ring contention. The MIC has the highest
priority in order to prevent stalling on data reads from memory; all other requests
have lower priority. The same arbiter is also used to set up pipelined circuit-
switched routes (a minimal path) from source elements to destination elements

Figure E.25

Cell Broadband Engine (a) die photo and (b) high-level block diagram illustrating the function of the
EIB.

© IBM Corporation, 2005. All rights reserved.

SPE

SXU

SMF

LS

L1 PXU

PPE

PPU

L2

MIC

Dual XDR™

BIC

FlexIO™

SPE

SXU

SMF

LS

SPE

SXU

SMF

LS

SPE

SXU

SMF

LS

SPE

EIB (up to 96 B/cycles)

16 B/cycles)
32 B/

cycles)

16 B/
cycles)

16 B/
cycles)

16 B/cycles)
(2x)

SXU

SMF

LS

SPE

SXU

SMF

LS

SPE

SXU

SMF

LS

SPE

SXU

SMF

LS

E-72

�

Appendix E

Interconnection Networks

across the selected ring. One grant per ring can be issued by the arbiter every 3
cycles, and up to three nonconflicting data transfers can occur over each ring,
allowing a maximum of 12 outstanding data transfers across all four EIB rings.

The latency through each hop is 1 network cycle, but the transmission time
for the largest-sized packet is 8 cycles. The peak instantaneous EIB effective
bandwidth is 307.2 GB/sec, and the best-case sustainable EIB effective band-
width is 204.8 GB/sec (i.e., two nonconflicting data transfers per ring). This is
limited by the maximum command throughput in the command tree, not the data
arbiter. The EIB effective bandwidth is further reduced when there are conflicting
data transfers on each ring between SPEs and also when the MIC serves as a
reception link bottlenecking point (i.e., when multiple SPEs try to access the
MIC, which operates at only 25.6 GB/sec). Finally, although eight SPEs are
implemented, one is used for resource sparing, allowing only seven to be used at
any one time.

By way of comparison, Figure E.26 shows some on-chip network characteris-
tics of the Cell BE EIB, along with a few other on-chip networks implemented in
recent research and commercial multicore processors

.

System Area Network: IBM Blue Gene/L 3D Torus Network

The IBM BlueGene/L was the largest-scaled, highest-performing computer sys-
tem in the world in 2005, according to

www.top500.org.

 With 65,536 dual-
processor compute nodes and 1024 I/O nodes, this 360 TFLOPS (peak) super-
computer has a system footprint of approximately 2500 square feet. Both proces-
sors at each node can be used for computation and can handle their own
communication protocol processing in virtual mode or, alternatively, one of the
processors can be used for computation and the other for network interface pro-
cessing. Packets range in size from 32 bytes to a maximum of 256 bytes, and 8
bytes are used for the header. The header includes routing, virtual channel, link-
level flow control, packet size, and other such information, along with 1 byte for
CRC to protect the header. Three bytes are used for CRC at the packet level, and
1 byte serves as a valid indicator.

The main interconnection network is a proprietary 32

×

32

×

64 3D torus
SAN that interconnects all 64K nodes. Each node switch has six 350 MB/sec
bidirectional links to neighboring torus nodes, an injection bandwidth of 612.5
MB/sec from the two node processors, and a reception bandwidth of 1050 MB/
sec to the two node processors. The reception bandwidth from the network equals
the inbound bandwidth across all switch ports, which prevents reception links
from bottlenecking network performance. Multiple packets can be sunk concur-
rently at each destination node because of the higher reception link bandwidth.

Two nodes are implemented on a 2

×

1

× 1

compute card, 16 compute cards
and two I/O cards are implemented on a 4

×

4

×

2 node board, 16 node boards are
implemented on an 8

×

8

×

8 midplane, and 2 midplanes form a 1024 node rack
with physical dimensions of 0.9

×

0.9

×

1.9 cubic meters. Links have a maximum
physical length of 8.6 meters, thus enabling efficient link-level flow control with

E.8 Examples of Interconnection Networks

�

E-73

reasonably low buffering requirements. Low latency is achieved by implementing
virtual cut-through switching, distributing arbitration at switch input and output
ports, and precomputing the current routing path at the previous switch using a
finite-state machine so that part of the routing delay is removed from the critical
path in switches. High effective bandwidth is achieved using input-buffered
switches with dual read ports, virtual cut-through switching with four virtual
channels, and fully adaptive deadlock-free routing based on bubble flow control.

Institution and
processor
[network]
name

Year
built

Number of
network
ports [cores
or tiles +
other ports]

Basic
network
topology

of data
bits per link
per
direction

Link
bandwidth
[link clock
speed]

Routing;
arbitration;
switching

of chip
metal layers;
flow control;
virtual
channels

MIT Raw
[General
Dynamic
Network]

2002 16 ports
[16 tiles]

2D mesh

4 ×

 4
32 bits 0.9 GB/sec

[225 MHz,
clocked at
proc speed]

XY DOR with
request-reply
deadlock
recovery; RR
arbitration;
wormhole

6 layers;
credit-
based;
no virtual
channels

IBM Power5 2004 7 ports
[2 PE cores +
5 other ports]

crossbar 256 bits Inst
fetch; 64 bits
for stores;
256 bits LDs

[1.9 GHz,
clocked at
proc speed]

shortest-path;
nonblocking;
circuit switch

7 layers;
handshaking;
no virtual
channels

U.T. Austin TRIP
Edge [Operand
Network]

2005 25 ports
[25 execution
unit tiles]

2D mesh

5 ×

 5
110 bits 5.86 GB/sec

[533 MHz
clock scaled
by 80%]

YX DOR;
distributed RR
arbitration;
wormhole

7 layers;
on/off flow
control;
no virtual
channels

U.T. Austin TRIP
Edge [On-Chip
Network]

2005 40 ports
[16 L2 tiles +
24 network
interface tile]

2D mesh
10

×

 4
128 bits 6.8 GB/sec

[533 MHz
clock scaled
by 80%]

YX DOR;
distributed RR
arbitration;
VCT switched

7 layers;
credit-based
flow
control;
4 virtual
channels

Sony, IBM,
Toshiba
Cell BE
[Element
Interconnect
Bus]

2005 12 ports
[1 PPE and
8 SPEs + 3
other ports
for memory,
I/O interface]

ring
4 total, 2 in
each direction

128 bits data
(+ 16 bits
tag)

25.6 GB/sec
[1.6 GHz,
clocked at
half the proc
speed]

shortest-path;
tree-based RR
arbitration
(centralized);
pipelined
circuit switch

8 layers;
credit-based
flow
control; no
virtual
channels

Sun UltraSPARC
T1 processor

2005 up to 13 ports
[8 PE cores +
4 L2 banks +
1 shared I/O]

crossbar 128 bits both
for the 8
cores and the
4 L2 banks

19.2 GB/sec
[1.2 GHz,
clocked at
proc speed]

shortest-path;
age-based
arbitration;
VCT switched

9 layers;
handshaking;
no virtual
channels

Figure E.26

Characteristics of on-chip networks implemented in recent research and commercial processors.

Some processors implement multiple on-chip networks (not all shown)—for example, two in the MIT Raw and eight
in the TRIP Edge.

E-74

�

Appendix E

Interconnection Networks

A key feature in networks of this size is fault tolerance. Failure rate is reduced
by using a relatively low link clock frequency of 700 MHz (same as processor
clock) on which both edges of the clock are used (i.e., 1.4 Gbps or 175 MB/sec
transfer rate is supported for each bit-serial network link in each direction), but
failures may still occur in the network. In case of failure, the midplane node
boards containing the fault(s) are switched off and bypassed to isolate the fault,
and computation resumes from the last checkpoint. Bypassing is done using sep-
arate bypass switch boards associated with each midplane that are additional to
the set of torus node boards. Each bypass switch board can be configured to con-
nect either to the corresponding links in the midplane node boards or to the next
bypass board, effectively removing the corresponding set of midplane node
boards. Although the number of processing nodes is reduced to some degree in
some network dimensions, the machine retains its topological structure and rout-
ing algorithm.

Some collective communication operations such as barrier synchronization,
broadcast/multicast, reduction, and so on, are not performed well on the 3D
torus as the network would be flooded with traffic. To remedy this, two separate
tree networks with higher per-link bandwidth are used to implement collective
and combining operations more efficiently. In addition to providing support for
efficient synchronization and broadcast/multicast, hardware is used to perform
some arithmetic reduction operations in an efficient way (e.g., to compute the
sum or the maximum value of a set of values, one from each processing node).
In addition to the 3D torus and the two tree networks, the Blue Gene/L imple-
ments an I/O Gigabit Ethernet network and a control system Fast Ethernet net-
work of lower bandwidth to provide for parallel I/O, configuration, debugging,
and maintenance.

System/Storage Area Network: InfiniBand

InfiniBand is an industrywide de facto networking standard developed by a con-
sortium of companies belonging to the InfiniBand Trade Association in October
2000. InfiniBand can be used as a system area network for interprocessor com-
munication or as a storage area network for server I/O. It is a switch-based inter-
connect technology that provides flexibility in the topology, routing algorithm,
and arbitration technique implemented by vendors and users. InfiniBand supports
data transmission rates of 2–120 Gbp/link per direction across distances of
300 m. It uses cut-through switching, 16 virtual channels and service levels,
credit-based link-level flow control, and weighted round-robin fair scheduling
and implements programmable forwarding tables. It also includes features useful
for increasing reliability and system availability, such as communication subnet
management, end-to-end path establishment, and virtual destination naming.
Figure E.27 shows the packet format for InfiniBand juxtaposed to two other net-
work standards from the LAN and WAN areas. Figure E.28 compares various
characteristics of the InfiniBand standard with two proprietary system area net-
works widely used in research and commercial high-performance computer
systems.

E.8 Examples of Interconnection Networks

�

E-75

Figure E.27

Packet format for InfiniBand, Ethernet, and ATM.

ATM calls their messages “cells” instead of packets, so
the proper name is ATM cell format. The width of each drawing is 32 bits. All three formats have destination address-
ing fields, encoded differently for each situation. All three also have a checksum field to catch transmission errors,
although the ATM checksum field is calculated only over the header; ATM relies on higher-level protocols to catch
errors in the data. Both InfiniBand and Ethernet have a length field, since the packets hold a variable amount of data,
with the former counted in 32-bit words and the latter in bytes. InfiniBand and ATM headers have a type field (T) that
gives the type of packet. The remaining Ethernet fields are a preamble to allow the receiver to recover the clock from
the self-clocking code used on the Ethernet, the source address, and a pad field to make sure the smallest packet is
64 bytes (including the header). InfiniBand includes a version field for protocol version, a sequence number to allow
in-order delivery, a field to select the destination queue, and a partition key field. Infiniband has many more small
fields not shown and many other packet formats; above is a simplified view. ATM’s short, fixed packet is a good
match to real-time demand of digital voice.

ATM

Data (48)

Destination

Checksum

T

InfiniBand

Sequence number

T

Version

32 bits

Ethernet

Preamble

Preamble

Pad (0–46)

Checksum

Checksum

Checksum

32 bits

Destination

Destination

Source

Destination

Partition key

Destination queue

Type Length

Length

Source

Source

Data (0–1500)

Data (0–4096)

32 bits

E-76

�

Appendix E

Interconnection Networks

InfiniBand offers two basic mechanisms to support user-level communica-
tion: send/receive and remote DMA (RDMA). With send/receive, the receiver has
to explicitly post a receive buffer (i.e., allocate space in its channel adapter net-
work interface) before the sender can transmit data. With RDMA, the sender can
remotely DMA data directly into the receiver device’s memory. For example, for
a nominal packet size of 4 bytes measured on a Mellanox MHEA28-XT channel
adapter connected to a 3.4 GHz Intel Xeon host device, sending and receiving
overhead is 0.946 and 1.423

µs, respectively, for the send/receive mechanism,

whereas it is 0.910 and 0.323 µs, respectively, for the RDMA mechanism.
As discussed in Section E.2, the packet size is important in getting full benefit

of the network bandwidth. One might ask, “What is the natural size of mes-
sages?” Figure E.29 (a) shows the size of messages for a commercial fluid
dynamics simulation application, called Fluent, collected on an InfiniBand net-
work at The Ohio State University’s Network-Based Computer Laboratory. One
plot is cumulative in messages sent and the other is cumulative in data bytes sent.
Messages in this graph are message passing interface (MPI) units of information,
which gets divided into InfiniBand maximum transfer units (packets) transferred
over the network. As shown, the maximum message size is over 512 KB, but
approximately 90% of the messages are less than 512 bytes. Messages of 2 KB
represent approximately 50% of the bytes transferred. An Integer Sort application
kernel in the NAS Parallel Benchmark suite is also measured to have about 75%
of its messages below 512 bytes (plots not shown). Many applications send far
more small messages than large ones, particularly since requests and acknowl-
edgments are more frequent than data responses and block writes.

Network
name
[vendors]

Used in top 10
supercom-
puter clusters
(2005)

Number
of nodes

Basic
network
topology

Raw link
bidirec-
tional BW

Routing
algorithm

Arbitration
technique

Switching
technique;
flow control

InfiniBand
[Mellanox,
Voltair]

SGI Altrix and
Dell Poweredge
Thunderbird

> millions
(2128 GUID
addresses,
like IPv6)

completely
configurable
(arbitrary)

4–240
Gbps

 arbitrary
(table-driven),
typically
up*/down*

weighted RR
fair scheduling
(2-level
priority)

cut-through,
16 virtual
channels
(15 for data);
credit-based

Myrinet-
2000
[Myricom]

Barcelona
Supercomputer
Center in Spain

8192 nodes bidirectional
MIN with
16-port
bidirectional
switches
(Clos net.)

4 Gbps source-based
dispersive
(adaptive)
minimal
routing

round-robin
arbitration

cut-through
switching
with no
virtual
channels;
Xon/Xoff
flow control

QsNetII

[Quadrics]
Intel Thunder
Itanium2 Tiger4

> tens of
thousands

fat tree
with 8-port
bidirectional
switches

21.3 Gbps source-based
LCA adaptive
shortest-path
routing

2-phased RR,
priority, aging,
distributed at
output ports

wormhole
with 2 virtual
channels;
credit-based

Figure E.28 Characteristics of system area networks implemented in various top 10 supercomputer clusters in
2005.

E.8 Examples of Interconnection Networks � E-77

InfiniBand reduces protocol processing overhead by allowing it to be off-
loaded from the host computer to a controller on the InfiniBand network interface
card. The benefits of protocol offloading and bypassing the operating system are
shown in Figure E.29 (b) for MVAPICH, a widely used implementation of MPI
over InfiniBand. Effective bandwidth is plotted against message size for
MVAPICH configured in two modes and two network speeds. One mode runs
IPoIB, in which InfiniBand communication is handled by the IP layer imple-
mented by the host’s operating system (i.e., no OS bypass). The other mode runs
MVAPICH directly over VAPI, which is the native Mellanox InfiniBand interface
that offloads transport protocol processing to the channel adapter hardware (i.e.,
OS bypass). Results are shown for 10 Gbps single data rate (SDR) and 20 Gbps
double data rate (DDR) InfiniBand networks. The results clearly show that off-
loading the protocol processing and bypassing the OS significantly reduce send-
ing and receiving overhead to allow near wire-speed effective bandwidth to be
achieved.

Ethernet: The Local Area Network

Ethernet has been extraordinarily successful as a LAN—from the 10 Mbit/sec
standard proposed in 1978 used practically everywhere today to the more recent
10 Gbit/sec standard that will likely be widely used. Many classes of computers
include Ethernet as a standard communication interface. Ethernet, codified as
IEEE standard 802.3, is a packet-switched network that routes packets using the

Figure E.29 Data collected by D.K. Panda, S. Sur, and L. Chai (2005) in the Network-Based Computing Laboratory
at The Ohio State University. (a) Cumulative percentage of messages and volume of data transferred as message
size varies for the Fluent application (www.fluent.com). Each x-axis entry includes all bytes up to the next one; for
example, 128 represents 1 byte to 128 bytes. About 90% of the messages are less than 512 bytes, which represents
about 40% of the total bytes transferred. (b) Effective bandwidth versus message size measured on SDR and DDR
InfiniBand networks running MVAPICH (http://nowlab.cse.ohio-state.edu/projects/mpi-iba) with OS bypass (native)
and without (IPoIB).

P
er

ce
nt

ag
e

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

64
0%

Message size (bytes)

256K64K16K4K1K256

M
ea

su
re

d
ef

fe
ct

iv
e

ba
nd

w
id

th
 (

M
B

/s
ec

)

1600

1400

1200

1000

800

600

400

200

4
0

Message size (bytes)

(a) (b)

4M256K16K1K64

Number of messages
Data volume

MVAPICH native DDR
MVAPICH native SDR
MVAPICH 1PoIB SDR
MVAPICH 1PoIB DDR

E-78 � Appendix E Interconnection Networks

destination address. It was originally designed for coaxial cable but today uses
primarily Cat5E copper wire, with optical fiber reserved for longer distances and
higher bandwidths. There is even a wireless version (802.11), which is testimony
to its ubiquity.

Over a 20-year span, computers had become thousands of times faster than
they were in 1978, but the shared media Ethernet network remained the same.
Hence, engineers had to invent temporary solutions until a faster, higher-
bandwidth network became available. One solution was to use multiple Ethernets
to interconnect machines and to connect those Ethernets with internetworking
devices that could transfer traffic from one Ethernet to another, as needed. Such
devices allow individual Ethernets to operate in parallel, thereby increasing the
aggregate interconnection bandwidth of a collection of computers. In effect,
these devices provide similar functionality to the switches described previously
for point-to-point networks.

Figure E.30 shows the potential parallelism that can be gained. Depending on
how they pass traffic and what kinds of interconnections they can join together,
these devices have different names:

� Bridges—These devices connect LANs together, passing traffic from one side
to another depending on the addresses in the packet. Bridges operate at the
Ethernet protocol level and are usually simpler and cheaper than routers, dis-
cussed next. Using the notation of the OSI model described in the next sec-
tion (see Figure E.33 on page E-82), bridges operate at layer 2, the data link
layer.

Figure E.30 The potential increased bandwidth of using many Ethernets and bridges.

Single Ethernet: one packet at a time

Multiple Ethernets: multiple packets at a time

NodeNode

Node Node Node NodeNode

Node NodeNode Node

Bridge Bridge

NodeNode

Node Node Node NodeNode

Node NodeNode Node

E.8 Examples of Interconnection Networks � E-79

� Routers or gateways—These devices connect LANs to WANs, or WANs to
WANs, and resolve incompatible addressing. Generally slower than bridges,
they operate at OSI layer 3, the network layer. WAN routers divide the net-
work into separate smaller subnets, which simplifies manageability and
improves security.

The final internetworking devices are hubs, but they merely extend multiple
segments into a single LAN. Thus, hubs do not help with performance, as only
one message can transmit at a time. Hubs operate at OSI layer 1, called the phys-
ical layer. Since these devices were not planned as part of the Ethernet standard,
their ad hoc nature has added to the difficulty and cost of maintaining LANs.

As of 2006, Ethernet link speeds are available at 10, 100, 1000, and 10,000
Mbits/sec. Although 10 and 100 Mbits/sec Ethernets share the media with multi-
ple devices, 1000 Mbits/sec and above Ethernets rely on point-to-point links and
switches. Ethernet switches normally use some form of store-and-forward.

Ethernet has no real flow control, dating back to its first instantiation. It origi-
nally used carrier sensing with exponential back-off (see page E-23) to arbitrate
for the shared media. Some switches try to use that interface to retrofit their ver-
sion of flow control, but flow control is not part of the Ethernet standard.

Wide Area Network: ATM

Asynchronous Transfer Mode (ATM) is a wide area networking standard set by
the telecommunications industry. Although it flirted as competition to Ethernet as
a LAN in the 1990s, ATM has since retreated to its WAN stronghold.

The telecommunications standard has scalable bandwidth built in. It starts at
155 Mbits/sec, and scales by factors of 4 to 620 Mbits/sec, 2480 Mbits/sec, and
so on. Since it is a WAN, ATM’s medium is fiber, both single mode and multi-
mode. Although it is a switched medium, unlike the other examples, it relies on
virtual connections for communication. ATM uses virtual channels for routing to
multiplex different connections on a single network segment, thereby avoiding
the inefficiencies of conventional connection-based networking. The WAN focus
also led to store-and-forward switching. Unlike the other protocols, Figure E.27
shows ATM has a small, fixed-sized packet with 48 bytes of payload. It uses a
credit-based flow control scheme as opposed to IP routers that do not implement
flow control.

The reason for virtual connections and small packets is quality of service.
Since the telecommunications industry is concerned about voice traffic, predict-
ability matters as well as bandwidth. Establishing a virtual connection has less
variability than connectionless networking, and it simplifies store-and-forward
switching. The small, fixed packet also makes it simpler to have fast routers and
switches. Toward that goal, ATM even offers its own protocol stack to compete
with TCP/IP. Surprisingly, even though the switches are simple, the ATM suite of
protocols is large and complex. The dream was a seamless infrastructure from
LAN to WAN, avoiding the hodgepodge of routers common today. That dream
has faded from inspiration to nostalgia.

E-80 � Appendix E Interconnection Networks

Undoubtedly one of the most important innovations in the communications com-
munity has been internetworking. It allows computers on independent and
incompatible networks to communicate reliably and efficiently. Figure E.31 illus-
trates the need to traverse between networks. It shows the networks and machines
involved in transferring a file from Stanford University to the University of Cali-
fornia at Berkeley, a distance of about 75 km.

The low cost of internetworking is remarkable. For example, it is vastly less
expensive to send electronic mail than to make a coast-to-coast telephone call and
leave a message on an answering machine. This dramatic cost improvement is
achieved using the same long-haul communication lines as the telephone call,
which makes the improvement even more impressive.

The enabling technologies for internetworking are software standards that
allow reliable communication without demanding reliable networks. The under-

Figure E.31 The connection established between mojave.stanford.edu and mammoth.berkeley.edu (1995).
FDDI is a 100 Mbit/sec LAN, while a T1 line is a 1.5 Mbit/sec telecommunications line and a T3 is a 45 Mbit/sec tele-
communications line. BARRNet stands for Bay Area Research Network. Note that inr-111-cs2.Berkeley.edu is a router
with two Internet addresses, one for each port.

 E.9 Internetworking

UCB1.
BARRNet.net
192.31.161.4

mojave.
Stanford.edu
36.22.0.120

CIS-Gateway.
Stanford.edu

36.1.0.22

SU-CM.
BARRNet.net
131.119.5.3

EthernetFDDI

T1 line

T3 line

inr-108-eecs.
Berkeley.edu

128.32.120.108 128.32.120.111

 inr-111-cs2.
Berkeley.edu

128.32.149.13

 mammoth.
Berkeley.edu

128.32.149.78

FDDI

FDDI

Ethernet Ethernet

Internet

fd-0.enss128.t3.
ans.net

192.31.48.244Stanford,
California

Berkeley,
California

E.9 Internetworking � E-81

lying principle of these successful standards is that they were composed as a hier-
archy of layers, each layer taking responsibility for a portion of the overall
communication task. Each computer, network, and switch implements its layer of
the standards, relying on the other components to faithfully fulfill their responsi-
bilities. These layered software standards are called protocol families or protocol
suites. They enable applications to work with any interconnection without extra
work by the application programmer. Figure E.32 suggests the hierarchical model
of communication.

The most popular internetworking standard is TCP/IP (transmission control
protocol/Internet protocol). This protocol family is the basis of the humbly
named Internet, which connects hundreds of millions of computers around the
world. This popularity means TCP/IP is used even when communicating locally
across compatible networks; for example, the network file system NFS uses IP
even though it is very likely to be communicating across a homogenous LAN
such as Ethernet. We use TCP/IP as our protocol family example; other protocol
families follow similar lines. Section E.13 gives the history of TCP/IP.

The goal of a family of protocols is to simplify the standard by dividing
responsibilities hierarchically among layers, with each layer offering services
needed by the layer above. The application program is at the top, and at the bot-
tom is the physical communication medium, which sends the bits. Just as abstract
data types simplify the programmer’s task by shielding the programmer from
details of the implementation of the data type, this layered strategy makes the
standard easier to understand.

There were many efforts at network protocols, which led to confusion in
terms. Hence, Open Systems Interconnect (OSI) developed a model that popular-
ized describing networks as a series of layers. Figure E.33 shows the model.
Although all protocols do not exactly follow this layering, the nomenclature for
the different layers is widely used. Thus, you can hear discussions about a simple
layer 3 switch versus a layer 7 smart switch.

The key to protocol families is that communication occurs logically at the
same level of the protocol in both sender and receiver, but services of the lower
level implement it. This style of communication is called peer-to-peer. As an
analogy, imagine that General A needs to send a message to General B on the

Figure E.32 The role of internetworking. The width indicates the relative number of
items at each level.

Applications

Networks

Internetworking

E-82 � Appendix E Interconnection Networks

battlefield. General A writes the message, puts it in an envelope addressed to
General B, and gives it to a colonel with orders to deliver it. This colonel puts it
in an envelope, and writes the name of the corresponding colonel who reports to
General B, and gives it to a major with instructions for delivery. The major does
the same thing and gives it to a captain, who gives it to a lieutenant, who gives it
to a sergeant. The sergeant takes the envelope from the lieutenant, puts it into an
envelope with the name of a sergeant who is in General B’s division, and finds a
private with orders to take the large envelope. The private borrows a motorcycle
and delivers the envelope to the other sergeant. Once it arrives, it is passed up the
chain of command, with each person removing an outer envelope with his name
on it and passing on the inner envelope to his superior. As far as General B can
tell, the note is from another general. Neither general knows who was involved in
transmitting the envelope, nor how it was transported from one division to the
other.

Protocol families follow this analogy more closely than you might think, as
Figure E.34 shows. The original message includes a header and possibly a trailer
sent by the lower-level protocol. The next-lower protocol in turn adds its own
header to the message, possibly breaking it up into smaller messages if it is too
large for this layer. Reusing our analogy, a long message from the general is
divided and placed in several envelopes if it could not fit in one. This division of
the message and appending of headers and trailers continues until the message
descends to the physical transmission medium. The message is then sent to the
destination. Each level of the protocol family on the receiving end will check the
message at its level and peel off its headers and trailers, passing it on to the next

Layer number Layer name Main function
Example
protocol Network component

7 Application Used for applications specifically
written to run over the network

FTP, DNS,
NFS, http

gateway, smart switch

6 Presentation Translates from application to network
format, and vice versa

gateway

5 Session Establishes, maintains, and ends
sessions across the network

Named pipes,
RPC

gateway

4 Transport Additional connection below the session
layer

TCP gateway

3 Network Translates logical network address
and names to their physical address
(e.g., computer name to MAC address)

IP router, ATM switch

2 Data Link Turns packets into raw bits and at the
receiving end turns bits into packets

Ethernet bridge, network
interface card

1 Physical Transmits raw bit stream over physical
cable

IEEE 802 hub

Figure E.33 The OSI model layers. Based on www.geocities.com/SiliconValley/Monitor/3131/ne/osimodel.html.

E.9 Internetworking � E-83

higher level and putting the pieces back together. This nesting of protocol layers
for a specific message is called a protocol stack, reflecting the last in, first out
nature of the addition and removal of headers and trailers.

As in our analogy, the danger in this layered approach is the considerable
latency added to message delivery. Clearly, one way to reduce latency is to
reduce the number of layers. But keep in mind that protocol families define a
standard, but do not force how to implement the standard. Just as there are many
ways to implement an instruction set architecture, there are many ways to imple-
ment a protocol family.

Our protocol stack example is TCP/IP. Let’s assume that the bottom protocol
layer is Ethernet. The next level up is the Internet Protocol or IP layer; the official
term for an IP packet is a datagram. The IP layer routes the datagram to the desti-
nation machine, which may involve many intermediate machines or switches. IP
makes a best effort to deliver the packets but does not guarantee delivery, content,
or order of datagrams. The TCP layer above IP makes the guarantee of reliable,
in-order delivery and prevents corruption of datagrams.

Following the example in Figure E.34, assume an application program wants
to send a message to a machine via an Ethernet. It starts with TCP. The largest
number of bytes that can be sent at once is 64 KB. Since the data may be much
larger than 64 KB, TCP must divide them into smaller segments and reassemble
them in proper order upon arrival. TCP adds a 20-byte header (Figure E.35) to
every datagram and passes them down to IP. The IP layer above the physical layer
adds a 20-byte header, also shown in Figure E.35. The data sent down from the IP
level to the Ethernet are sent in packets with the format shown in Figure E.27.
Note that the TCP packet appears inside the data portion of the IP datagram, just
as Figure E.34 suggests.

Figure E.34 A generic protocol stack with two layers. Note that communication is
peer-to-peer, with headers and trailers for the peer added at each sending layer and
removed by each receiving layer. Each layer offers services to the one above to shield it
from unnecessary details.

T

Message

H T

HH T T HH T T HH T T HH T T HH T TT

H T H T

Message

H T H T H T

Actual Actual

Actual

Actual

Logical

Logical

Actual

E-84 � Appendix E Interconnection Networks

Figure E.35 The headers for IP and TCP. This drawing is 32 bits wide. The standard headers for both are 20 bytes, but
both allow the headers to optionally lengthen for rarely transmitted information. Both headers have a length of header
field (L) to accommodate the optional fields, as well as source and destination fields. The length field of the whole data-
gram is in a separate length field in IP, while TCP combines the length of the datagram with the sequence number of the
datagram by giving the sequence number in bytes. TCP uses the checksum field to be sure that the datagram is not cor-
rupted, and the sequence number field to be sure the datagrams are assembled into the proper order when they arrive.
IP provides checksum error detection only for the header, since TCP has protected the rest of the packet. One optimiza-
tion is that TCP can send a sequence of datagrams before waiting for permission to send more. The number of data-
grams that can be sent without waiting for approval is called the window, and the window field tells how many bytes
may be sent beyond the byte being acknowledged by this datagram. TCP will adjust the size of the window depending
on the success of the IP layer in sending datagrams; the more reliable and faster it is, the larger TCP makes the window.
Since the window slides forward as the data arrive and are acknowledged, this technique is called a sliding window pro-
tocol. The piggyback acknowledgment field of TCP is another optimization. Since some applications send data back and
forth over the same connection, it seems wasteful to send a datagram containing only an acknowledgment. This piggy-
back field allows a datagram carrying data to also carry the acknowledgment for a previous transmission, “piggyback-
ing” on top of a data transmission. The urgent pointer field of TCP gives the address within the datagram of an
important byte, such as a break character. This pointer allows the application software to skip over data so that the user
doesn’t have to wait for all prior data to be processed before seeing a character that tells the software to stop. The iden-
tifier field and fragment field of IP allow intermediary machines to break the original datagram into many smaller data-
grams. A unique identifier is associated with the original datagram and placed in every fragment, with the fragment
field saying which piece is which. The time-to-live field allows a datagram to be killed off after going through a maxi-
mum number of intermediate switches no matter where it is in the network. Knowing the maximum number of hops
that it will take for a datagram to arrive—if it ever arrives—simplifies the protocol software. The protocol field identifies
which possible upper layer protocol sent the IP datagram; in our case, it is TCP. The V (for version) and type fields allow
different versions of the IP protocol software for the network. Explicit version numbering is included so that software
can be upgraded gracefully machine by machine, without shutting down the entire network. In 2006, version six of the
Internet protocol (IPv6) was widely used.

IP header

IP data

TCP data

Identifier Fragment

Header checksum

Source

Source

Sequence number (length)

Destination

Destination

LengthType

Time Protocol

V L

TCP header

Urgent pointer

Window

TCP data

32 bits

Piggyback acknowledgment

Flags

Checksum

L

 (0–65,516 bytes)

E.10 Crosscutting Issues for Interconnection Networks � E-85

This section describes five topics discussed in other chapters that are fundamen-
tally impacted by interconnection networks, and vice versa.

Density-Optimized Processors versus SPEC-Optimized
Processors

Given that people all over the world are accessing Web sites, it doesn’t really
matter where servers are located. Hence, many servers are kept at collocation
sites, which charge by network bandwidth reserved and used, and by space occu-
pied and power consumed. Desktop microprocessors in the past have been
designed to be as fast as possible at whatever heat could be dissipated, with little
regard to the size of the package and surrounding chips. In fact, some desktop
microprocessors from Intel and AMD as recently as 2006 burned as much as 130
watts! Floor space efficiency was also largely ignored. As a result of these priori-
ties, power is a major cost for collocation sites, and processor density is limited
by the power consumed and dissipated, including within the interconnect!

With the proliferation of portable computers (notebook sales exceeded desk-
top sales for the first time in 2005) and their reduced power consumption and
cooling demands, the opportunity exists for using this technology to create con-
siderably denser computation. For instance, the power consumption for the Intel
Pentium M in 2006 was 25 watts, yet it delivered performance close to that of a
desktop microprocessor for a wide set of applications. It is therefore conceivable
that performance per watt or performance per cubic foot could replace perfor-
mance per microprocessor as the important figure of merit. The key is that many
applications already make use of large clusters, so it is possible that replacing 64
power-hungry processors with, say, 256 power-efficient processors could be
cheaper yet be software compatible. This places greater importance on power-
and performance-efficient interconnection network design.

The Google cluster is a prime example of this migration to many “cooler”
processors versus fewer “hotter” processors. It uses racks of up to 80 Intel Pen-
tium III 1 GHz processors instead of more power-hungry high-end processors.
Other examples include blade servers consisting of 1-inch-wide by 7-inch-high
rack unit blades designed based on mobile processors. The HP ProLiant BL10e
G2 blade server supports up to 20 1 GHz ultra-low-voltage Intel Pentium M pro-
cessors with a 400 MHz front-side bus, 1 MB L2 cache, and up to 1 GB memory.
The Fujitsu Primergy BX300 blade server supports up to 20 1.4 or 1.6 GHz Intel
Pentium M processors, each with 512 MB of memory expandable to 4 GB.

Smart Switches versus Smart Interface Cards

Figure E.36 shows a trade-off as to where intelligence can be located within a
network. Generally, the question is whether to have either smarter network inter-
faces or smarter switches. Making one smarter generally makes the other simpler

 E.10 Crosscutting Issues for Interconnection Networks

E-86 � Appendix E Interconnection Networks

and less expensive. By having an inexpensive interface, it was possible for Ether-
net to become standard as part of most desktop and server computers. Lower-cost
switches were made available for people with small configurations, not needing
sophisticated forwarding tables and spanning-tree protocols of larger Ethernet
switches.

Myrinet followed the opposite approach. Its switches are dumb components
that, other than implementing flow control and arbitration, simply extract the first
byte from the packet header and use it to directly select the output port. No rout-
ing tables are implemented, so the intelligence is in the network interface cards
(NICs). The NICs are responsible for providing support for efficient communica-
tion and for implementing a distributed protocol for network (re)configuration.
InfiniBand takes a hybrid approach by offering lower-cost, less sophisticated
interface cards called target channel adapters (or TCAs) for less demanding
devices such as disks—in the hope that it can be included within some I/O
devices—and by offering more expensive, powerful interface cards for hosts
called host channel adapters (or HCAs). The switches implement routing tables.

Protection and User Access to the Network

A challenge is to ensure safe communication across a network without invoking
the operating system in the common case. The Cray Research T3D supercom-
puter offers an interesting case study. Like the more recent Cray X1E, the T3D
supports a global address space, so loads and stores can access memory across
the network. Protection is ensured because each access is checked by the TLB. To

Figure E.36 Intelligence in a network: switch versus network interface card. Note
that Ethernet switches come in two styles, depending on the size of the network, and
that InfiniBand network interfaces come in two styles, depending on whether they are
attached to a computer or to a storage device. Myrinet is a proprietary system area net-
work.

Switch

Interface
card

Small-scale
Ethernet switch

Large-scale
Ethernet switch

Ethernet Myrinet

Myrinet

InfiniBand

InfiniBand target
channel adapter

InfiniBand host
channel adapter

More
intelligence

E.10 Crosscutting Issues for Interconnection Networks � E-87

support transfer of larger objects, a block transfer engine (BLT) was added to the
hardware. Protection of access requires invoking the operating system before
using the BLT, to check the range of accesses to be sure there will be no protec-
tion violations.

Figure E.37 compares the bandwidth delivered as the size of the object varies
for reads and writes. For very large reads (i.e., 512 KB), the BLT achieve the
highest performance: 140 MB/sec. But simple loads get higher performance for
8 KB or less. For the write case, both achieve a peak of 90 MB/sec, presumably
because of the limitations of the memory bus. But for writes, the BLT can only
match the performance of simple stores for transfers of 2 MB; anything smaller
and it’s faster to send stores. Clearly, a BLT that can avoid invoking the operating
system in the common case would be more useful.

Efficient Interface to the Memory Hierarchy versus the Network

Traditional evaluations of processor performance, such as SPECint and
SPECfp, encourage integration of the memory hierarchy with the processor as
the efficiency of the memory hierarchy translates directly into processor perfor-
mance. Hence, microprocessors have multiple levels of caches on chip along
with buffers for writes. Benchmarks such as SPECint and SPECfp do not
reward good interfaces to interconnection networks, and hence, many machines
make the access time to the network delayed by the full memory hierarchy.
Writes must lumber their way through full write buffers, and reads must go
through the cycles of first-, second-, and often third-level cache misses before
reaching the interconnection network. This hierarchy results in newer systems
having higher latencies to the interconnect than older machines.

Figure E.37 Bandwidth versus transfer size for simple memory access instructions
versus a block transfer device on the Cray Research T3D. (From Arpaci et al. [1995].)

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
,3

84

32
,7

68

65
,5

36

13
1,

07
2

26
2,

14
4

52
4,

28
8

1,
04

8,
57

6

2,
09

7,
15

2

4,
19

4,
30

4

8,
38

8,
60

8

Transfer size (bytes)

0

20

40

60

80

100

120

140

160

CPU write

BLT read

BLT write

CPU read

Bandwidth
(MB/sec)

E-88 � Appendix E Interconnection Networks

Let’s compare three machines from the past: a 40 MHz SPARCstation-2, a 50
MHz SPARCstation-20 without an external cache, and a 50 MHz SPARCstation-
20 with an external cache. According to SPECint95, this list is in order of
increasing performance. The time to access the I/O bus (S-bus), however,
increases in this sequence: 200 ns, 500 ns, and 1000 ns. The SPARCstation-2 is
fastest because it has a single bus for memory and I/O, and there is only one level
to the cache. The SPARCstation-20 memory access must first go over the mem-
ory bus (M-bus) and then to the I/O bus, adding 300 ns. Machines with a second-
level cache pay an extra penalty of 500 ns before accessing the I/O bus.

Compute-Optimized Processors versus Receiver Overhead

The overhead to receive a message likely involves an interrupt, which bears the
cost of flushing and then restarting the processor pipeline, if not offloaded. As
mentioned earlier, reading network status and receiving data from the network
interface likely operates at cache miss speeds. If microprocessors become more
superscalar and go to even faster clock rates, the number of missed instruction
issue opportunities per message reception will likely rise to unacceptable levels.

Myths and hazards are widespread with interconnection networks. This section
mentions several warnings, so proceed carefully.

Fallacy The interconnection network is very fast and does not need to be improved.

The interconnection network provides certain functionality to the system, very
much like the memory and I/O subsystems. It should be designed to allow pro-
cessors to execute instructions at the maximum rate. The interconnection network
subsystem should provide high enough bandwidth to keep from continuously
entering saturation and becoming an overall system bottleneck.

In the 1980s, when wormhole switching was introduced, it became feasible to
design large-diameter topologies with single-chip switches so that the bandwidth
capacity of the network was not the limiting factor. This led to the flawed belief
that interconnection networks need no further improvement. Since the 1980s,
much attention has been placed on improving processor performance, but com-
paratively less has been focused on interconnection networks. As technology
advances, the interconnection network tends to represent an increasing fraction of
system resources, cost, power consumption, and various other attributes that
impact functionality and performance. Scaling the bandwidth simply by over-
dimensioning certain network parameters is no longer a cost-viable option.
Designers must carefully consider the end-to-end interconnection network design
in concert with the processor, memory, and I/O subsystems in order to achieve
the required cost, power, functionality, and performance objectives of the entire
system. An obvious case in point is multicore processors with on-chip networks.

 E.11 Fallacies and Pitfalls

E.11 Fallacies and Pitfalls � E-89

Fallacy Bisection bandwidth is an accurate cost constraint of a network.

Despite being very popular, bisection bandwidth has never been a practical con-
straint on the implementation of an interconnection network, although it may be
one in future designs. It is more useful as a performance measure than as a cost
measure. Chip pin-outs pose as the more realistic bandwidth constraint.

Pitfall Using bandwidth (in particular, bisection bandwidth) as the only measure of net-
work performance.

It seldom is the case that aggregate network bandwidth (likewise, network bisec-
tion bandwidth) is the end-to-end bottlenecking point across the network. Even if
it were the case, networks are almost never 100% efficient in transporting packets
across the bisection (i.e. ρ < 100%) nor at receiving them at network endpoints
(i.e., σ < 100%). The former is highly dependent upon routing, switching, arbitra-
tion, and other such factors while both the former and the latter are highly depen-
dent upon traffic characteristics. Ignoring these important factors and
concentrating only on raw bandwidth can give very misleading performance pre-
dictions. For example, it is perfectly conceivable that a network could have
higher aggregate bandwidth and/or bisection bandwidth relative to another net-
work but also have lower measured performance!

Apparently, given sophisticated protocols like TCP/IP that maximize deliv-
ered bandwidth, many network companies believe that there is only one figure of
merit for networks. This may be true for some applications, such as video stream-
ing, where there is little interaction between the sender and the receiver. Many
applications, however, are of a request-response nature, and so for every large
message there must be one or more small messages. One example is NFS.

Figure E.38 compares a shared 10 Mbit/sec Ethernet LAN to a switched 155
Mbit/sec ATM LAN for NFS traffic. Ethernet drivers were better tuned than the
ATM drivers, such that 10 Mbit/sec Ethernet was faster than 155 Mbit/sec ATM
for payloads of 512 bytes or less. Figure E.38 shows the overhead time, transmis-
sion time, and total time to send all the NFS messages over Ethernet and ATM.
The peak link speed of ATM is 15 times faster, and the measured link speed for
8 KB messages is almost 9 times faster. Yet the higher overheads offset the bene-
fits so that ATM would transmit NFS traffic only 1.2 times faster.

Pitfall Not providing sufficient reception link bandwidth, which causes the network end
nodes to become even more of a bottleneck to performance.

Unless the traffic pattern is a permutation, several packets will concurrently
arrive at some destinations when most source devices inject traffic, thus produc-
ing contention. If this problem is not addressed, contention may turn into conges-
tion that will spread across the network. This can be dealt with by analyzing
traffic patterns and providing extra reception bandwidth. For example, it is possi-
ble to implement more reception bandwidth than injection bandwidth. The IBM
Blue Gene/L, for example, implements an on-chip switch with 7-bit injection and
12-bit reception links, where the reception BW equals the aggregate switch input
link BW.

E-90 � Appendix E Interconnection Networks

Pitfall Using high-performance network interface cards but forgetting about the I/O sub-
system that sits between the network interface and the host processor.

This issue is related to the previous one. Messages are usually composed in user
space buffers and later sent by calling a send function from the communications
library. Alternatively, a cache controller implementing a cache coherence proto-
col may compose a message in some SANs and in OCNs. In both cases, mes-
sages have to be copied to the network interface memory before transmission. If
the I/O bandwidth is lower than the link bandwidth or introduces significant over-
head, this is going to affect communication performance significantly. As an

Overhead (sec) Transmission (sec) Total time (sec)

Size
Number of
messages ATM Ethernet

Number of
data bytes ATM Ethernet ATM Ethernet

32 771,060 532 389 33,817,052 4 48 536 436

64 56,923 39 29 4,101,088 0 5 40 34

96 4,082,014 2,817 2,057 428,346,316 46 475 2,863 2,532

128 5,574,092 3,846 2,809 779,600,736 83 822 3,929 3,631

160 328,439 227 166 54,860,484 6 56 232 222

192 16,313 11 8 3,316,416 0 3 12 12

224 4,820 3 2 1,135,380 0 1 3 4

256 24,766 17 12 9,150,720 1 9 18 21

512 32,159 22 16 25,494,920 3 23 25 40

1,024 69,834 48 35 70,578,564 8 72 56 108

1,536 8,842 6 4 15,762,180 2 14 8 19

2,048 9,170 6 5 20,621,760 2 19 8 23

2,560 20,206 14 10 56,319,740 6 51 20 61

3,072 13,549 9 7 43,184,992 4 39 14 46

3,584 4,200 3 2 16,152,228 2 14 5 17

4,096 67,808 47 34 285,606,596 29 255 76 290

5,120 6,143 4 3 35,434,680 4 32 8 35

6,144 5,858 4 3 37,934,684 4 34 8 37

7,168 4,140 3 2 31,769,300 3 28 6 30

8,192 287,577 198 145 2,390,688,480 245 2,132 444 2,277

Total 11,387,913 7,858 5,740 4,352,876,316 452 4,132 8,310 9,872

Figure E.38 Total time on a 10 Mbit Ethernet and a 155 Mbit ATM, calculating the total overhead and transmis-
sion time separately. Note that the size of the headers needs to be added to the data bytes to calculate transmission
time. The higher overhead of the software driver for ATM offsets the higher bandwidth of the network. These mea-
surements were performed in 1994 using SPARCstation 10s, the ForeSystems SBA-200 ATM interface card, and the
Fore Systems ASX-200 switch. (NFS measurements taken by Mike Dahlin of U.C. Berkeley.)

E.11 Fallacies and Pitfalls � E-91

example, the first 10 Gigabit Ethernet cards in the market had a PCI-X bus inter-
face for the system with a significantly lower bandwidth than 10 Gbps.

Fallacy Zero-copy protocols do not require copying messages or fragments from one
buffer to another.

Traditional communication protocols for computer networks allow access to
communication devices only through system calls in supervisor mode. As a con-
sequence of this, communication routines need to copy the corresponding mes-
sage from the user buffer to a kernel buffer when sending a message. Note that
the communication protocol may need to keep a copy of the message for retrans-
mission in case of error, and the application may modify the contents of the user
buffer once the system call returns control to the application. This buffer-to-
buffer copy is eliminated in zero-copy protocols because the communication rou-
tines are executed in user space and protocols are much simpler.

However, messages still need to be copied from the application buffer to the
memory in the network interface card (NIC) so that the card hardware can trans-
mit it from there through to the network. Although it is feasible to eliminate this
copy by allocating application message buffers directly in the NIC memory (and,
indeed, this is done in some protocols), this may not be convenient in current sys-
tems because access to the NIC memory is usually performed through the I/O
subsystem, which usually is much slower than accessing main memory. Thus, it
is usually more efficient to compose the message in main memory and let DMA
devices take care of the transfer to the NIC memory.

Moreover, what few people count is the copy from where the message frag-
ments are computed (usually the ALU, with results stored in some processor reg-
ister) to main memory. Some systolic-like architectures in the 1980s, like the
iWarp, were able to directly transmit message fragments from the processor to
the network, effectively eliminating all the message copies. This is the approach
taken in the Cray X1E shared-memory multiprocessor supercomputer.

Similar comments can be made regarding the reception side. However, this
does not mean that zero-copy protocols are inefficient. These protocols represent
the most efficient kind of implementation used in current systems.

Pitfall Ignoring software overhead when determining performance.

Low software overhead requires cooperation with the operating system as well as
with the communication libraries, but even with protocol offloading it continues
to dominate the hardware overhead and must not be ignored. Figures E.29 and
E.38 give two examples, one for a SAN standard and the other for a WAN stan-
dard. Other examples come from proprietary SANs for supercomputers. The
Connection Machine CM-5 supercomputer in the early 1990s had a software
overhead of 20 µs to send a message and a hardware overhead of only 0.5 µs. The
first Intel Paragon supercomputer built in the early 1990s had a hardware over-
head of just 0.2 µs, but the initial release of the software had an overhead of 250
µs. Later releases reduced this overhead down to 25 µs and, more recently, down

E-92 � Appendix E Interconnection Networks

to only a few µs, but this still dominates the hardware overhead. The IBM Blue
Gene/L has an MPI sending/receiving overhead of approximately 3 µs, only a
third of which (at most) is attributed to the hardware.

This pitfall is simply Amdahl’s Law applied to networks: faster network hard-
ware is superfluous if there is not a corresponding decrease in software overhead.
The software overhead is much reduced these days with OS bypass, lightweight
protocols, and protocol offloading down to a few µs or less, typically, but it
remains a significant factor in determining performance.

Fallacy MINs are more cost-effective than direct networks.

A MIN is usually implemented using significantly fewer switches than the num-
ber of devices that need to be connected. On the other hand, direct networks usu-
ally include a switch as an integral part of each node, thus requiring as many
switches as nodes to interconnect. However, nothing prevents the implementation
of nodes with multiple computing devices on it (e.g., a multicore processor with
an on-chip switch) or with several devices attached to each switch (i.e., bristling).
In these cases, a direct network may be as (or even more) cost-effective as a MIN.
Note that for a MIN, several network interfaces may be required at each node to
match the bandwidth delivered by the multiple links per node provided by the
direct network.

Fallacy Low-dimensional direct networks achieve higher performance than high-dimen-
sional networks such as hypercubes.

This conclusion was drawn by several studies that analyzed the optimal number
of dimensions under the main physical constraint of bisection bandwidth. How-
ever, most of those studies did not consider link pipelining, considered only very
short links, and/or did not consider switch architecture design constraints. The
misplaced assumption that bisection bandwidth serves as the main limit did not
help matters. Nowadays, most researchers and designers believe that high-radix
switches are more cost-effective than low-radix switches, including some who
concluded the opposite before.

Fallacy Wormhole switching achieves better performance than other switching tech-
niques.

Wormhole switching delivers the same no-load latency as other pipelined switch-
ing techniques, like virtual cut-through switching. The introduction of wormhole
switches in the late 1980s being coincident with a dramatic increase in network
bandwidth led many to believe that wormhole switching was the main reason for
the performance boost. Instead, most of the performance increase came from a
drastic increase in link bandwidth, which, in turn, was enabled by the ability of
wormhole switching to buffer packet fragments using on-chip buffers, instead of
using the node’s main memory or some other off-chip source for that task. In
2005, much larger on-chip buffers are feasible, and virtual cut-through achieves
the same no-load latency as wormhole while delivering much higher throughput.
This does not mean that wormhole switching is dead. It continues to be the

E.11 Fallacies and Pitfalls � E-93

switching technique of choice for applications in which only small buffers should
be used (e.g., perhaps for on-chip networks).

Fallacy Implementing a few virtual channels always increases throughput by allowing
packets to pass through blocked packets ahead.

In general, implementing a few virtual channels in a wormhole switch is a good
idea because packets are likely to pass blocked packets ahead of them, thus
reducing latency and significantly increasing throughput. However, the improve-
ments are not as dramatic for virtual cut-through switches. In virtual cut-through,
buffers should be large enough to store several packets. As a consequence, each
virtual channel may introduce HOL blocking, possibly degrading performance at
high loads. Adding virtual channels increases cost, but it may deliver little addi-
tional performance unless there are as many virtual channels as switch ports and
packets are mapped to virtual channels according to their destination (i.e., virtual
output queueing). It is certainly the case that virtual channels can be useful in vir-
tual cut-through networks to segregate different traffic classes, which can be very
beneficial. However, multiplexing the packets over a physical link on a flit-by-flit
basis causes all the packets from different virtual channels to get delayed. The
average packet delay is significantly shorter if multiplexing takes place on a
packet-by-packet basis, but in this case packet size should be bounded to prevent
any one packet from monopolizing the majority of link bandwidth.

Fallacy Adaptive routing causes out-of-order packet delivery, thus introducing too much
overhead needed to reorder packets at the destination device.

Adaptive routing allows packets to follow alternative paths through the network
depending on network traffic, and therefore adaptive routing usually introduces
out-of-order packet delivery. However, this does not necessarily imply that reor-
dering packets at the destination device is going to introduce a large overhead,
making adaptive routing not useful. For example, the most efficient adaptive rout-
ing algorithms implemented in 2006 support fully adaptive routing in some vir-
tual channels but require deterministic routing to be implemented in some other
virtual channels in order to prevent deadlocks (à la the IBM Blue Gene/L). In this
case, it is very easy to select between adaptive and deterministic routing for each
individual packet. A single bit in the packet header can indicate to the switches
whether all the virtual channels can be used or only those implementing deter-
ministic routing. This hardware support can be used as indicated below to elimi-
nate packet reordering overhead at the destination.

Most communication protocols for parallel computers and clusters imple-
ment two different protocols depending on message size. For short messages, an
eager protocol is used in which messages are directly transmitted, and the receiv-
ing nodes use some preallocated buffer to temporarily store the incoming mes-
sage. On the other hand, for long messages, a rendezvous protocol is used. In this
case, a control message is sent first, requesting the destination node to allocate a
buffer large enough to store the entire message. The destination node confirms
buffer allocation by returning an acknowledgment, and the sender can proceed

E-94 � Appendix E Interconnection Networks

with fragmenting the message into bounded-size packets, transmitting them to
the destination.

If eager messages use only deterministic routing, it is obvious that they do not
introduce any reordering overhead at the destination. On the other hand, packets
belonging to a long message can be transmitted using adaptive routing. As every
packet contains the sequence number within the message (or the offset from the
beginning of the message), the destination node can store every incoming packet
directly in its correct location within the message buffer, thus incurring no over-
head with respect to using deterministic routing. The only thing that differs is the
completion condition. Instead of checking that the last packet in the message has
arrived, it is now necessary to count the arrived packets, notifying the end of
reception when the count equals the message size. Taking into account that long
messages, even if not frequent, usually consume most of the network bandwidth,
it is clear that most packets can benefit from adaptive routing without introducing
reordering overhead when using the protocol described above.

Fallacy Adaptive routing by itself always improves network fault tolerance because it
allows packets to follow alternative paths.

Adaptive routing by itself is not enough to tolerate link and/or switch failures.
Some mechanism is required to detect failures and notify them, so that the rout-
ing logic could exclude faulty paths and use the remaining ones. Moreover, while
a given link or switch failure affects a certain number of paths when using deter-
ministic routing, many more source/destination pairs could be affected by the
same failure when using adaptive routing. As a consequence of this, some
switches implementing adaptive routing transition to deterministic routing in the
presence of failures. In this case, failures are usually tolerated by sending mes-
sages through alternative paths from the source node. As an example, the Cray
T3E implements direction-order routing to tolerate a few failures. This fault-
tolerant routing technique avoids cycles in the use of resources by crossing direc-
tions in order (e.g., X+, Y+, Z+, Z–, Y–, then X–). At the same time, it provides
an easy way to send packets through nonminimal paths, if necessary, to avoid
crossing faulty components. For instance, a packet can be initially forwarded a
few hops in the X+ direction even if it has to go in the X– direction at some point
later.

Pitfall Trying to provide features only within the network versus end-to-end.

The concern is that of providing at a lower level the features that can only be
accomplished at the highest level, thus only partially satisfying the communica-
tion demand. Saltzer, Reed, and Clark [1984] give the end-to-end argument as
follows:

The function in question can completely and correctly be specified only with the
knowledge and help of the application standing at the endpoints of the communi-
cation system. Therefore, providing that questioned function as a feature of the
communication system itself is not possible. [page 278]

E.11 Fallacies and Pitfalls � E-95

Their example of the pitfall was a network at MIT that used several gateways,
each of which added a checksum from one gateway to the next. The programmers
of the application assumed the checksum guaranteed accuracy, incorrectly believ-
ing that the message was protected while stored in the memory of each gateway.
One gateway developed a transient failure that swapped one pair of bytes per mil-
lion bytes transferred. Over time the source code of one operating system was
repeatedly passed through the gateway, thereby corrupting the code. The only
solution was to correct infected source files by comparing to paper listings and
repair code by hand! Had the checksums been calculated and checked by the
application running on the end systems, safety would have been assured.

There is a useful role for intermediate checks at the link level, however, pro-
vided that end-to-end checking is available. End-to-end checking may show that
something is broken between two nodes, but it doesn’t point to where the prob-
lem is. Intermediate checks can discover the broken component.

A second issue regards performance using intermediate checks. Although it is
sufficient to retransmit the whole in case of failures from the end point, it can be
much faster to retransmit a portion of the message at an intermediate point rather
than wait for a time-out and a full message retransmit at the end point.

Pitfall Relying on TCP/IP for all networks, regardless of latency, bandwidth, or software
requirements.

The network designers on the first workstations decided it would be elegant to
use a single protocol stack no matter where the destination of the message: across
a room or across an ocean, the TCP/IP overhead must be paid. This might have
been a wise decision back then, especially given the unreliability of early Ether-
net hardware, but it sets a high software overhead barrier for commercial systems
of today. Such an obstacle lowers the enthusiasm for low-latency network inter-
face hardware and low-latency interconnection networks if the software is just
going to waste hundreds of microseconds when the message must travel only
dozens of meters or less. It also can use significant processor resources. One
rough rule of thumb is that each Mbit/sec of TCP/IP bandwidth needs about
1 MHz of processor speed, and so a 1000 Mbit/sec link could saturate a processor
with an 800–1000 MHz clock.

The flip side is that, from a software perspective, TCP/IP is the most desirable
target since it is the most connected and, hence, provides the largest number of
opportunities. The downside of using software optimized to a particular LAN or
SAN is that it is limited. For example, communication from a Java program
depends on TCP/IP, so optimization for another protocol would require creation
of glue software to interface Java to it.

TCP/IP advocates point out that the protocol itself is theoretically not as bur-
densome as current implementations, but progress has been modest in commer-
cial systems. There are also TCP/IP offloading engines in the market, with the
hope of preserving the universal software model while reducing processor utili-
zation and message latency. If processors continue to improve much faster than
network speeds, or if multiple processors become ubiquitous, software TCP/IP
may become less significant for processor utilization and message latency.

E-96 � Appendix E Interconnection Networks

Interconnection network design is one of the most exciting areas of computer
architecture development today. With the advent of new multicore processor
paradigms and advances in traditional multiprocessor/cluster systems and the
Internet, many challenges and opportunities exist for interconnect architecture
innovation. These apply to all levels of computer systems: communication
between cores on a chip, between chips on a board, between boards in a system,
and between computers in a machine room, over a local area and across the
globe. Irrespective of their domain of application, interconnection networks
should transfer the maximum amount of information within the least amount of
time for given cost and power constraints so as not to bottleneck the system.
Topology, routing, arbitration, switching, and flow control are among some of
the key concepts in realizing such high-performance designs.

The design of interconnection networks is end-to-end: it includes injection
links, reception links, and the interfaces at network end points as much as it does
the topology, switches, and links within the network fabric. It is often the case
that the bandwidth and overhead at the end node interfaces are the bottleneck, yet
many mistakenly think of the interconnection network to mean only the network
fabric. This is as bad as processor designers thinking of computer architecture to
mean only the instruction set architecture or only the microarchitecture! It is end-
to-end issues and understanding of the traffic characteristics that make the design
of interconnection networks challenging and very much relevant even today. For
instance, the need for low end-to-end latency is driving the development of effi-
cient network interfaces located closer to the processor/memory controller. We
may soon see most multicore processors used in multiprocessor systems imple-
menting network interfaces on-chip, devoting some core(s) to execute communi-
cation tasks. This is already the case for the IBM Blue Gene/L supercomputer,
which uses one of its two cores on each processor chip for this purpose.

Networking has a long way to go from its humble shared-media beginnings.
It is in “catch-up” mode, with switched-media point-to-point networks only
recently displacing traditional bus-based networks in many networking
domains, including on chip, I/O, and the local area. We are not near any perfor-
mance plateaus, so we expect rapid advancement of WANs, LANs, SANs, and
especially OCNs in the near future. Greater interconnection network perfor-
mance is key to the information- and communication-centric vision of the future
of our field that, so far, has benefited many millions of people around the world
in various ways. As the quotes at the beginning of this appendix suggest, this
revolution in two-way communication is at the heart of changes in the form of
our human associations and actions.

Acknowledgments

We express our sincere thanks to the following persons who, in some way, have
contributed to the contents of this edition of the appendix: Lei Chai, Scott Clark,

 E.12 Concluding Remarks

E.13 Historical Perspective and References � E-97

Jose Flich, Jose Manuel Garcia, Paco Gilabert, Rama Govindaraju, Manish
Gupta, Wai Hong Ho, Siao Jer, Steven Keckler, Dhabaleswar (D.K.) Panda, Fab-
rizio Petrini, Steve Scott, Jeonghee Shin, Craig Stunkel, Sayantan Sur, Michael
B. Taylor, and Bilal Zafar.

This appendix has taken the perspective that interconnection networks for very
different domains—from on-chip networks within a processor chip to wide area
networks connecting computers across the globe—share many of the same con-
cerns. With this, interconnection network concepts are presented in a unified way,
irrespective of their application. However, their histories are vastly different, as
evidenced by the different solutions adopted to address similar problems. The
lack of significant interaction between research communities from the different
domains certainly contributed to the diversity of implemented solutions. High-
lighted below are relevant readings on each topic. In addition, good general texts
featuring WAN and LAN networking have been written by Davie, Peterson, and
Clark [1999] and by Kurose and Ross [2001]. Good texts focused on SANs for
multiprocessors and clusters have been written by Duato, Yalamanchili, and Ni
[2003] and by Dally and Towles [2004]. An informative chapter devoted to dead-
lock resolution in interconnection networks was written by Pinkston [2004].
Finally, an edited work by Jantsch and Tenhunen [2003] on OCNs for multicore
processors and system-on-chips is also interesting reading.

Wide Area Networks

Wide area networks are the earliest of the data interconnection networks. The
forerunner of the Internet is the ARPANET, which in 1969 connected computer
science departments across the United States that had research grants funded by
the Advanced Research Project Agency (ARPA), a U.S. government agency. It
was originally envisioned as using reliable communications at lower levels. Prac-
tical experience with failures of the underlying technology led to the failure-tol-
erant TCP/IP, which is the basis for the Internet today. Vint Cerf and Robert Kahn
are credited with developing the TCP/IP protocols in the mid-1970s, winning the
ACM Software Award in recognition of that achievement. Kahn [1972] is an
early reference on the ideas of ARPANET. For those interested in learning more
about TPC/IP, Stevens [1994–1996] has written classic books on the topic.

In 1975, there were roughly 100 networks in the ARPANET; in 1983, only
200. In 1995, the Internet encompassed 50,000 networks worldwide, about half
of which were in the United States. That number is hard to calculate now, but the
number of IP hosts grew by a factor of 15 from 1995 to 2000, reaching 100
million Internet hosts by the end of 2000. It has grown much faster since then.
With most service providers assigning dynamic IP addresses, many local area
networks using private IP addresses, and with most networks allowing wireless

 E.13 Historical Perspective and References

E-98 � Appendix E Interconnection Networks

connections, the total number of hosts in the Internet is nearly impossible to com-
pute. In July 2005, the Internet Systems Consortium (www.isc.org) estimated
more than 350 million Internet hosts, with an annual increase of about 25% pro-
jected. Although key government networks made the Internet possible (i.e.,
ARPANET and NSFNET), these networks have been taken over by the commer-
cial sector, allowing the Internet to thrive. But major innovations to the Internet
are still likely to come from government-sponsored research projects rather than
from the commercial sector. The National Science Foundation’s new Global
Environment for Network Innovation (GENI) initiative is an example of this.

The most exciting application of the Internet is the World Wide Web, devel-
oped by Tim Berners-Lee, a programmer at the European Center for Particle
Research (CERN) in 1989 for information access. In 1992, a young programmer
at the University of Illinois, Marc Andreessen, developed a graphical interface for
the Web called Mosaic. It became immensely popular. He later became a founder
of Netscape, which popularized commercial browsers. In May 1995, at the time
of the second edition of this book, there were over 30,000 Web pages, and the
number was doubling every two months. During the writing of the third edition
of this text, there were more than 1.3 billion Web pages. In December 2005, the
number of Web servers approached 75 million, having increased by 30% during
that same year.

Asynchronous Transfer Mode (ATM) was an attempt to design the definitive
communication standard. It provided good support for data transmission as well
as digital voice transmission (i.e., phone calls). From a technical point of view, it
combined the best from packet switching and circuit switching, also providing
excellent support for providing quality of service (QoS). Alles [1995] offers a
good survey on ATM. In 1995, no one doubted that ATM was going to be the
future for this community. Ten years later, the high equipment and personnel
training costs basically killed ATM, returning back to the simplicity of TCP/IP.
Another important blow to ATM was its defeat by the Ethernet family in the LAN
domain, where packet switching achieved significantly lower latencies than
ATM, which required establishing a connection before data transmission. ATM
connectionless servers were later introduced in an attempt to fix this problem, but
they were expensive and posed as a central bottleneck in the LAN.

Finally, WANs today rely on optical fiber. Fiber technology has made so
many advances that today WAN fiber bandwidth is often underutilized. The main
reason for this is the commercial introduction of wavelength division multiplex-
ing (WDM), which allows each fiber to transmit many data streams simulta-
neously over different wavelengths, thus allowing three orders of magnitude
bandwidth increase in just one generation, that is, three to five years (a good text
by Senior [1993] discusses optical fiber communications). However, IP routers
may still become a bottleneck. At 10–40 Gbps link rates, and with thousands of
ports in large core IP routers, packets must be processed very quickly—that is,
within a few tens of nanoseconds. The most time-consuming operation is routing.
The way IP addresses have been defined and assigned to Internet hosts makes
routing very complicated, usually requiring a complex search in a tree structure

E.13 Historical Perspective and References � E-99

for every packet. Network processors have become popular as a cost-effective
solution for implementing routing and other packet-filtering operations. They
usually are RISC-like, highly multithreaded, and implement local stores instead
of caches.

Local Area Networks

ARPA’s success with wide area networks led directly to the most popular local
area networks. Many researchers at Xerox Palo Alto Research Center had been
funded by ARPA while working at universities, and so they all knew the value of
networking. In 1974, this group invented the Alto, the forerunner of today’s desk-
top computers [Thacker, et al., 1982], and the Ethernet [Metcalfe and Boggs
1976], today’s LAN. This group—David Boggs, Butler Lampson, Ed McCreight,
Bob Sprowl, and Chuck Thacker—became luminaries in computer science and
engineering, collecting a treasure chest of awards among them.

This first Ethernet provided a 3 Mbit/sec interconnection, which seemed like
an unlimited amount of communication bandwidth with computers of that era. It
relied on the interconnect technology developed for the cable television industry.
Special microcode support gave a round-trip time of 50 µs for the Alto over
Ethernet, which is still a respectable latency. It was Boggs’ experience as a ham
radio operator that led to a design that did not need a central arbiter, but instead
listened before use and then varied back-off times in case of conflicts.

The announcement by Digital Equipment Corporation, Intel, and Xerox of a
standard for 10 Mbit/sec Ethernet was critical to the commercial success of
Ethernet. This announcement short-circuited a lengthy IEEE standards effort,
which eventually did publish IEEE 802.3 as a standard for Ethernet.

There have been several unsuccessful candidates in trying to replace the
Ethernet. The FDDI committee, unfortunately, took a very long time to agree on
the standard, and the resulting interfaces were expensive. It was also a shared
medium when switches were becoming affordable. ATM also missed the oppor-
tunity in part because of the long time to standardize the LAN version of ATM,
and in part because of the high latency and poor behavior of ATM connectionless
servers, as mentioned above. InfiniBand for the reasons discussed below has also
faltered. As a result, Ethernet continues to be the absolute leader in the LAN
environment, and it remains a strong opponent in the high-performance comput-
ing market as well, competing against the SANs by delivering high bandwidth at
low cost. The main drawback of Ethernet for high-end systems is its relatively
high latency and lack of support in most interface cards to implement the neces-
sary protocols.

Because of failures of the past, LAN modernization efforts have been cen-
tered on extending Ethernet to lower-cost media such as unshielded twisted pair
(UTP), switched interconnects, and higher link speeds as well as to new domains
such as wireless communication. In 2006, practically all new PC motherboards
and laptops implement a Fast/Gigabit Ethernet port (100/1000 Mbps), and most
laptops implement a 54 Mbps Wireless Ethernet connection. Also, home wired or

E-100 � Appendix E Interconnection Networks

wireless LANs connecting all the home appliances, set-top boxes, desktops, and
laptops to a shared Internet connection are very common. Spurgeon [2006] has a
nice online summary of Ethernet technology, including some of its history.

System Area Networks

One of the first nonblocking multistage interconnection networks was proposed
by Clos [1953] for use in telephone exchange offices. Building on this, many
early inventions for system area networks came from their use in massively paral-
lel processors (MPPs). One of the first MPPs was the Illiac IV, a SIMD array built
in the early 1970s with 64 processing elements (“massive” at that time) intercon-
nected using a topology based on a 2D torus that provided neighbor-to-neighbor
communication. Another representative of early MPP was the Cosmic Cube,
which used Ethernet interface chips to connect 64 processors in a 6-cube. Com-
munication between nonneighboring nodes was made possible by store-and-for-
warding of packets at intermediate nodes toward their final destination. A much
larger and truly “massive” MPP built in the mid-1980s was the Connection
Machine, a SIMD multiprocessor consisting of 64K 1-bit processing elements,
which also used a hypercube with store-and-forwarding. Since these early MPP
machines, interconnection networks have improved considerably.

In the 1970s through the 1990s, considerable research went into trying to
optimize the topology and, later, the routing algorithm, switching, arbitration,
and flow control techniques. Initially, research focused on maximizing perfor-
mance with little attention paid to implementation constraints or crosscutting
issues. Many exotic topologies were proposed having very interesting properties,
but most of them complicated the routing. Rising from the fray was the hyper-
cube, a very popular network in the 1980s that has all but disappeared from MPPs
since the 1990s. What contributed to this shift was a performance model by Dally
[1990] that showed that if the implementation is wire-limited, lower-dimensional
topologies achieve better performance than higher-dimensional ones because of
their wider links for a given wire budget. Many designers followed that trend
assuming their designs to be wire-limited, even though most implementations
were (and still are) pin-limited. Several supercomputers since the 1990s have
implemented low-dimensional topologies, including the Intel Paragon, Cray
T3D, Cray T3E, HP AlphaServer, Intel ASCI Red, and IBM Blue Gene/L.

Meanwhile, other designers followed a very different approach, implement-
ing bidirectional MINs in order to reduce the number of required switches below
the number of network nodes. The most popular bidirectional MIN was the fat
tree topology, originally proposed by Leiserson [1985] and first used in the Con-
nection Machine CM-5 supercomputer and, later the IBM ASCI White and ASC
Purple supercomputers. This indirect topology was also used in several European
parallel computers based on the Transputer. The Quadrics network has inherited
characteristics from some of those Transputer-based networks. Myrinet has also
evolved significantly from its first version, with Myrinet 2000 incorporating the
fat tree as its principal topology. Indeed, most current implementations of SANs,

E.13 Historical Perspective and References � E-101

including Myrinet, InfiniBand, and Quadrics as well as future implementations
such as PCI-Express Advanced Switching, are based on fat trees.

 Although the topology is the most visible aspect of a network, other features
also have a significant impact on performance. A seminal work that raised aware-
ness of deadlock properties in computer systems was published by Holt [1972].
Early techniques for avoiding deadlock in store-and-forward networks were pro-
posed by Merlin and Schweitzer [1980] and by Gunther [1981]. Pipelined
switching techniques were first introduced by Kermani and Kleinrock [1979]
(virtual cut-through) and improved upon by Dally and Seitz [1986] (wormhole),
which significantly reduced low-load latency and the topology’s impact on mes-
sage latency over previously proposed techniques. Wormhole switching was ini-
tially better than virtual cut-through largely because flow control could be
implemented at a granularity smaller than a packet, allowing high-bandwidth
links that were not as constrained by available switch memory bandwidth. Today,
virtual cut-through is usually preferred over wormhole because it achieves higher
throughput due to less HOL blocking effects and is enabled by current integration
technology that allows the implementation of many packet buffers per link.

Tamir and Frazier [1992] laid the groundwork for virtual output queuing with
the notion of dynamically allocated multiqueues. Around this same time, Dally
[1992] contributed the concept of virtual channels, which was key to the develop-
ment of more efficient deadlock-free routing algorithms and congestion-reducing
flow control techniques for improved network throughput. Another highly rele-
vant contribution to routing was a new theory proposed by Duato [1993] that
allowed the implementation of fully adaptive routing with just one “escape” vir-
tual channel to avoid deadlock. Previous to this, the required number of virtual
channels to avoid deadlock increased exponentially with the number of network
dimensions. Pinkston and Warnakulasuriya [1997] went on to show that deadlock
actually can occur very infrequently, giving credence to deadlock recovery rout-
ing approaches. Scott and Goodman [1994] were among the first to analyze the
usefulness of pipelined channels for making link bandwidth independent of the
time of flight. These and many other innovations have become quite popular,
finding use in most high-performance interconnection networks, both past and
present. The IBM Blue Gene/L, for example, implements virtual cut-through
switching, four virtual channels per link, fully adaptive routing with one escape
channel, and pipelined links.

MPPs represent a very small (and currently shrinking) fraction of the infor-
mation technology market, giving way to bladed servers and clusters. In the
United States, government programs such as the Advanced Simulation and Com-
puting (ASC) program (formerly known as the Accelerated Strategic Computing
Initiative or ASCI) have promoted the design of those machines, resulting in a
series of increasingly powerful one-of-a-kind MPPs costing $50 million to $100
million. These days, many are basically lower-cost clusters of SMPs (see Pfister
[1998] and Sterling [2001] for two perspectives on clustering). In fact, in 2005,
nearly 75% of the Top500 supercomputers were clusters. Nevertheless, the
design of each generation of MPPs and even clusters pushes interconnection net-
work research forward to confront new problems arising due to shear size and

E-102 � Appendix E Interconnection Networks

other scaling factors. For instance, source-based routing—the simplest form of
routing—does not scale well to large systems. Likewise, fat trees require increas-
ingly longer links as the network size increases, which led IBM Blue Gene/L
designers to adopt a 3D torus network with distributed routing that can be imple-
mented with bounded-length links.

Storage Area Networks

System area networks were originally designed for a single room or single floor
(thus their distances are tens to hundreds of meters) and were for use in MPPs
and clusters. In the intervening years, the acronym SAN has been co-opted to
also mean storage area networks, whereby networking technology is used to con-
nect storage devices to compute servers. Today, many refer to “storage” when
they say SAN. The most widely used SAN example in 2006 was Fibre Channel
(FC), which comes in many varieties, including various versions of Fibre Chan-
nel Arbitrated Loop (FC-AL) and Fibre Channel Switched (FC-SW). Not only
are disk arrays attached to servers via FC links, there are even some disks with
FC links attached to switches so that storage area networks can enjoy the benefits
of greater bandwidth and interconnectivity of switching.

 In October 2000, the InfiniBand Trade Association announced the version
1.0 specification of InfiniBand [InfiniBand Trade Association 2001]. Led by
Intel, HP, IBM, Sun, and other companies, it was targeted to the high-perfor-
mance computing market as a successor to the PCI bus by having point-to-point
links and switches with its own set of protocols. Its characteristics are desirable
potentially both for system area networks to connect clusters and for storage area
networks to connect disk arrays to servers. Consequently, it has had strong com-
petition from both fronts. On the storage area networking side, the chief competi-
tion for InfiniBand has been the rapidly improving Ethernet technology widely
used in LANs. The Internet Engineering Task Force proposed a standard called
iSCSI to send SCSI commands over IP networks [Satran, et al., 2001]. Given the
cost advantages of the higher-volume Ethernet switches and interface cards,
Gigabit Ethernet dominates the low-end and medium-range for this market.
What’s more, the slow introduction of InfiniBand and its small market share
delayed the development of chip sets incorporating native support for InfiniBand.
Therefore, network interface cards had to be plugged into the PCI or PCI-X bus,
thus never delivering on the promise of replacing the PCI bus.

It was another I/O standard, PCI-Express, that finally replaced the PCI bus.
Like InfiniBand, PCI-Express implements a switched network but with point-to-
point serial links. To its credit, it maintains software compatibility with the PCI
bus, drastically simplifying migration to the new I/O interface. Moreover, PCI-
Express benefited significantly from mass market production and has found
application in the desktop market for connecting one or more high-end graphics
cards, making gamers very happy. Every PC motherboard now implements one
or more 16x PCI-Express interfaces. PCI-Express absolutely dominates the I/O
interface, but the current standard does not provide support for interprocessor
communication.

E.13 Historical Perspective and References � E-103

Yet another standard, Advanced Switching Interconnect (ASI), may emerge
as a complementary technology to PCI-Express. ASI is compatible with PCI-
Express, thus linking directly to current motherboards, but it also implements
support for interprocessor communication as well as I/O. Its defenders believe
that it will eventually replace both SANs and LANs with a unified network in the
data center market, but ironically this was also said of InfiniBand. The interested
reader is referred to Pinkston, et al., 2003 for a detailed discussion on this. There
is also a new disk interface standard called serial advanced technology attach-
ment (SATA) that is replacing parallel integrated device electronics (IDE) with
serial signaling technology to allow for increased bandwidth. Most disks in the
market in 2006 use this new interface, but keep in mind that Fibre Channel is still
alive and well. Indeed, most of the promises made by InfiniBand in the SAN mar-
ket were satisfied by Fibre Channel first, thus increasing their share of the market.

Some believe that Ethernet, PCI-Express, and SATA have the edge in the
LAN, I/O interface, and disk interface areas, respectively. But the fate of the
remaining storage area networking contenders depends on many factors. A won-
derful characteristic of computer architecture is that such issues will not remain
endless academic debates, unresolved as people rehash the same arguments
repeatedly. Instead, the battle is fought in the marketplace, with well-funded and
talented groups giving their best efforts at shaping the future. Moreover, constant
changes to technology reward those who are either astute or lucky. The best com-
bination of technology and follow-through has often determined commercial suc-
cess. Time will tell us who will win and who will lose, at least for the next round!

On-Chip Networks

Relative to the other network domains, on-chip networks are in their infancy. As
recently as the late 1990s, the traditional way of interconnecting devices such as
caches, register files, ALUs, and other functional units within a chip was to use
dedicated links aimed at minimizing latency or shared buses aimed at simplicity.
But with subsequent increases in the volume of interconnected devices on a sin-
gle chip, the length and delay of wires to cross a chip, and chip power consump-
tion, it has become important to share on-chip interconnect bandwidth in a more
structured way, giving rise to the notion of a network on-chip. Among the first to
recognize this were Agarwal [Waingold, et al., 1997] and Dally [Dally 1999;
Dally and Towles 2001]. They and others argued that on-chip networks that route
packets allow efficient sharing of burgeoning wire resources between many com-
munication flows and also facilitate modularity to mitigate chip-crossing wire
delay problems identified by Ho et al., [2001]. Switched on-chip networks were
also viewed as providing better fault isolation and tolerance. Challenges in
designing these networks were later described by Taylor et al., [2005], who also
proposed a 5-tuple model for characterizing the delay of OCNs. A design process
for OCNs that provides a complete synthesis flow was proposed by Bertozzi et
al., [2005]. Following these early works, much research and development has

E-104 � Appendix E Interconnection Networks

gone into on-chip network design, making this a very hot area of microarchitec-
ture activity.

Multicore and tiled designs featuring on-chip networks have become very
popular since the turn of the millennium. Pinkston and Shin [2005] provide a sur-
vey of on-chip networks used in early multicore/tiled systems. Most designs
exploit the reduced wiring complexity of switched OCNs as the paths between
cores/tiles can be precisely defined and optimized early in the design process,
thus enabling improved power and performance characteristics. With typically
tens of thousands of wires attached to the four edges of a core or tile as “pin-
outs,” wire resources can be traded off for improved network performance by
having very wide channels over which data can be sent broadside (and possibly
scaled up or down according to the power management technique), as opposed to
serializing the data over fixed narrow channels.

Rings, meshes, and crossbars are straightforward to implement in planar chip
technology and routing is easily defined on them, so these were popular topolog-
ical choices in early switched OCNs. It will be interesting to see if this trend con-
tinues in the future when several tens to hundreds of heterogeneous cores and
tiles will likely be interconnected within a single chip, possibly using 3D integra-
tion technology. Considering that processor microarchitecture has evolved signif-
icantly from its early beginnings in response to application demands and
technological advancements, we would expect to see vast architectural improve-
ments to on-chip networks as well.

References

Agarwal, A. [1991]. “Limits on interconnection network performance,” IEEE Trans. on
Parallel and Distributed Systems 2:4 (April), 398–412.

Alles, A. [1995]. “ATM internetworking” (May), www.cisco.com/warp/public/614/12.html.
Anderson, T. E., D. E. Culler, and D. Patterson [1995]. “A case for NOW (networks of

workstations),” IEEE Micro 15:1 (February), 54–64.
Anjan, K. V., and T. M. Pinkston [1995]. “An efficient, fully-adaptive deadlock recovery

scheme: Disha,” Proc. 22nd Int’l Symposium on Computer Architecture (June), Italy.
Arpaci, R. H., D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and K. Yelick [1995].

“Empirical evaluation of the Cray-T3D: A compiler perspective,” Proc. 22nd Int’l
Symposium on Computer Architecture (June), Italy.

Bell, G., and J. Gray [2001]. “Crays, clusters and centers,” Microsoft Research Technical
Report, MSR-TR-2001-76.

Benes, V. E. [1962]. “Rearrangeable three stage connecting networks,” Bell System Tech-
nical Journal 41, 1481–1492.

Bertozzi, D., A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De
Micheli [2005]. “NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip,” IEEE Trans. on Parallel and Distributed Systems 16:2 (February),
113–130.

Bhuyan, L. N., and D. P. Agrawal [1984]. “Generalized hypercube and hyperbus struc-
tures for a computer network,” IEEE Trans. on Computers 32:4 (April), 322–333.

E.13 Historical Perspective and References � E-105

Brewer, E. A., and B. C. Kuszmaul [1994]. “How to get good performance from the CM-5
data network.” Proc. Eighth Int’l Parallel Processing Symposium (April), Cancun,
Mexico.

Clos, C. [1953]. “A study of non-blocking switching networks,” Bell Systems Technical
Journal 32 (March), 406–424.

Dally, W. J. [1990]. “Performance analysis of k-ary n-cube interconnection networks,”
IEEE Trans. on Computers 39:6 (June), 775–785.

Dally, W. J. [1992]. “Virtual channel flow control,” IEEE Trans. on Parallel and Distrib-
uted Systems 3:2 (March), 194–205.

Dally, W. J. [1999]. “Interconnect limited VLSI architecture,” Proc. of the International
Interconnect Technology Conference, San Francisco (May).

Dally, W. J., and C. I. Seitz [1986]. “The torus routing chip,” Distributed Computing 1:4,
187–196.

Dally, W. J., and B. Towles [2001]. “Route packets, not wires: On-chip interconnection
networks,” Proc. of the Design Automation Conference, Las Vegas (June).

Dally, W. J., and B. Towles [2004]. Principles and Practices of Interconnection Networks,
Morgan Kaufmann Publishers, San Francisco.

Davie, B. S., L. L. Peterson, and D. Clark [1999]. Computer Networks: A Systems Ap-
proach, 2nd ed., Morgan Kaufmann Publishers, San Francisco.

Duato, J. [1993]. “A new theory of deadlock-free adaptive routing in wormhole net-
works,” IEEE Trans. on Parallel and Distributed Systems 4:12 (Dec.) 1320–1331.

Duato, J., I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo [2005]. “A new scal-
able and cost-effective congestion management strategy for lossless multistage inter-
connection networks,” Proc. 11th Int’l Symposium on High Performance Computer
Architecture (February), San Francisco.

Duato, J., O. Lysne, R. Pang, and T. M. Pinkston [2005]. “Part I: A theory for deadlock-
free dynamic reconfiguration of interconnection networks,” IEEE Trans. on Parallel
and Distributed Systems 16:5 (May), 412–427.

Duato, J., and T. M. Pinkston [2001]. “A general theory for deadlock-free adaptive routing
using a mixed set of resources,” IEEE Trans. on Parallel and Distributed Systems
12:12 (December), 1219–1235.

Duato, J., S. Yalamanchili, and L. Ni [2003]. Interconnection Networks: An Engineering
Approach, 2nd printing, Morgan Kaufmann Publishers, San Francisco.

Glass, C. J., and L. M. Ni [1992]. “The Turn Model for adaptive routing,” Proc. 19th Int’l
Symposium on Computer Architecture (May), Australia.

Gunther, K. D. [1981]. “Prevention of deadlocks in packet-switched data transport sys-
tems,” IEEE Trans. on Communications COM–29:4 (April), 512–524.

Ho, R., K. W. Mai, and M. A. Horowitz [2001]. “The future of wires,” Proc. of the IEEE
89:4 (April), 490–504.

Holt, R. C. [1972]. “Some deadlock properties of computer systems,” ACM Computer
Surveys 4:3 (September), 179–196.

InfiniBand Trade Association [2001]. InfiniBand Architecture Specifications Release
1.0.a, www.infinibandta.org.

Jantsch, A., and H. Tenhunen [2003]. Networks on Chips, eds., Kluwer Academic Pub-
lishers, The Netherlands.

Kahn, R. E. [1972]. “Resource-sharing computer communication networks,” Proc. IEEE
60:11 (November), 1397–1407.

Kermani, P., and L. Kleinrock [1979]. “Virtual cut-through: A new computer communica-
tion switching technique,” Computer Networks 3 (January), 267–286.

E-106 � Appendix E Interconnection Networks

Kurose, J. F., and K. W. Ross [2001]. Computer Networking: A Top-Down Approach Fea-
turing the Internet, Addison-Wesley, Boston.

Leiserson, C. E. [1985]. “Fat trees: Universal networks for hardware-efficient supercom-
puting,” IEEE Trans. on Computers C–34:10 (October), 892–901.

Merlin, P. M., and P. J. Schweitzer [1980]. “Deadlock avoidance in store-and-forward net-
works––I: Store-and-forward deadlock,” IEEE Trans. on Communications COM–
28:3 (March), 345–354.

Metcalfe, R. M. [1993]. “Computer/network interface design: Lessons from Arpanet and
Ethernet.” IEEE J. on Selected Areas in Communications 11:2 (February), 173–180.

Metcalfe, R. M., and D. R. Boggs [1976]. “Ethernet: Distributed packet switching for lo-
cal computer networks,” Comm. ACM 19:7 (July), 395–404.

Partridge, C. [1994]. Gigabit Networking. Addison-Wesley, Reading, Mass.
Peh, L. S., and W. J. Dally [2001]. “A delay model and speculative architecture for pipe-

lined routers,” Proc. 7th Int’l Symposium on High Performance Computer Architec-
ture (January), Monterrey.

Pfister, Gregory F. [1998]. In Search of Clusters, 2nd ed., Prentice Hall, Upper Saddle
River, N.J.

Pinkston, T. M. [2004]. “Deadlock characterization and resolution in interconnection net-
works (Chapter 13),” Deadlock Resolution in Computer-Integrated Systems, edited by
M. C. Zhu and M. P. Fanti, eds., Marcel Dekkar/CRC Press, 445–492.

Pinkston, T. M., A. Benner, M. Krause, I. Robinson, and T. Sterling [2003]. “InfiniBand:
The ‘de facto’ future standard for system and local area networks or just a scalable re-
placement for PCI buses?” Cluster Computing (Special Issue on Communication Ar-
chitecture for Clusters) 6:2 (April), 95–104.

Pinkston, T. M., and J. Shin [2005]. “Trends toward on-chip networked microsystems,”
International Journal of High Performance Computing and Networking 3:1, 3–18.

Pinkston, T. M., and S. Warnakulasuriya [1997]. “On deadlocks in interconnection net-
works,” Proc. 24th Int’l Symposium on Computer Architecture (June), Denver.

Puente, V., R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and C. Izu [1999]. “Adap-
tive bubble router: A design to improve performance in torus networks,” Proc. 28th
Int’l Conference on Parallel Processing (September), Aizu-Wakamatsu, Japan.

Saltzer, J. H., D. P. Reed, and D. D. Clark [1984]. “End-to-end arguments in system de-
sign,” ACM Trans. on Computer Systems 2:4 (November), 277–288.

Satran, J., D. Smith, K. Meth, C. Sapuntzakis, M. Wakeley, P. Von Stamwitz, R. Haagens,
E. Zeidner, L. Dalle Ore, and Y. Klein [2001]. “iSCSI,” IPS working group of IETF,
Internet draft www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt.

Scott, S. L., and J. Goodman [1994]. “The impact of pipelined channels on k-ary n-cube
networks,” IEEE Trans. on Parallel and Distributed Systems 5:1 (January), 1–16.

Senior, J. M. [1993]. Optical Fiber Commmunications: Principles and Practice, 2nd
ed., Prentice Hall, Hertfordshire, U.K.

Spurgeon, C. [2006]. “Charles Spurgeon's Ethernet Web Site,” www.ethermanage.com/
ethernet/ethernet.html.

Sterling, T. [2001]. Beowulf PC Cluster Computing with Windows and Beowulf PC Clus-
ter Computing with Linux, MIT Press, Cambridge, Mass.

Stevens, W. R. [1994–1996]. TCP/IP Illustrated (three volumes), Addison-Wesley, Read-
ing, Mass.

Tamir, Y., and G. Frazier [1992]. “Dynamically-allocated multi-queue buffers for VLSI
communication switches,” IEEE Trans. on Computers 41:6 (June), 725–734.

Exercises � E-107

Tanenbaum, A. S. [1988]. Computer Networks, 2nd ed., Prentice Hall, Englewood Cliffs,
N.J.

Taylor, M. B., W. Lee, S. P. Amarasinghe, and A. Agarwal [2005]. “Scalar operand net-
works,” IEEE Trans. on Parallel and Distributed Systems 16:2 (February), 145–162.

Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs [1982].
“Alto: A personal computer,” in Computer Structures: Principles and Examples, D. P.
Siewiorek, C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549–572.

von Eicken, T., D. E. Culler, S. C. Goldstein, and K. E. Schauser [1992]. “Active messag-
es: A mechanism for integrated communication and computation,” Proc. 19th Int’l
Symposium on Computer Architecture (May), Australia.

Vaidya, A. S., A Sivasubramaniam, and C. R. Das [1997]. “Performance benefits of virtu-
al channels and adaptive routing: An application-driven study,” Proceedings of the
1997 Int’l Conference on Supercomputing (July), Austria.

Waingold, E., M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P.
Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal [1997]. “Baring it all to
software: Raw Machines,” IEEE Computer 30 (September), 86–93.

Yang, Y., and G. Mason [1991]. “Nonblocking broadcast switching networks,” IEEE
Trans. on Computers 40:9 (September), 1005–1015.

Solutions to “starred” exercises are available for instructors who register at
textbooks.elsevier.com/0123704901.

✪ E.1 [15] <E.2, E.3> Is electronic communication always faster than nonelectronic
means for longer distances? Calculate the time to send 1000 GB using 25 8 mm
tapes and an overnight delivery service versus sending 1000 GB by FTP over the
Internet. Make the following four assumptions:

� The tapes are picked up at 4 P.M. Pacific time and delivered 4200 km away at
10 A.M. Eastern time (7 A.M. Pacific time).

� On one route the slowest link is a T3 line, which transfers at 45 Mbits/sec.

� On another route the slowest link is a 100 Mbit/sec Ethernet.

� You can use 50% of the slowest link between the two sites.

Will all the bytes sent by either Internet route arrive before the overnight delivery
person arrives?

✪ E.2 [10] <E.2, E.3> For the same assumptions as Exercise E.1, what is the bandwidth
of overnight delivery for a 1000 GB package?

✪ E.3 [10] <E.2, E.3> For the same assumptions as Exercise E.1, what is the minimum
bandwidth of the slowest link to beat overnight delivery? What standard network
options match that speed?

✪ E.4 [15] <E.2, E.3> The original Ethernet standard was for 10 Mbits/sec and a maxi-
mum distance of 2.5 km. How many bytes could be in flight in the original Ether-
net? Assume you can use 90% of the peak bandwidth.

✪ E.5 [15] <E.2, E.3> Flow control is a problem for WANs due to the long time of
flight, as the example on page E-14 illustrates. Ethernet did not include flow con-

Exercises

E-108 � Appendix E Interconnection Networks

trol when it was first standardized at 10 Mbits/sec. Calculate the number of bytes
in flight for a 10 Gbit/sec Ethernet over a 100 meter link, assuming you can use
90% of peak bandwidth. What does your answer mean for network designers?

✪ E.6 [15] <E.2, E.3> Assume the total overhead to send a zero-length data packet on
an Ethernet is 100 µs and that an unloaded network can transmit at 90% of the
peak 1000 Mbit/sec rating. For the purposes of this question, assume the size of
the Ethernet header and trailer is 56 bytes. Assume a continuous stream of pack-
ets of the same size. Plot the delivered bandwidth of user data in Mbits/sec as the
payload data size varies from 32 bytes to the maximum size of 1500 bytes in 32-
byte increments.

✪ E.7 [10] <E.2, E.3> Exercise E.6 suggests that the delivered Ethernet bandwidth to a
single user may be disappointing. Making the same assumptions as in that exer-
cise, by how much would the maximum payload size have to be increased to
deliver half of the peak bandwidth?

✪ E.8 [10] <E.2, E.3> One reason that ATM has a fixed transfer size is that when a short
message is behind a long message, a node may need to wait for an entire transfer
to complete. For applications that are time-sensitive, such as when transmitting
voice or video, the large transfer size may result in transmission delays that are
too long for the application. On an unloaded interconnection, what is the worst-
case delay in microseconds if a node must wait for one full-size Ethernet packet
versus an ATM transfer? See Figure E.27 (page E-75) to find the packet sizes. For
this question assume you can transmit at 100% of the 622 Mbits/sec of the ATM
network and 100% of the 1000 Mbit/sec Ethernet.

✪ E.9 [10] <E.2, E.3> Exercise E.7 suggests the need for expanding the maximum pay-
load to increase the delivered bandwidth, but Exercise E.8 suggests the impact on
worst-case latency of making it longer. What would be the impact on latency of
increasing the maximum payload size by the answer to Exercise E.7?

✪ E.10 [12/12/20] <E.4> The Omega network shown in Figure E.11 on page E-31 con-
sists of three columns of four switches, each with two inputs and two outputs.
Each switch can be set to straight, which connects the upper switch input to the
upper switch output and the lower input to the lower output, and to exchange,
which connects the upper input to the lower output and vice versa for the lower
input. For each column of switches, label the inputs and outputs 0, 1, . . . , 7 from
top to bottom, to correspond with the numbering of the processors.

a. [12] <E.4> When a switch is set to exchange and a message passes through,
what is the relationship between the label values for the switch input and out-
put used by the message? (Hint: Think in terms of operations on the digits of
the binary representation of the label number.)

b. [12] <E.4> Between any two switches in adjacent columns that are connected
by a link, what is the relationship between the label of the output connected to
the input?

c. [20] <E.4> Based on your results in parts (a) and (b), design and describe a
simple routing scheme for distributed control of the Omega network. A mes-

Exercises � E-109

sage will carry a routing tag computed by the sending processor. Describe
how the processor computes the tag and how each switch can set itself by
examining a bit of the routing tag.

✪ E.11 [12/12/12/12/12/12] <E.4> Prove whether or not it is possible to realize the fol-
lowing permutations (i.e., communication patterns) on the eight-node Omega
network shown in Figure E.11 on page E-31:

a. [12] <E.4> Bit-reversal permutation—the node with binary coordinates an–1,
an–2, . . . , a1, a0 communicates with the node a0, a1, . . . , an–2, an–1.

b. [12] <E.4> Perfect shuffle permutation—the node with binary coordinates
an–1, an–2, . . . , a1, a0 communicates with the node an–2, an–3, . . . , a0, an–1
(i.e., rotate left 1 bit).

c. [12] <E.4> Bit-complement permutation—the node with binary coordinates
an–1, an–2, . . . , a1, a0 communicates with the node an–1, an–2, . . . , a1, a0 (i.e.,
complement each bit).

d. [12] <E.4> Butterfly permutation—the node with binary coordinates an–1,
an–2, . . . , a1, a0 communicates with the node a0, an–2, . . . , a1, an–1 (i.e., swap
the most and least significant bits).

e. [12] <E.4> Matrix transpose permutation—the node with binary coordinates
an–1, an–2, . . . , a1, a0 communicates with the node an/2–1, . . . , a0, an–1, . . .,
an/2 (i.e., transpose the bits in positions approximately halfway around).

f. [12] <E.4> Barrel-shift permutation—node i communicates with node i+1
modulo N–1, where N is the total number of nodes and 0 ≤ i.

✪ E.12 [12] <E.4> Design a network topology using 18-port crossbar switches that has
the minimum number of switches to connect 64 nodes. Each switch port supports
communication to and from one device.

✪ E.13 [15] <E.4> Design a network topology that has the minimum latency through the
switches for 64 nodes using 18-port crossbar switches. Assume unit delay in the
switches and zero delay for wires.

✪ E.14 [15] <E.4> Design a switch topology that balances the bandwidth required for all
links for 64 nodes using 18-port crossbar switches. Assume a uniform traffic
pattern.

✪ E.15 [15] <E.4> Compare the interconnection latency of a crossbar, Omega network,
and fat tree with eight nodes. Use Figure E.11 on page E-31, Figure E.12 on page
E-33, and Figure E.14 on page E-37. Assume that the fat tree is built entirely
from two-input, two-output switches so that its hardware resources are more
comparable to that of the Omega network. Assume that each switch costs a unit
time delay. Assume the fat tree randomly picks a path, so give the best case and
worst case for each example. How long will it take to send a message from node
0 to node 6? How long will it take node 1 and node 7 to communicate?

✪ E.16 [15] <E.4> Draw the topology of a 6-cube after the same manner of the 4-cube in
Figure E.14 on page E-37. What is the maximum and average number of hops
needed by packets assuming a uniform distribution of packet destinations?

E-110 � Appendix E Interconnection Networks

✪ E.17 [15] <E.4> Complete a table similar to Figure E.15 on page E-40 that captures
the performance and cost of various network topologies, but do it for the general
case of N nodes using k × k switches instead of the specific case of 64 nodes.

✪ E.18 [20] <E.4> Repeat the example given on page E-41, but use the bit-complement
communication pattern given in Exercise E.11 instead of NEWS communication.

✪ E.19 [15] <E.5> Give the four specific conditions necessary for deadlock to exist in an
interconnection network. Which of these are removed by dimension-order rout-
ing? Which of these are removed in adaptive routing with the use of “escape”
routing paths? Which of these are removed in adaptive routing with the technique
of deadlock recovery (regressive or progressive)? Explain your answer.

✪ E.20 [12/12/12/12] <E.5> Prove whether or not the following routing algorithms based
on prohibiting dimensional turns are suitable to be used as escape paths for 2D
meshes by analyzing whether they are both connected and deadlock-free. Explain
your answer. (Hint: You may wish to refer to the Turn Model algorithm and/or to
prove your answer by drawing a directed graph for a 4 × 4 mesh that depicts
dependencies between channels and verifying the channel dependency graph is
free of cycles.) The routing algorithms are expressed with the following abbrevi-
ations: W = west, E = east, N = north, and S = south.

a. [12] <E.5> Allowed turns are from W to N, E to N, S to W, and S to E.

b. [12] <E.5> Allowed turns are from W to S, E to S, N to E, and S to E.

c. [12] <E.5> Allowed turns are from W to S, E to S, N to W, S to E, W to N,
and S to W.

d. [12] <E.5> Allowed turns are from S to E, E to S, S to W, N to W, N to E, and
E to N.

✪ E.21 [15] <E.5> Compute and compare the upper bound for the efficiency factor, ρ, for
dimension-order routing and up*/down* routing assuming uniformly distributed
traffic on a 64 node 2D mesh network. For up*/down* routing, assume optimal
placement of the root node (i.e., a node near the middle of the mesh). (Hint: You
will have to find the loading of links across the network bisection carry the global
load as determined by the routing algorithm.)

✪ E.22 [15] <E.5> For the same assumptions as Exercise E.21, find the efficiency factor
for up*/down* routing on a 64-node fat tree network using 4 × 4 switches. Com-
pare this result with the ρ found for up*/down* routing on a 2D mesh. Explain.

✪ E.23 [15] <E.5> Calculate the probability of matching two-phased arbitration requests
from all k input ports of a switch simultaneously to the k output ports assuming a
uniform distribution of requests and grants to/from output ports. How does this
compare to the matching probability for three-phased arbitration in which each of
the k input ports can make two simultaneous requests (again, assuming a uniform
random distribution of requests and grants)?

✪ E.24 [15] <E.5> The equation on page E-52 shows the value of cut-through switching.
Ethernet switches used to build clusters often do not support cut-through switch-

Exercises � E-111

ing. Compare the time to transfer 1500 bytes over a 1000 Mbit/sec Ethernet with
and without cut-through switching for a 64-node cluster. Assume each Ethernet
switch takes 1.0 µs and that a message goes through seven intermediate switches.

✪ E.25 [15] <E.5> Making the same assumptions as in Exercise E.24, what is the differ-
ence between cut-through and store-and-forward switching for 32 bytes?

✪ E.26 [15] <E.5> One way to reduce latency is to use larger switches. Unlike Exercise
E.24, let’s assume we need only three intermediate switches to connect any two
nodes in the cluster. Make the same assumptions as in Exercise E.24 for the
remaining parameters. What is the difference between cut-through and store-and-
forward for 1500 bytes? For 32 bytes?

✪ E.27 [20] <E.5> Using FlexSim 1.2 (http://ceng.usc.edu/smart/FlexSim/flexsim.html)
or some other cycle-accurate network simulator, simulate a 256-node 2D torus
network assuming wormhole routing, 32-flit packets, uniform (random) commu-
nication pattern, and four virtual channels. Compare the performance of deter-
ministic routing using DOR, adaptive routing using escape paths (i.e., Duato’s
Protocol), and true fully adaptive routing using progressive deadlock recovery
(i.e., Disha routing). Do so by plotting latency versus applied load and through-
put versus applied load for each, as is done in Figure E.19 for the example on
page E-53. Also run simulations and plot results for two and eight virtual chan-
nels for each. Compare and explain your results by addressing how/why the num-
ber and use of virtual channels by the various routing algorithms affect network
performance. (Hint: Be sure to let the simulation reach steady state by allowing a
warm-up period of a several thousand network cycles before gathering results.)

✪ E.28 [20] <E.5> Repeat Exercise E.27 using bit-reversal communication instead of the
uniform random communication pattern. Compare and explain your results by
addressing how/why the communication pattern affects network performance.

✪ E.29 [40] <E.5> Repeat Exercises E.27 and E.28 using 16-flit packets and 128-flit
packets. Compare and explain your results by addressing how/why the packet
size along with the other design parameters affect network performance.

 E.30 [20] <E.2, E.4, E.5, E.8> Figures E.7, E.16, and E.20 show interconnection net-
work characteristics of several of the top 500 supercomputers by machine type as
of the publication of the fourth edition. Update that figure to the most recent top
500. How have the systems and their networks changed since the data in the orig-
inal figure? Do similar comparisons for OCNs used in microprocessors and
SANs targeted for clusters using Figures E.26 and E.28.

✪ E.31 [12/12/12/15/15/18] <E.8> Use the M/M/1 queuing model to answer this exer-
cise. Measurements of a network bridge show that packets arrive at 200 packets
per second and that the gateway forwards them in about 2 ms.

a. [12] <E.8> What is the utilization of the gateway?

b. [12] <E.8> What is the mean number of packets in the gateway?

c. [12] <E.8> What is the mean time spent in the gateway?

d. [15] <E.8> Plot response time versus utilization as you vary the arrival rate.

E-112 � Appendix E Interconnection Networks

e. [15] <E.8> For an M/M/1 queue, the probability of finding n or more tasks in
the system is Utilizationn. What is the chance of an overflow of the FIFO if it
can hold 10 messages?

f. [18] <E.8> How big must the gateway be to have packet loss due to FIFO
overflow less than one packet per million?

✪ E.32 [20] <E.8> The imbalance between the time of sending and receiving can cause
problems in network performance. Sending too fast can cause the network to
back up and increase the latency of messages, since the receivers will not be able
to pull out the message fast enough. A technique called bandwidth matching pro-
poses a simple solution: Slow down the sender so that it matches the performance
of the receiver [Brewer and Kuszmaul 1994]. If two machines exchange an equal
number of messages using a protocol like UDP, one will get ahead of the other,
causing it to send all its messages first. After the receiver puts all these messages
away, it will then send its messages. Estimate the performance for this case ver-
sus a bandwidth-matched case. Assume the send overhead is 200 µs, the receive
overhead is 300 µs, time of flight is 5 µs, latency is 10 µs, and that the two
machines want to exchange 100 messages.

 E.33 [40] <E.8> Compare the performance of UDP with and without bandwidth
matching by slowing down the UDP send code to match the receive code as
advised by bandwidth matching [Brewer and Kuszmaul 1994]. Devise an experi-
ment to see how much performance changes as a result. How should you change
the send rate when two nodes send to the same destination? What if one sender
sends to two destinations?

✪ E.34 [40] <E.6, E.8> If you have access to an SMP and a cluster, write a program to
measure latency of communication and bandwidth of communication between
processors, as was plotted in Figure E.29 on page E-77.

 E.35 [20/20/20] <E.9> If you have access to a UNIX system, use ping to explore the
Internet. First read the manual page. Then use ping without option flags to be
sure you can reach the following sites. It should say that X is alive. Depending
on your system, you may be able to see the path by setting the flags to verbose
mode (-v) and trace route mode (-R) to see the path between your machine and
the example machine. Alternatively, you may need to use the program trace-
route to see the path. If so, try its manual page. You may want to use the UNIX
command script to make a record of your session.

a. [20] <E.9> Trace the route to another machine on the same local area net-
work. What is the latency?

b. [20] <E.9> Trace the route to another machine on your campus that is not on
the same local area network.What is the latency?

c. [20] <E.9> Trace the route to another machine off campus. For example, if
you have a friend you send email to, try tracing that route. See if you can dis-
cover what types of networks are used along that route.What is the latency?

Exercises � E-113

 E.36 [15] <E.9> Use FTP to transfer a file from a remote site and then between local
sites on the same LAN. What is the difference in bandwidth for each transfer?
Try the transfer at different times of day or days of the week. Is the WAN or LAN
the bottleneck?

✪ E.37 [10/10] <E.9, E.11> Figure E.38 on page E-90 compares latencies for a high-
bandwidth network with high overhead and a low-bandwidth network with low
overhead for different TCP/IP message sizes.

a. [10] <E.9, E.11> For what message sizes is the delivered bandwidth higher
for the high-bandwidth network?

b. [10] <E.9, E.11> For your answer to part (a), what is the delivered bandwidth
for each network?

✪ E.38 [15] <E.9, E.11> Using the statistics in Figure E.38 on page E-90, estimate the
per-message overhead for each network.

✪ E.39 [15] <E.9, E.11> Exercise E.37 calculates which message sizes are faster for two
networks with different overhead and peak bandwidth. Using the statistics in
Figure E.38 on page E-90, what is the percentage of messages that are transmit-
ted more quickly on the network with low overhead and bandwidth? What is the
percentage of data transmitted more quickly on the network with high overhead
and bandwidth?

✪ E.40 [15] <E.9, E.11> One interesting measure of the latency and bandwidth of an
interconnection is to calculate the size of a message needed to achieve one-half of
the peak bandwidth. This halfway point is sometimes referred to as n1/2, taken
from the terminology of vector processing. Using Figure E.38 on page E-90, esti-
mate n1/2 for TCP/IP message using 155 Mbit/sec ATM and 10 Mbit/sec Ether-
net.

 E.41 [Discussion] <E.10> The Google cluster used to be constructed from 1 rack unit
(RU) PCs, each with one processor and two disks. Today there are considerably
denser options. How much less floor space would it take if we were to replace the
1 RU PCs with modern alternatives? Go to the Compaq or Dell Web sites to find
the densest alternative. What would be the estimated impact on cost of the equip-
ment? What would be the estimated impact on rental cost of floor space? What
would be the impact on interconnection network design for achieving power/
performance efficiency?

 E.42 [Discussion] <E.13> At the time of the writing of the fourth edition, it was
unclear what would happen with Ethernet versus InfiniBand versus Advanced
Switching in the machine room. What are the technical advantages of each? What
are the economic advantages of each? Why would people maintaining the system
prefer one to the other? How popular is each network today? How do they com-
pare to proprietary commercial networks such as Myrinet and Quadrics?

