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Chapter  1

Course Overview

1.1 Objectives
This training session introduces participants to the fundamentals of the OpenCL™
(Open Computing Language) programming language. Areas covered include the
following:

• Introduction to parallel computing with heterogeneous systems.

• Introduction to the OpenCL programming framework.

• Setting up the OpenCL development environment.

• Understand and using the OpenCL API.

• Optimizing an OpenCL application.

1.2 Audience
This course is intended for programmers. It assumes prior experience in the C
programming language.

1.3 References
• The OpenCL Specification v1.0 (http://www.khronos.org/registry/cl/specs/

opencl-1.0.48.pdf)

• OpenCL 1.0 Reference Page (http://www.khronos.org/opencl/sdk/1.0/docs/
man/xhtml/)

• ATI Stream Software Development Kit (SDK) (http://developer.amd.com/
stream)

• ATI Stream SDK OpenCL Programming Guide (http://developer.amd.com/
gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf)

• AMD Developer Forums - OpenCL (http://developer.amd.com/opencl)

• ATI Stream Profiler Knowledge Base (http://developer.amd.com/support/
KnowledgeBase?Category=2&SubCategory=54)
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• GNU GDB Documentation (http://www.gnu.org/software/gdb/documentation)

• OpenCL Zone (http://developer.amd.com/openclzone)

• Image Convolution Tutorial (http://developer.amd.com/gpu/ATIStreamSDK/
ImageConvolutionOpenCL/Pages/ImageConvolutionUsingOpenCL.aspx)

Note:  The information contained in this guide is current at the time of publication,
and may not apply to future technologies, products, or designs.
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Chapter  2

Introduction
This chapter provides a brief overview and history of GPU compute.

2.1 What is GPU Compute?
GPU compute is the use of Graphics Processing Units (GPUs) for general purpose
computation instead of traditional graphics rendering. GPUs are high performance
multi-core processors that can be used to accelerate a wide variety of applications
using parallel computing. The highly programmable nature of GPUs makes them
useful as high-speed coprocessors that perform beyond their intended graphics
capabilities.

2.2 A Brief History of GPU Compute
The birth of the GPU compute revolution occurred in November 2006, when AMD
introduced its Close to Metal (CTM) low-level hardware programming interface that
allowed developers to take advantage of the native instruction set and memory of
modern GPUs for general-purpose computation. CTM provided developers with the
low-level, deterministic, and repeatable access to hardware necessary to develop
essential tools such as compilers, debuggers, math libraries, and application platforms.
With the introduction of CTM, a new class of applications was realized. For example,
a GPU-accelerated client for Folding@Home was created that was capable of achieving
a 20- to 30-fold speed increase over its predecessor (for more on this story, see http://
folding.stanford.edu/English/FAQ-ATI#ntoc5.)

AMD's continuing commitment to provide a fully-featured software development
environment that exposes the power of AMD GPUs resulted in the introduction of the
ATI Stream SDK v1 in December 2007. The ATI Stream SDK v1 added a new high-level
language, called ATI Brook+. CTM evolved into ATI CAL (Compute Abstraction Layer),
the supporting API layer for Brook+. The introduction of the ATI Stream SDK v1 meant
that AMD was able to provide both high-level and low-level tools for general-purpose
access to AMD GPU hardware.

PID: 137-41768-10 ∙ Rev: A ∙ May, 2010 Introduction to OpenCL™ Programming

Introduction 3

http://folding.stanford.edu/English/FAQ-ATI#ntoc5
http://folding.stanford.edu/English/FAQ-ATI#ntoc5


Figure 2–1  ATI Stream SDK v1 Stack

A drawback to using the ATI Stream SDK v1 was that applications created with the
SDK ran only on AMD GPU hardware. To achieve greater adoption for general-
purpose computing, an open standard was needed.

In June 2008, AMD, along with various industry players in GPU compute and other
accelerator technologies, formed the OpenCL working group under The Khronos
Group. Khronos, already known for leadership in other open specifications such as
OpenGL®, was a logical choice to drive the OpenCL specification. Five months later,
the group completed the technical specification for OpenCL 1.0 and released it to the
public. Immediately after that release, AMD announced its intent to adopt the
OpenCL programming standard and integrate a compliant compiler and runtime into
its free ATI Stream SDK v2. In December 2009, AMD released the ATI Stream SDK v2.0
with OpenCL 1.0 support.

2.3 Heterogeneous Computing
Heterogeneous computing involves the use of a various types of computational units.
A computation unit can be a general-purpose processing unit (such as a CPU), a
graphics processing unit (such as a GPU), or a special-purpose processing unit (such
as digital signal processor, or DSP).

In the past, most computer applications were able to scale with advances in CPU
technologies. With modern computer applications requiring interactions with various
systems (such as audio/video systems, networked applications, etc.) even the
advances in CPU technology proved insufficient to cope with this need. To achieve
greater performance gains, specialized hardware was required, making the system
heterogeneous. The addition of various types of computation units in these
heterogeneous systems allows application designers to select the most suitable one on
which to perform tasks.
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Chapter  3

Introduction to OpenCL
This chapter introduces OpenCL and describes the anatomy and architecture of the
OpenCL API.

3.1 What is OpenCL?
The Open Computing Language (OpenCL) is an open and royalty-free parallel
computing API designed to enable GPUs and other coprocessors to work in tandem
with the CPU, providing additional raw computing power. As a standard, OpenCL 1.0
was released on December 8, 2008, by The Khronos Group, an independent standards
consortium.

Developers have long sought to divide computing problems into a mix of concurrent
subsets, making it feasible for a GPU to be used as a math coprocessor working with
the CPU to better handle general problems. The potential of this heterogeneous
computing model was encumbered by the fact that programmers could only choose
proprietary programming languages, limiting their ability to write vendor-neutral,
cross-platform applications. Proprietary implementations such as NVIDIA's CUDA
limited the hardware choices of developers wishing to run their application on
another system without having to retool it.

3.1.1 Benefits of OpenCL

A primary benefit of OpenCL is substantial acceleration in parallel processing.
OpenCL takes all computational resources, such as multi-core CPUs and GPUs, as peer
computational units and correspondingly allocates different levels of memory, taking
advantage of the resources available in the system. OpenCL also complements the
existing OpenGL® visualization API by sharing data structures and memory locations
without any copy or conversion overhead.

A second benefit of OpenCL is cross-vendor software portability. This low-level layer
draws an explicit line between hardware and the upper software layer. All the
hardware implementation specifics, such as drivers and runtime, are invisible to the
upper-level software programmers through the use of high-level abstractions,
allowing the developer to take advantage of the best hardware without having to
reshuffle the upper software infrastructure. The change from proprietary
programming to open standard also contributes to the acceleration of general
computation in a cross-vendor fashion.
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3.2 Anatomy of OpenCL
The OpenCL development framework is made up of three main parts:

• Language specification

• Platform layer API

• Runtime API

3.2.1 Language Specification

The language specification describes the syntax and programming interface for
writing kernel programs that run on the supported accelerator (GPU, multi-core CPU,
or DSP). Kernels can be precompiled or the developer can allow the OpenCL runtime
to compile the kernel program at runtime.

The OpenCL programming language is based on the ISO C99 specification with added
extensions and restrictions. Additions include vector types and vector operations,
optimized image access, and address space qualifiers. Restrictions include the absence
of support for function pointers, bit-fields, and recursion. The C language was selected
as the first base for the OpenCL language due to its prevalence in the developer
community. To ensure consistent results across different platforms, OpenCL C also
provides a well-defined IEEE 754 numerical accuracy for all floating point operations
and a rich set of built-in functions. For complete language details on the language, see
the OpenCL specification.

3.2.2 Platform API

The platform-layer API gives the developer access to software application routines
that can query the system for the existence of OpenCL-supported devices. This layer
also lets the developer use the concepts of device context and work-queues to select
and initialize OpenCL devices, submit work to the devices, and enable data transfer to
and from the devices.

3.2.3 Runtime API

The OpenCL framework uses contexts to manage one or more OpenCL devices. The
runtime API uses contexts for managing objects such as command queues, memory
objects, and kernel objects, as well as for executing kernels on one or more devices
specified in the context.

3.3 OpenCL Architecture
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3.3.1 The Platform Model

The OpenCL platform model is defined as a host connected to one or more OpenCL
devices. Figure 3–1  OpenCL Platform Model shows the platform model comprising
one host plus multiple compute devices, each having multiple compute units, each of
which have multiple processing elements.

A host is any computer with a CPU running a standard operating system. OpenCL
devices can be a GPU, DSP, or a multi-core CPU. An OpenCL device consists of a
collection of one or more compute units (cores). A compute unit is further composed
of one or more processing elements. Processing elements execute instructions as
SIMD (Single Instruction, Multiple Data) or SPMD (Single Program, Multiple Data).
SPMD instructions are typically executed on general purpose devices such as CPUs,
while SIMD instructions require a vector processor such as a GPU or vector units in a
CPU.

Figure 3–1  OpenCL Platform Model
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The following depiction of the ATI Radeon™ HD 5870 GPU architecture illustrates a
compute device construct. The ATI Radeon HD 5870 GPU is made up of 20 SIMD units,
which translates to 20 compute units in OpenCL:

Each SIMD unit contains 16 stream cores, and each stream core houses five processing
elements. Thus, each compute unit in the ATI Radeon HD 5870 has 80 (16 × 5) processing
elements.
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Figure 3–2  Stream Core Housing Five Processing Elements

3.3.2 The Execution Model

The OpenCL execution model comprises two components: kernels and host programs.
Kernels are the basic unit of executable code that runs on one or more OpenCL
devices. Kernels are similar to a C function that can be data- or task-parallel. The host
program executes on the host system, defines devices context, and queues kernel
execution instances using command queues. Kernels are queued in-order, but can be
executed in-order or out-of-order.

3.3.2.1 Kernels

OpenCL exploits parallel computation on compute devices by defining the problem
into an N-dimensional index space. When a kernel is queued for execution by the host
program, an index space is defined. Each independent element of execution in this
index space is called a work-item. Each work-item executes the same kernel function
but on different data. When a kernel command is placed into the command queue, an
index space must be defined to let the device keep track of the total number of work-
items that require execution. The N-dimensional index space can be N=1, 2, or 3.
Processing a linear array of data would be considered N=1; processing an image would
be N=2, and processing a 3D volume would be N=3.

Processing a 1024x1024 image would be handled this way: The global index space
comprises a 2-dimensional space of 1024 by 1024 consisting of 1 kernel execution (or
work-item) per pixel with a total of 1,048,576 total executions. Within this index space,
each work-item is assigned a unique global ID. The work-item for pixel x=30, y=22
would have global ID of (30,22).

OpenCL also allows grouping of work-items together into work-groups, as shown in
the following figure. The size of each work-group is defined by its own local index
space. All work-items in the same work-group are executed together on the same
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device. The reason for executing on one device is to allow work-items to share local
memory and synchronization. Global work-items are independent and cannot by
synchronized. Synchronization is only allowed between the work-items in a work-
group.

Figure 3–3  Grouping Work-items Into Work-groups

The following example shows a two-dimensional image with a global size of 1024
(32x32). The index space is divided into 16 work-groups. The highlighted work-group
has an ID of (3,1) and a local size of 64 (8x8). The highlighted work-item in the work-
group has a local ID of (4,2), but can also be addressed by its global ID of (28,10).

Figure 3–4  Work-group Example
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The following example illustrates how a kernel in OpenCL is implemented. In this
example, each element is squared in a linear array. Normally, a scalar function would
be required with a simple for loop iterating through the elements in the array and then
squaring it. The data-parallel approach is to read an element from the array in
parallel, perform the operation in parallel, and write it to the output. Note that the code
segment on the right does not have a for loop: It simply reads the index value for the
particular kernel instance, performs the operation, and writes the output.

Table 3–1  Simple Example of Scalar Versus Parallel Implementation

Scalar C Function Data-Parallel Function

void square(int n, const float *a, float *result)
{
  int i;
  for (i=0; i<n; i++)
    result[i] = a[i]*a[i];
}

kernel void dp_square
   (global const float *a, global float *result)
{
  int id= get_global_id(0);
  result[id] = a[id]*a[id];
}
// dp_square execute over "n" work-items

The OpenCL execution model supports two categories of kernels: OpenCL kernels and
native kernels.

OpenCL kernels are written in the OpenCL C language and compiled with the
OpenCL compiler. All devices that are OpenCL-compliant support execution of
OpenCL kernels.

Native kernels are extension kernels that could be special functions defined in
application code or exported from a library designed for a particular accelerator. The
OpenCL API includes functions to query capabilities of devices to determine if native
kernels are supported.

If native kernels are used, developers should be aware that the code may not work on
other OpenCL devices.

3.3.2.2 Host Program

The host program is responsible for setting up and managing the execution of kernels
on the OpenCL device through the use of context. Using the OpenCL API, the host can
create and manipulate the context by including the following resources:

• Devices — A set of OpenCL devices use by the host to execute kernels.

• Program Objects — The program source or program object that implements a
kernel or collection of kernels.

• Kernels — The specific OpenCL functions that execute on the OpenCL device.

• Memory Objects — A set of memory buffers or memory maps common to the
host and OpenCL devices.
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After the context is created, command queues are created to manage execution of the
kernels on the OpenCL devices that were associated with the context. Command
queues accept three types of commands:

• Kernel execution commands run the kernel command on the OpenCL devices.

• Memory commands transfer memory objects between the memory space of the
host and the memory space of the OpenCL devices.

• Synchronization commands define the order in which commands are executed.

Commands are placed into the command queue in-order and execute either in-order
or out-of-order. In in-order mode, the commands are executed serially as they are
placed onto the queue. In out-of-order mode, the order the commands execute is based
on the synchronization constraints placed on the command.

3.3.3 The Memory Model

Since common memory address space is unavailable on the host and the OpenCL
devices, the OpenCL memory model defines four regions of memory accessible to
work-items when executing a kernel. The following figure shows the regions of
memory accessible by the host and the compute device:
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Global memory is a memory region in which all work-items and work-groups have
read and write access on both the compute device and the host. This region of memory
can be allocated only by the host during runtime.

Constant memory is a region of global memory that stays constant throughout the
execution of the kernel. Work-items have only read access to this region. The host is
permitted both read and write access.

Local memory is a region of memory used for data-sharing by work-items in a work-
group. All work-items in the same work-group have both read and write access.

Private memory is a region that is accessible to only one work-item.

In most cases, host memory and compute device memory are independent of one
another. Thus, memory management must be explicit to allow the sharing of data
between the host and the compute device. This means that data must be explicitly
moved from host memory to global memory to local memory and back. This process
works by enqueuing read/write commands in the command queue. The commands
placed into the queue can either be blocking or non-blocking. Blocking means that the
host memory command waits until the memory transaction is complete before
continuing. Non-blocking means the host simply puts the command in the queue and
continues, not waiting until the memory transaction is complete.
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Chapter  4

Getting Started with OpenCL
This chapter discusses how to set up the OpenCL development environment in the
Microsoft® Windows® and Linux® platforms.

4.1 The Software Development Environment and Tools

4.1.1 Requirements

The ATI Stream Software Development Kit (SDK) v2 is required to create OpenCL
applications on the AMD platform. The SDK for Windows or Linux may be downloaded
free from the  ATI Stream SDK v2 Product Page  (http://developer.amd.com/stream).
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At the time of publication of this guide, the following operating system, compilers,
CPUs, GPUs, and drivers were supported by the ATI Stream SDK v2. For the latest list
of supported configurations, check the  ATI Stream SDK v2 Product Page .

4.1.1.1 Supported Operating Systems

Windows • Windows® XP SP3 (32-bit), SP2(64-bit)
• Windows Vista® SP1 (32/64-bit)
• Windows® 7 (32/64-bit)

Linux • openSUSE™ 11.1 (32/64-bit)
• Ubuntu® 9.10 (32/64-bit)
• Red Hat® Enterprise Linux 5.3 (32/64-bit)

4.1.1.2 Supported Compilers

Windows • Microsoft Visual Studio 2008 Professional Edition

Linux • GNU Compiler Collection (GCC) 4.3 or later
• Intel® C Compiler (ICC) 11.x
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4.1.1.3 Supported GPUs and Drivers
Table 4–1  GPUs
ATI Radeon HD 5970, 5870, 5850, 5770, 5670, 5570, 5450,

4890, 4870 X2, 4870, 4850, 4830,

4770, 4670, 4650, 4550, 4350

ATI FirePro™ V8800, V8750, V8700, V7800, V7750

V5800, V5700, V4800, V3800, V3750

AMD FireStream™ 9270, 9250

ATI Mobility Radeon™ HD 5870, 5850, 5830, 5770, 5730, 5650, 5470, 5450, 5430,

4870, 4860, 4850, 4830, 4670, 4650,

4500 series, 4300 series

ATI Mobility FirePro™ M7820, M7740, M5800

ATI Radeon Embedded E4690 Discrete GPU

Table 4–2  Drivers (Minimum Version Requirements)
ATI Radeon HD ATI Catalyst™ 10.4

ATI FirePro ATI FirePro Unified Driver 8.723

AMD FireStream ATI Catalyst 10.4

ATI Mobility Radeon HD ATI Catalyst Mobility 10.4

ATI Mobility FirePro Contact notebook manufacturer for appropriate driver.

ATI Radeon Embedded Contact notebook manufacturer for appropriate driver.

4.1.1.4 Supported Processors

Any X86 CPU with Stream SIMD Extensions (SSE) 3.x or later.

4.1.2 Installing on Windows

Administrative access is required to install the ATI Stream SDK v2 on a Windows
system.

To install, run the ATI Stream SDK v2 executable installation program and follow the
instructions in the setup Wizard.

Selecting Express Installation (as shown in the following image) installs the ATI Stream
SDK v2, sample code, and the ATI Stream Profiler.
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During the installation the installer may analyze the system to detect the currently
installed graphics hardware and software drivers. If either the graphics hardware or
the software drivers do not support OpenCL, a warning popup may appear as shown
in the following image.
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4.1.3 Installing on Linux

Root permission is required to install the ATI Stream SDK v2 on Linux.

To install the downloaded ATI Stream SDK v2:

1. Untar the SDK to a location of your choice:

tar –zxvf ati-stream-sdk-vX.XX-lnxYY.tgz
where X.XX is the downloaded SDK version, and YY is either 32 or 64
(representing 32-bit or 64-bit).

2. Add ATISTREAMSDKROOT to your environment variables:

export ATISTREAMSDKROOT=<location in which the SDK was extracted>

3. If the sample code was installed, add ATISTREAMSDKSAMPLESROOT to your
environment variables:

export ATISTREAMSDKSAMPLESROOT=<location in which the SDK was
extracted>

4. Add the appropriate path to the LD_LIBRARY_PATH:

On 32-bit systems:

export LD_LIBRARY_PATH=$ATISTREAMSDKROOT/lib/x86:$LD_LIBRARY_PATH
On 64-bit systems:

export LD_LIBRARY_PATH=$ATISTREAMSDKROOT/lib/
x86_64:$LD_LIBRARY_PATH

5. Register the OpenCL ICD to allow applications to run:

sudo -s
mkdir –p /etc/OpenCL/vendors
On all systems:

echo libatiocl32.so > /etc/OpenCL/vendors/atiocl32.icd
On 64-bit systems, also perform the following:

echo libatiocl64.so > /etc/OpenCL/vendors/atiocl64.icd
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The following image shows the steps for installing the ATI Stream SDK v2 on a 32-bit
Linux system:

4.2 "Hello World" in OpenCL
A typical OpenCL application starts by querying the system for the availability of
OpenCL devices. When devices have been identified, a context allows the creation of
command queues, creation of programs and kernels, management of memory
between host and OpenCL devices, and submission of kernels for execution.

The following example code illustrates the fundamentals of all OpenCL applications.
It takes a input buffer, squares the values, and stores the results in an output buffer,
illustrating the relationship between device, context, program, kernel, command
queue, and buffers.
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001 #include <stdio.h>
002 #include "CL/cl.h"
003 
004 #define DATA_SIZE 10
005 
006 
007 const char *KernelSource = 
008 "__kernel void hello(__global float *input, __global float *output)\n"\
009 "{\n"\
010 "  size_t id = get_global_id(0);\n"\
011 "  output[id] = input[id] * input[id];\n"\
012 "}\n"\
013 "\n";
014 
015 int main(void)
016 {
017     cl_context context;
018     cl_context_properties properties[3];
019     cl_kernel kernel;
020     cl_command_queue command_queue;
021     cl_program program;
022     cl_int err;
023     cl_uint num_of_platforms=0;
024     cl_platform_id platform_id;
025     cl_device_id device_id;
026     cl_uint num_of_devices=0;
027     cl_mem input, output;
028     size_t global;
029 
030     float inputData[DATA_SIZE]={1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
031     float results[DATA_SIZE]={0};
032 
033     int i;
034 
035     // retreives a list of platforms available
036     if (clGetPlatformIDs(1, &platform_id, &num_of_platforms)!= CL_SUCCESS)
037     {
038         printf("Unable to get platform_id\n");
039         return 1;
040     }
041 
042     // try to get a supported GPU device
043     if (clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id, 
           &num_of_devices) != CL_SUCCESS)
044     {
045         printf("Unable to get device_id\n");
046         return 1;
047     }
048 
049     // context properties list - must be terminated with 0
050     properties[0]= CL_CONTEXT_PLATFORM;
051     properties[1]= (cl_context_properties) platform_id;
052     properties[2]= 0;
053 
054     // create a context with the GPU device
055     context = clCreateContext(properties,1,&device_id,NULL,NULL,&err);
056 
057     // create command queue using the context and device
058     command_queue = clCreateCommandQueue(context, device_id, 0, &err);
059 
060     // create a program from the kernel source code
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061     program = clCreateProgramWithSource(context,1,(const char **) 
        &KernelSource, NULL, &err);
062 
063     // compile the program
064     if (clBuildProgram(program, 0, NULL, NULL, NULL, NULL) != CL_SUCCESS)
065     {
066         printf("Error building program\n");
067         return 1;
068     }
069 
070     // specify which kernel from the program to execute
071     kernel = clCreateKernel(program, "hello", &err);
072 
073     // create buffers for the input and ouput
074     input = clCreateBuffer(context, CL_MEM_READ_ONLY, 
           sizeof(float) * DATA_SIZE, NULL, NULL);
075     output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
           sizeof(float) * DATA_SIZE, NULL, NULL);
076     
077     // load data into the input buffer
078     clEnqueueWriteBuffer(command_queue, input, CL_TRUE, 0, 
           sizeof(float) * DATA_SIZE, inputData, 0, NULL, NULL);
079     
080     // set the argument list for the kernel command
081     clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
082     clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
083     global=DATA_SIZE;
084 
085     // enqueue the kernel command for execution
086     clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, &global, 
           NULL, 0, NULL, NULL);
087     clFinish(command_queue);
088 
089     // copy the results from out of the output buffer
090     clEnqueueReadBuffer(command_queue, output, CL_TRUE, 0, 
           sizeof(float) * DATA_SIZE, results, 0, NULL, NULL);
091     
092     // print the results
093     printf("output: ");
094     for(i=0;i<DATA_SIZE; i++)
095     {
096          printf("%f ",results[i]);
097     }
098     
099     // cleanup - release OpenCL resources
100     clReleaseMemObject(input);
101     clReleaseMemObject(output);
102     clReleaseProgram(program);
103     clReleaseKernel(kernel);
104     clReleaseCommandQueue(command_queue);
105     clReleaseContext(context);
106 
107     return 0;
108 }

4.3 Compiling OpenCL Source
Note: The ATI Stream SDK v2 must be installed to compile an OpenCL program. See
4.1.1 Requirements for detailed ATI Stream SDK v2 installation procedures.
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4.3.1 Compiling on Linux

Ensure the required compiler GNU Compiler Collection (GCC) 4.3 or later is correctly
installed. To compile the sample "Hello World" program described earlier in this guide,
enter the following at the command line:

For a 32-bit system:

gcc -o hello -I$ATISTREAMSDKROOT/include -L$ATISTREAMSDKROOT/lib/x86
hello.c ‑lOpenCL
For a 64-bit system:

gcc -o hello -I$ATISTREAMSDKROOT/include -L$ATISTREAMSDKROOT/lib/x86_64
hello.c ‑lOpenCL
Where ATISTREAMSDKROOT environment points to the ATI Stream SDK v2 installation
location.

To execute the program, ensure that the LD_LIBRARY_PATH environment variable is
set to find libOpenCL.so, then enter:

./hello
The following image shows the sample program output:

4.3.2 Compiling on Windows

To compile using Microsoft Visual Studio® 2008 Professional Edition, the include path
and library path to the ATI Stream SDK v2 must be configured in the project.
Compilation steps are:
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1. Open the project properties page in Visual Studio. On the C/C++ ▷ General page
add $ATISTREAMSDKROOT\include to the Additional Include Directories list.
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2. In the Linker ▷ General page, add $ATISTREAMSDKROOT\lib\x86
($ATISTREAMSDKROOT\lib\x86_64 for 64-bit systems) to the Additional Library
Directories list.
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3. In the Linker ▷ Input page, add OpenCL.lib to the Additional Dependencies list.
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Chapter  5

OpenCL Programming in Detail
This chapter describes the structure of an OpenCL program and the relationship
between devices, context, programs, kernels, memory objects, and command queues.

5.1 Executing an OpenCL Program
The OpenCL framework is divided into a platform layer API and runtime API. The
platform API allows applications to query for OpenCL devices and manage them
through a context. The runtime API makes use of the context to manage the execution
of kernels on OpenCL devices. The basic steps involved in creating any OpenCL
program are shown in the following figure.

To execute an OpenCL program:

1. Query the host system for OpenCL devices.
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2. Create a context to associate the OpenCL devices.

3. Create programs that will run on one or more associated devices.

4. From the programs, select kernels to execute.

5. Create memory objects on the host or on the device.

6. Copy memory data to the device as needed.

7. Provide arguments for the kernels.

8. Submit the kernels to the command queue for execution.

9. Copy the results from the device to the host.

5.2 Resource Setup
The section describes how to setup OpenCL resources such as querying for platform
information, device information, creating context and command queue.

5.2.1 Query for Platform Information and OpenCL Devices

The first step in any OpenCL application is to query for platform information and
OpenCL devices. The function clGetPlatformIDs can be used to retrieve a list of
platforms available, as shown in the following code:

cl_platform_id platforms;
cl_uint num_platforms;

// query for 1 available platform
cl_int err = clGetPlatfromIDs(
      1,                    // the number of entries that can added to platforms
      &platforms,           // list of OpenCL found
      &num_platforms);      // the number of OpenCL platforms found   
            

clGetPlatformIDs return values are:

• CL_INVALID_VALUE — Platforms and num_platforms is NULL or the number
of entries is 0.

• CL_SUCCESS — The function executed successfully.

With the platform_id determined, the function clGetPlatformInfo() can be used to
get specific information about the OpenCL platform, including platform_profile,
platform_version, platform_name, platform_vendor, and platform_extensions.
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Figure 5–1  Typical OpenCL Platform Info Retrieved from clGetPlatformInfo()

5.2.2 Query for OpenCL Device

The function clGetDeviceIDs() can be used to search for compute devices in the
system. The following code queries for a single GPU compute device:

cl_device_id device_id;
cl_uint num_of_devices;
cl_int err;
err = clGetDeviceIDs(
    platform_id,          // the platform_id retrieved from clGetPlatformIDs
    CL_DEVICE_TYPE_GPU,   // the device type to search for
    1,                    // the number of id add to device_id list
    &device_id,           // the list of device ids
    &num_of_devices       // the number of compute devices found
);                
            

clGetDeviceIDs() return values are:

• CL_INVALID_PLATFORM — Platform is not valid.

• CL_INVALID_DEVICE_TYPE  — The device is not a valid value.

• CL_INVALID_VALUE — num_of_devices and devices are NULL.

• CL_DEVICE_NOT_FOUND — No matching OpenCL of device_type was found.

• CL_SUCCESS — The function executed successfully.

The example above shows how to query for one GPU device on which the code will
be executed. If the host system physically contains two GPUs and it is determined that
the program will execute more efficiently on the two GPUs, simply ask for two device
IDs instead. We can restrict the query to different device types by passing the
appropriate parameter to the clGetDeviceIDs() function. The valid values for
device_type are shown in the table below. For example, to query for CPU devices,
pass CL_DEVICE_TYPE_CPU as the device_type argument.
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Table 5–1  List of device types supported by clGetDeviceIDs()

Cl_device_type Description

CL_DEVICE_TYPE_CPU An OpenCL device that is host processor. The host processor runs
the OpenCL implementation and is a single or multi-core CPU.

CL_DEVICE_TYPE_GPU An OpenCL device that is a GPU. The same device that can be also
used to accelerate a 3D API such as OpenGL® or DirectX®.

CL_DEVICE_TYPE_ACCELERATOR Dedicated OpenCL accelerators (such as IBM CELL Blade). These
devices communicate with the host processor using a peripheral
interconnect such as PCI or PCIe.

CL_DEVICE_TYPE_DEFAULT The default OpenCL device in the system.

CL_DEVICE_TYPE_ALL All OpenCL devices available in the system.

Similarly, specific capabilities can be retrieved on the compute device using the
device_id returned from the query using the clGetDeviceInfo() function. Refer to
the OpenCL Specification for a full list of capabilities that can be retrieved with the
clGetDeviceInfo() function. The figure below shows capabilities of the ATI Radeon
HD 4770 GPU using clGetDeviceInfo().
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Figure 5–2  Device Capabilities of the ATI Radeon HD 4770 GPU

Note: In early releases of the ATI Stream SDK v2, the clGetDeviceIDs() function
allowed platform_id to be NULL. This is no longer supported.

5.2.3 Creating a Context

Once the compute devices and their corresponding device_id(s) have been identified,
the device_id(s) can be associated with a context. The context is used by the
OpenCL runtime API to manage command queues, program objects, kernel objects,
and the sharing of memory objects for the compute devices associated with the
context. clCreateContext() is used to create a context, as shown in the following
code:
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cl_context context;

// context properties list - must be terminated with 0 
properties[0]= CL_CONTEXT_PLATFORM; // specifies the platform to use
properties[1]= (cl_context_properties) platform_id;
properties[2]= 0;

context = clCreateContext(
       properties,      // list of context properties
       1,               // num of devices in the device_id list
       &device_id,      // the device id list
       NULL,            // pointer to the error callback function (if required)
       NULL,            // the argument data to pass to the callback function
       &err             // the return code
);                
            

The context properties list is made up of a property name followed immediately by a
property value. The list must be terminated with a 0 (zero). Supported properties are:

cl_context_properties_enum Property Value Description

CL_CONTEXT_PLATFORM cl_platform_id Specifies the platform to use

OpenCL allows an optional error callback function to be registered by the application
to report on errors that occur within the context during runtime. OpenCL may call the
error callback function asynchronously. It is, therefore, the application's
responsibility to ensure the callback function is thread-safe.

If the context is created successfully, clCreateContext() returns a non-zero context
with an error return code value of CL_SUCCESS. Otherwise, a NULL value is returned
and one of the following error codes:

• CL_INVALID_PLATFORM — The property list is NULL or the platform value is
not valid.

• CL_INVALID_VALUE — Either:

• The property name in the properties list is not valid.

• The number of devices is 0.

• The device_id list is null.

• The device in the device_id list is invalid or not associated with the
platform.

• CL_DEVICE_NOT_AVAILABLE — The device in the device_id list is currently
unavailable.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.
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5.2.4 Creating the Command Queue

When the context is established, command queues can be created that allow
commands to be sent to the compute devices associated with the context. Commands
are placed into the command queue in order. clCreateCommandQueue() is used to
create a command queue, as shown in the following code:

cl_command_queue command_queue;
                
command_queue = clCreateCommandQueue(
          context,   // a valid context
          device_id, // a valid device associated with the context
          0,         // properties for the queue - not used here
          &err       // the return code
);

The context that is passed in must be a valid OpenCL context. If the context has multiple
compute devices associated with it, you must choose which device to use by specifying
the device_id. Thus, if the context contains a CPU and a GPU device type, two separate
command queues must be created and work sent to the separate queues.

The third parameter, the command queue properties list, is a bit-field:

Command Queue Properties Description

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE If set, commands in the command queue are
executed out of order. Otherwise, commands are
executed in order.

CL_QUEUE_PROFILING_ENABLE If set, profiling of commands in the command
queue is enabled. Otherwise, profiling is disabled.

If the command queue is successfully created, clCreateCommandQueue() returns a
non-zero command queue with an error return code value of CL_SUCCESS. Otherwise,
a NULL value is returned with one of the following error codes:

• CL_INVALID_CONTEXT — The context is not valid.

• CL_INVALID_DEVICE — Either the device is not valid or it is not associated with
the context.

• CL_INVALID_VALUE — The properties list is not valid.

• CL_INVALID_QUEUE_PROPERTIES — The device does not support the
properties specified in the properties list.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.

5.3 Kernel Programming and Compiling
The previous section described the steps in setting up the resources before any work
can be performed on compute devices. In this section, OpenCL program and kernel
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objects are described, along with the steps involved in creating and compiling them
for execution.

5.3.1 Creating the Program Object

An OpenCL program is made up of a collection of kernel functions. Kernel functions
are written using the OpenCL C language and is compiled by the OpenCL runtime for
execution on a particular compute device. The kernel function in a program is
identified by the qualifier __kernel in the program source. The program source may
also contain helper functions and data constants used by the __kernel functions.

A program object in OpenCL encapsulates the program sources or a binary file, the
latest successfully-built program executable, the list of devices for which the
executable is built, along with any build options and a build log. The program object
can be created either online or offline. To create a program object online (or from
source code) the clCreateProgramWithSource() function is used as shown in the
following example:

const char *ProgramSource = 
      "__kernel void hello(__global float *input, __global float *output)\n"\
      "{\n"\
      "  size_t id = get_global_id(0);\n"\
      "  output[id] = input[id] * input[id];\n"\
      "}\n";
      
cl_program program;
program = clCreateProgramWithSource(
    context,           // a valid context
    1,                   // the number strings in the next parameter
    (const char **) &ProgramSource, // the array of strings 
    NULL,               // the length of each string or can be NULL terminated
    &err               // the error return code
); 
            

In the example, the program source is included as an array of strings. If the program
source is in a separate file, you must read the source file into a string and pass it to the
clCeateProgramWithSource() function. If multiple source files are to be read, an
array of NULL-terminated strings are used and the clCreateProgramWithSource()
function is informed about how many strings are in the array. In the list above, the
ProgramSource array contains only one NULL-terminated string.

If the program object is successfully created, clCreateProgramWithSource() returns
a non-zero program object with an error return code value of CL_SUCCESS. Otherwise,
a NULL value is returned with one of the following error return code values:

• CL_INVALID_CONTEXT — The context is not valid.

• CL_INVALID_VALUE — The string count is 0 (zero) or the string array contains
a NULL string.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.

At this point a program object is ready for compilation and linking before it can be
executed on the compute device. With the program object created, the function
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clGetProgramInfo() is used to query specific info regarding the program object. One
of the parameters that can be extracted is the program binary reference. Using this
reference brings a significant reduction in initialization time in subsequent executions
because the program need not be recreated.

The function clCreateProgramWithBinary() can be used create a program object by
referencing the program binary. For more information on clGetProgramInfo() and
clCreateProgramWithBinary(), see the OpenCL language specification.

5.3.2 Building Program Executables

After the program object is created (either from source using
clCreateProgramWithSource() or binary using clCreateProgramWithBinary()), the
next step is to compile and link the program object. The program executable can be
built for one or more devices that are encapsulated by the program object. The
function clBuildProgram() is used to build the executable:

err = clBuildProgram(
        program, // a valid program object
        0,       // number of devices in the device list
        NULL,    // device list – NULL means for all devices 
        NULL,    // a string of build options
        NULL,    // callback function when executable has been built
        NULL     // data arguments for the callback function
);   
            

The clBuildProgram() function modifies the program object to include the
executable, the build log, and build options. The build option string allows the passing
of any additional options to the compiler such as preprocessor options, optimization
options, math intrinsic options, and other miscellaneous compiler options. The
following example defines GPU_DUAL_ENABLED and disables all optimizations:

char * buildoptions = "-DGPU_DUAL_ENABLED -cl-opt-disable "                
            

For a complete list of supported options, see the Build Options section of the OpenCL
language specification.

clBuildProgram() returns CL_SUCCESS if the compilation is successful. Otherwise,
the following are common error codes that may be returned by clBuildProgram():

• CL_INVALID_VALUE — The number of devices is greater than zero, but the
device list is empty.

• CL_INVALID_VALUE — The callback function is NULL, but the data argument
list is not NULL.

• CL_INVALID_DEVICE — The device list does not match the devices associated
in the program object.

• CL_INVALID_BUILD_OPTIONS — The build options string contains invalid
options.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.
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For a complete list of return codes for clBuildProgram(), see the OpenCL
specification.

When compiling source code for any language, compilation errors can occur. In
OpenCL, the program object contains the build log. To access the build log, the
OpenCL API provides the clGetBuildProgramInfo() function to retrieve the latest
compilation results embedded in the program object:

if (clBuildProgram(program, 0, NULL, buildoptions, NULL, NULL) != CL_SUCCESS)
{
     printf("Error building program\n");

     char buffer[4096];
     size_t length;

     clGetProgramBuildInfo(
         program,              // valid program object
         device_id,            // valid device_id that executable was built
         CL_PROGRAM_BUILD_LOG, // indicate to retrieve build log
         sizeof(buffer),       // size of the buffer to write log to
         buffer,               // the actual buffer to write log to
         &length               // the actual size in bytes of data copied to buffer
         );

     printf("%s\n",buffer);
     exit(1);
}
            

Figure 5–3  Sample Build Log Output

5.3.3 Creating Kernel Objects

The kernel object is created after the executable has been successfully built in the
program object. As mentioned earlier, kernel functions are declared with the qualifier
__kernel in the program object. A kernel object is an encapsulation of the specify
__kernel function along with the arguments that are associated with the __kernel
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function when executed. The kernel object is eventually sent to the command queue
for execution. The function clCreateKernel() is used to create kernel objects:

cl_kernel kernel;
kernel = clCreateKernel(
     program,  // a valid program object that has been successfully built
     "hello",  // the name of the kernel declared with __kernel
     &err  // error return code
);
            

If the kernel object is created successfully, clCreateKernel() returns a non-zero
kernel object with an error return code value of CL_SUCCESS. Otherwise, a NULL
value is returned and the error return code will have one of the following values set:

• CL_INVALID_PROGRAM — The program is not a valid program object.

• CL_INVALID_PROGRAM_EXECUTABLE — The program does not contain a
successfully built executable.

• CL_INVALID_KERNEL_NAME — The kernel name is not found in the program
object.

• CL_INVALID_VALUE — The kernel name is NULL.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.

Before the kernel object is submitted to the command queue for execution, input or
output buffers must be provided for any arguments required by the __kernel
function. If the arguments use memory objects such as a buffer or image, the memory
objects must be created first and the data must be explicitly copied into the memory
object. See 5.5 Memory Objects for instructions on creating memory object data.

5.3.4 Setting Kernel Arguments

When the required memory objects have been successfully created, kernel
arguments can be set using the clSetKernelArg() function:

err = clSetKernelArg(
     kernel,          // valid kernel object
     0,               // the specific argument index of a kernel
     sizeof(cl_mem),  // the size of the argument data
     &input_data      // a pointer of data used as the argument
);
                
            

The argument index refers to the specific argument position of the __kernel definition
that must be set. The position can be 0 (zero) or greater. The following example shows
the declaration of the __kernel function:

__kernel void hello(__global float *input, 
                    __global float *output)
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In this example, the input argument is index 0, and the output argument is index 1.

The last two arguments of clSetKernelArg() specify the size of the argument data
and the pointer to the actual data.

Note: If a __kernel function argument is declared to be a pointer of a built-in or user
defined type with the __global or __constant qualifier, a buffer memory object must
be used. If the argument is an image2d_t or image3d_t, the memory object specified
as the argument in clSetKernelArg must be a 2D image or 3D image object,
respectively. Refer to the OpenCL Specification for more information on
clSetKernelArg().

If the function is executed successfully, clSetKernelArg() returns CL_SUCCESS.
Otherwise, the follow are some common error codes returned by
clSetKernelArg():

• CL_INVALID_KERNEL — The kernel is not a valid kernel object.

• CL_INVALID_ARG_INDEX — The index value is not a valid argument index.

• CL_INVALID_MEMORY_OBJECT — The argument is declared as a memory
object, but the argument value is not a valid memory object.

• CL_INVALID_ARG_SIZE — The argument size does not match the size of the
data type of the declared argument.

OpenCL provides the helper function clGetKernelInfo() to allow the application to
query specific information about a kernel object:

cl_int clGetKernelInfo (
     cl_kernel kernel,            // valid kernel object
     cl_kernel_info param_name,   // the information to query (see below)
     size_t param_value_size,     // size of the mem buffer to hold the result
     void *param_value,           // pointer to mem where result of query is returned
     size_t *param_value_size_ret // actual size of data copied to param_value
)
            

The supported kernel information that can be queried is shown in the following table:

cl_kernel_info Return Type Data Returned to param_value

CL_KERNEL_FUNCTION_NAME char[] Name of the kernel function

CL_KERNEL_NUM_ARGS cl_uint Number of arguments in the kernel function

CL_KERNEL_REFERENCE_COUNT cl_uint Number of kernel reference count

CL_KERNEL_CONTEXT cl_context The context associated with the kernel

CL_KERNEL_PROGRAM cl_program The program object associated with the kernel
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5.4 Program Execution

5.4.1 Determining the Problem Space

As mentioned in 3.3.2 The Execution Model, each kernel execution in OpenCL is called
a work-item. OpenCL exploits parallel computation of the compute devices by having
instances of the kernel execute on different portions of the N-dimensional problem
space. In addition, each work-item is executed only with its assigned data. Thus, it is
important specify to OpenCL how many work-items are needed to process all data.

Before the work-items total can be determined, the N-dimension to be used to
represent the data must be determined. For example, a linear array of data would be
a one-dimension problem space, while an image would be a two-dimensional problem
space, and spatial data, such as a 3D object, would be a three-dimensional problem
space.

Figure 5–4  Representation of Data Set in N-dimensional Space

When the dimension space is determined, the total work-items (also called the global
work size) can be calculated. For a one-dimensional data set, the global work size is
simply the size of the data. For two-dimensional data—such as an image—the global
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work size is calculated by the data's width*height pixel count. For a three-dimensional
object with positional data, the global data size is x*y*z.

OpenCL allows work-items to be combined into work-groups, and all work-items
within a work-group are executed on the same compute unit on the same compute
device. When a work-group size is specified, OpenCL divides the global work size
among the compute units on the device. In addition, work-items within a work-group
execute synchronously and are able to share memory. The total number of work-
items in a work-group is known as the local work size. Group sizes cannot be assigned
arbitrarily; the provided OpenCL function clGetKernelWorkGroupInfo() must be
used to query the group size info of a device. For more information on
clGetKerneWorkGroupInfo(), consult the OpenCL specification.

When the work-items for each dimension and the group size (local work size) is
determined, the kernel can be sent to the command queue for execution. To enqueue
the kernel to execute on a device, use the function clEnqueueNDRangeKernel():

err = clEnqueueNDRangeKernel(
     command_queue, // valid command queue
     kernel,        // valid kernel object
     1,             // the work problem dimensions
     NULL,          // reserved for future revision - must be NULL
     &global,       // work-items for each dimension
     NULL,          // work-group size for each dimension
     0,             // number of event in the event list
     NULL,          // list of events that needs to complete before this executes
     NULL           // event object to return on completion
);
            

The work problem dimensions (the third argument) must be 1, 2, or 3. The fifth
argument specifies the work-item size for each dimension. If, for example an image
of 512x512 pixels is to be processed, an array must be provided that points to the
number of work-item for each dimension:

size_t global[2]={512,512};
            

The sixth argument describes the number of work-items that make up a work-group.
If, for example, 64 work-items were grouped into an 8x8 work-group, the work-group
size for each dimension would be specified as the following array:

size_t local[2]={8,8};
            

The total work-items in each work group must be less than the maximum work group
size retrieved using the function clGetKernelWorkGroupInfo(). If data does not need
to be shared among work-items, a NULL value may be specified and the global work-
items are broken into appropriate work-group instances by the OpenCL runtime.

The seventh and eighth arguments control the sequence of execution of the kernel
command. As mentioned earlier, if the command queue properties are set to allow
out-of-order execution during the clCreateCommandQueue() process, a list of events
must be provided, along with the number of events in the list that need to complete
before this particular command can be executed. If the event list is empty, then the
number of events must be 0 (zero).
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The last argument allows the kernel instance to generate an event on completion. This
lets other kernel commands to wait for completion of this command as well as allowing
querying of the kernel execution. See 5.6 Synchronization section for more
information on this event.

If the function executes successfully, clEnqueueNDRangeKernel() returns
CL_SUCCESS. Otherwise, the following common error codes may be returned:

• CL_INVALID_PROGRAM_EXECUTABLE — No executable has been built in the
program object for the device associated with the command queue.

• CL_INVALID_COMMAND_QUEUE — The command queue is not valid.

• CL_INVALID_KERNEL — The kernel object is not valid.

• CL_INVALID_CONTEXT — The command queue and kernel are not associated
with the same context.

• CL_INVALID_KERNEL_ARGS — Kernel arguments have not been set.

• CL_INVALID_WORK_DIMENSION — The dimension is not between 1 and 3.

• CL_INVALID_GLOBAL_WORK_SIZE — The global work size is NULL or exceeds
the range supported by the compute device.

• CL_INVALID_WORK_GROUP_SIZE — The local work size is not evenly divisible
with the global work size or the value specified exceeds the range supported by
the compute device.

• CL_INVALID_GLOBAL_OFFSET — The reserved global offset parameter is not
set to NULL.

• CL_INVALID_EVENT_WAIT_LIST — The events list is empty (NULL) but the
number of events arguments is greater than 0; or number of events is 0 but the
event list is not NULL; or the events list contains invalid event objects.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.

Refer to the OpenCL Specification for a more comprehensive list of error return codes.

When the kernel command is enqueued for execution, additional kernels can be sent
to the command queue, or the results can be copied back from the device to host
memory. See 5.5 Memory Objects for a description of how to read data from memory
objects.

5.4.2 Cleaning Up

When execution is complete, all OpenCL platform and runtime API resources,
including memory objects, kernel, program, command queue, etc., should be
released:
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clReleaseMemObject(input);
clReleaseMemObject(output);
clReleaseProgram(program);
clReleaseKernel(kernel);
clReleaseCommandQueue(command_queue);
clReleaseContext(context);
            

All clRelease<object>() functions decrement and return a reference count to the
object. If all resources are correctly released, the reference count should be zero.
Otherwise, the returned reference counts can be used to track down memory leaks.

5.5 Memory Objects
The OpenCL framework provides a way to package data into a memory object. By
using a memory object, OpenCL allows easy packaging of all data and easy transfer to
the compute device memory so that the kernel function executing on the device has
local access to the data.

Using a memory object minimizes memory transfers from the host and device as the
kernel processes data. OpenCL memory objects are categorized into two types: buffer
objects and image objects. The buffer object is used to store one-dimensional data such
as an int, float, vector, or a user-defined structure. The image object is used to store
two- or three-dimensional data such as textures or images.

5.5.1 Creating Buffer Objects

To use the clCreateBuffer() function to create a buffer object:

cl_mem input;
input = clCreateBuffer(
     context,    // a valid context
     CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, // bit-field flag to specify 
                                              // the usage of memory
     sizeof(float) * DATA_SIZE, // size in bytes of the buffer to allocated
     inputsrc, // pointer to buffer data to be copied from host
     &err     // returned error code
);
                
            

The bit-field flag is used to specify allocation and define how the memory is used. The
following table describes the supported values for the flag.
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Table 5–2  Supported Cl_MEM Flags

CL_MEM Flags Description

CL_MEM_READ_WRITE Kernel can read and write to the memory object.

CL_MEM_WRITE_ONLY Kernel can write to memory object. Read from the memory object is
undefined.

CL_MEM_READ_ONLY Kernel can only read from the memory object. Write from the memory
object is undefined.

CL_MEM_USE_HOST_PTR Specifies to OpenCL implementation to use memory reference by host_ptr
(4th arg) as storage for memory object.

CL_MEM_COPY_HOST_PTR Specifies to OpenCL to allocate the memory and copy data pointed by
host_ptr (4th arg) to the memory object.

CL_MEM_ALLOC_HOST_PTR Specifies to OpenCL to allocate memory from host accessible memory.

If the buffer object is created successfully, clCreateBuffer() returns a non-zero
buffer object with an error return code value of CL_SUCCESS. Otherwise, a NULL
value is returned with one of the following error codes:

• CL_INVALID_CONTEXT — The context is not valid.

• CL_INVALID_VALUE — The value in cl_mem_flag is not valid (see table above
for supported flags).

• CL_INVALID_BUFFER_SIZE — The buffer size is 0 (zero) or exceeds the range
supported by the compute devices associated with the context.

• CL_INVALID_HOST_PTR — Either: The host_ptr is NULL, but
CL_MEM_USE_HOST_PTR, CL_MEM_COPY_HOST_PTR, and
CL_MEM_ALLOC_HOST_PTR are set; or host_ptr is not NULL, but the
CL_MEM_USE_HOST_PTR, CL_MEM_COPY_HOST_PTR, and
CL_MEM_ALLOC_HOST_PTR are not set.

• CL_INVALID_OBJECT_ALLOCATION_FAILURE — Unable to allocate memory
for the memory object.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.

5.5.2 Reading, Writing, and Copying Buffer Objects

After the buffer memory object is created, commands can be enqueued to write data
to a buffer object from host memory or read data from a buffer object to host memory.
OpenCL provides the clEnqueueWriteBuffer() and clEnqueueReadBuffer()
functions for these purposes.
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err = clEnqueueReadBuffer(
     command_queue,            // valid command queue
     output,                   // memory buffer to read from
     CL_TRUE,                  // indicate blocking read
     0,                        // the offset in the buffer object to read from
     sizeof(float) *DATA_SIZE, // size in bytes of data being read
     results,                  // pointer to buffer in host mem to store read data
     0,                        // number of event in the event list
     NULL,                     // list of events that needs to complete before this executes
     NULL                      // event object to return on completion
);    
            

clEnqueueReadBuffer() enqeues a command to read data from a buffer object into
host memory. This function is typically used to read the results from the kernel
execution back to the host program. The CL_TRUE parameter indicates that the read
command is blocked until the buffer data is completely copied into host memory. If
the blocking parameter is set to CL_FALSE, the read command is returned as soon as
it's enqueued. Another way to determine when the read command has finished
copying data to the host memory is to use an event object that is returned by the read
command and can be used to check on the execution status.

err = clEnqueueWriteBuffer(
     command_queue, // valid command queue
     input,         // memory buffer object to write to
     CL_TRUE,       // indicate blocking write
     0,             // the offset in the buffer object to write to
     sizeof(float) *DATA_SIZE, // size in bytes of data to write
     host_ptr,      // pointer to buffer in host mem to read data from
     0,             // number of event in the event list
     NULL,          // list of events that needs to complete before this executes
     NULL           // event object to return on completion
);
            

clEnqueueWriteBuffer() enqueues a command to write data from host memory to
a buffer object. This function is typically used to provide data for the kernel for
processing. Similar to clEnqueuReadBuffer(), the block flag can be set to CL_TRUE or
CL_FALSE to indicate blocking or non-blocking for the write command.

If the functions execute successfully, clEnqueueReadBuffer() and
clEnqueueWriteBuffer() return CL_SUCCESS. Otherwise, one of the following
common error codes may be returned:

• CL_INVALID_COMMAND_QUEUE — The command queue is not valid

• CL_INVALID_CONTEXT — The command queue buffer object is not associated
with the same context.

• CL_INVALID_VALUE — The region being read/write specified by the offset is
out of bounds or the host pointer is NULL.

• CL_INVALID_EVENT_WAIT_LIST — Either: The events list is empty (NULL), but
the number of events argument is greater than 0; or number of events is 0, but
the event list is not NULL; or ;the events list contains invalid event objects.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.
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The function clEnqueueCopyBuffer() can be used to copy data from one memory
buffer object to another. For more information on the clEnqueueCopyBuffer()
function, see the OpenCL specification.

5.5.3 Retaining and Releasing Buffer Objects

Whenever a memory buffer object is created the reference counter for that object is
set to 1. The reference counter is used to track how many objects have references to
a particular buffer object. At any time, other object can retain a reference to the buffer
object by calling clRetainMemObject(). This increases the buffer object's reference
count by 1. When the memory buffer object is no longer needed, the
clReleaseMemObj() function can be used to decrement the reference counter by 1.
When the reference counter becomes zero, the memory object is freed.

clRetainMemObject() and clReleaseMemObj() return CL_SUCCESS if the function
executes successfully. Otherwise, CL_INVALID_MEM_OBJECT is returned if the buffer
object is not a valid memory object.

5.5.4 Creating Image Objects

OpenCL has built-in support for representing image data in a wide range of formats.
This is useful when creating kernel functions that must perform processing on image
data. The function clCreateImage2D() is used to create a two-dimensional image
object.

image2d = clCreateImage2D(
     context,      // valid context
     flags,        // bit-field flag to specify usage of memory
     image_format, // ptr to struct that specifies image format properties
     width,        // width of the image in pixels
     height,       // height of the image in pixels
     row_pitch,    // scan line row pitch in bytes
     host_ptr,     // pointer to image data to be copied from host
     &err          // error return code
     );
            

Options such as read-only, write-only, read-write, etc., that are used by
clCreateBuffer() can also be used by clCreateImage2D(). For details, see Table 5–
2  Supported Cl_MEM Flags.

The row-pitch is the number of bytes necessary to represent one line of the image.
Row-pitch is calculated as width × size of each element in bytes. If the row-pitch is set
to 0, the OpenCL implementation will perform the row-pitch calculation.

The image format is a structure that describes the properties such as number of
channels and channel ordering in the image:
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typedef struct _cl_image_format {  
     cl_channel_order image_channel_order;  
     cl_channel_type image_channel_data_type;
} 
cl_image_format;
            

Supported channel_data_order settings are listed in the following table.

Table 5–3  Supported Channel Data Order

channel_data_order

CL_R or CL_A

CL_INTENSITY — Supported only if channel data type = CL_UNORM_INT8, CL_UNORM_INT16,
CL_SNORM_INT8, CL_SNORM_INT16, CL_HALF_FLOAT, or CL_FLOAT.

CL_LUMINANCE — Supported only if channel data type = CL_UNORM_INT8, CL_UNORM_INT16,
CL_SNORM_INT8, CL_SNORM_INT16, CL_HALF_FLOAT, or CL_FLOAT.

CL_RG or CL_RA

CL_RGB — Supported only if channel data type = CL_UNORM_SHORT_565, CL_UNORM_SHORT_555, or
CL_UNORM_INT_101010

CL_RGBA

CL_ARGB or CL_BGRA — Supported if channel data type = CL_UNORM_INT8, CL_SNORM_INT8,
CL_SIGNED_INT8, or CL_UNSIGNED_INT8

The channel_data_type specifies the size of the channel data type, as listed in the
following table:

Table 5–4  Supported Channel Data Types

channel_data_type Description

CL_SNORM_INT8 Each channel is a signed normalized 8-bit integer.

CL_SNORM_INT16 Each channel is a signed normalized 16-bit integer.

CL_UNORM_INT8 Each channel is a unsigned normalized 8-bit integer.

CL_UNORM_INT16 Each channel is a unsigned normalized 16-bit integer.

CL_UNORM_SHORT_565 3-channel RGB image packed into a single unsigned short of 5-6-5. Bits 15:11=R,
10:5=G, 4:0=B. The channel order must be set to CL_RGB.

CL_UNORM_SHORT_555 3-channel RGB image packed into a single unsigned short of 5-5-5. Bits 14:10=R,
9:5=G, 4:0=B. The channel order must be set to CL_RGB. The channel order must
be set to CL_RGB.

CL_UNORM_INT_101010 3-channel RGB image packed into a single unsigned int of 10-10-10. Bits
31:30=undefined, 29:20=R, 19:10=G, 9:0=B. The channel order must be set to
CL_RGB.

CL_SIGNED_INT8 Each channel is signed unnormalized 8-bit integer.

CL_SIGNED_INT16 Each channel is signed unnormalized 16-bit integer.

CL_SIGNED_INT32 Each channel is signed unnormalized 32-bit integer.

CL_UNSIGNED_INT8 Each channel is unsigned unnormalized 8-bit integer.
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channel_data_type Description

CL_UNSIGNED_INT16 Each channel is unsigned unnormalized 16-bit integer

CL_UNSIGNED_INT32 Each channel is unsigned unnormalized 32-bit integer

CL_HALF_FLOAT Each channel is a 16-bit half-float

CL_ FLOAT Each channel is a single precision float

Example: For a floating point data channel with RGBA channel-ordering the
image_format struct would be set as follows:

cl_image_format image_format;
image_format.image_channel_data_type = CL_FLOAT;
image_format.image_channel_order = CL_RGBA;
            

Similar to 2D images, a 3D image object is created using the clCreatImage3D()
function. For a 3D object, the depth of the object must be provided in addition to the
width and height. The slice_pitch size must also be provided in addition to row_pitch
size (slice_pitch is the size of each 2D slice in the 3D image, in bytes). See the OpenCL
Specification for more details on creating a 3D image object.

As with buffer objects, OpenCL also provides functions to enqueue commands to write
2D or 3D image data to host memory or read back 2D or 3D image objects to host
memory.

err = clEnqueueReadImage (
     command_queue, // valid command queue
     image,         // valid image object to read from
     blocking_read, // blocking flag, CL_TRUE or CL_FALSE
     origin_offset, // (x,y,z) offset in pixels to read from z=0 for 2D image
     region,        //(width,height,depth) in pixels to read from, depth=1 for 2D image
     row_pitch,     // length of each row in bytes
     slice_pitch,   // size of each 2D slice in the 3D image in bytes, 0 for 2D image
     host_ptr,      // host memory pointer to store write image object data to 
     num_events,    // number of events in events list
     event_list,    // list of events that needs to complete before this executes
     &event         // event object to return on completion
);

err = clEnqueueWriteImage (
     command_queue, // valid command queue
     image,         // valid image object to write to
     blocking_read, // blocking flag, CL_TRUE or CL_FALSE
     origin_offset, // (x,y,z) offset in pixels to write to z=0 for 2D image
     region,        //(width,height,depth) in pixels to write to, depth=1 for 2D image
     row_pitch,     // length of each row in bytes
     slice_pitch,   // size of each 2D slice in the 3D image in bytes, 0 for 2D image
     host_ptr,      // host memory pointer to store read data from
     num_events,    // number of events in events list
     event_list,    // list of events that needs to complete before this executes
     &event         // event object to return on completion
);
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If the function executes successfully, clEnqueueReadImage() and
clEnqueueWriteImage() return CL_SUCCESS. Otherwise, one of the following
common error codes may be returned:

• CL_INVALID_COMMAND_QUEUE — The command queue is not valid.

• CL_INVALID_CONTEXT — The command queue and image object are not
associated with the same context.

• CL_INVALID_MEM_OBJECT — The image object is not valid

• CL_INVALID_VALUE — The region being read/write specified by the
origin_offset and region is out of bounds or the host pointer is NULL.

• CL_INVALID_VALUE — The image object is 2D and origin_offset[2] (y
component) is not set to 0, or region[2] (depth component) is not set to 1.

• CL_INVALID_EVENT_WAIT_LIST — Either: The events list is empty (NULL), but
the number of events argument is greater than 0; or number of events is 0, but
the event list is not NULL; or the events list contains invalid event objects.

• CL_INVALID_OPERATION — The associated device does not support images.

• CL_OUT_OF_HOST_MEMORY — The host is unable to allocate OpenCL
resources.

For a complete list of error codes, see the OpenCL specification.

5.5.5 Retaining and Releasing Image Objects

Image objects should be freed when no longer required by the application. They are
retained and released using the same clRetainMemObj() and clReleaseMemObj()
functions used by buffer objects. For details, see 5.5.3 Retaining and Releasing Buffer
Objects.

5.6 Synchronization
When a kernel is queued, it may not execute immediately. Execution can be forced by
using a blocking call. The clEnqueueRead*() and clEnqueueWrite*() functions
contain a blocking flag that, when set to CL_TRUE, forces the function to block until
read/write commands have completed. Using a blocking command forces the
OpenCL runtime to flush all the commands in the queue by executing all kernels.

The recommended way to track the execution status of kernels in the command queue
is to use events. Events allow the host application to work without blocking OpenCL
calls. The host application can send tasks to the command queue and return later to
check if the execution is done by querying the event status.

The queue can execute commands in-order or out-of-order, depending on how the
command is created. An in-order queue behaves as expected as long the commands
are enqueued from a single thread. If there are multiple devices—for example, a GPU
and a CPU, each of which have their own queue—commands must be synchronized
between the two queues using specific functions such as clEnqueue*. All
clEnqueue* functions take three arguments: The number of events to wait on, a list of
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events to wait on, and an event that the command creates that can be used by other
commands to perform synchronization:

clEnqueue*(...,num_events, events_wait_list, event_return)

The following image illustrates a scenario with one OpenCL device and one command
queue.

Figure 5–5  Kernel Execution with One Device and One Queue

When two kernels must be executed, with the second kernel using the results of the
first, the first kernel command enters the queue but may not execute immediately.
Since the enqueue function is an asynchronous call and returns when it is called, the
second kernel command is enqueued when the function returns. Thus, as a single in-
order command queue, the second kernel command will not execute until the first
command has finish executing.

The same result can be achieved when using multiple OpenCL devices, each having
its own queue, and kernel execution must be synchronized between the two devices.
If kernel 1 is running on a GPU, kernel 2 is running on a CPU, and the second kernel
must use the results of the first, the second kernel will execute only after the first is
finished—but again, only if events are used.
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The following figure illustrates what can happen in the same two-devices, two-queue
scenario, but without using events to synchronize execution. In this illustration, the
first kernel is enqueued into the GPU queue but is not executed immediately. When it
is executed, the OpenCL runtime may also detect that the CPU is free, and begin
executing the second kernel before results from the first kernel are returned.

Figure 5–6  Two Devices with Two Queues, Unsynchronized
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In the same two-devices, two-queue scenario, this time using events to synchronize
execution, overlapping execution is avoided, as illustrated in the following figure:

Figure 5–7  Two Devices with Two Queues Synchronized Using Events

In addition to using events in the clEnqueue functions to manage how kernels are
executed, host application events can also be managed, allowing the application to
better manage resources for maximum optimization.

The function clWaitForEvents(num_events,event_list) causes the host application
to block and wait until all commands identified by the event list are complete (that is,
when the execution status of each command is CL_COMPLETE). The OpenCL runtime,
rather than the host application, can also perform the block by using the
clEnqueueWaitForEvents(command_queue, num_events,event_list) function to
introduce a wait command into the queue to wait for specific events to complete
before any future commands in the queue are executed.

An event marker can also be inserted into the command queue. This allows tracking
of how quickly commands are moving through the queue. The function
clEnqueueMarker(command_queue, *event_return) returns an event which can be
used to queue a wait on the specified event.

Another useful synchronization function is clGetEventInfo():

            
clGetEventInfo(
     event,  // the event object to query
     param_name,  // the cl_event_info 
     param_size,  // the size of the returned info
     param_value, // the value of the returned info
     actual_param_size_ret // actual size of info returned
)
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This function allows the querying of an event object to determine what command the
event is associated with and the execution status of the command (whether it's
running or completed). The list of supported param_name types and the information
returned by clGetEventInfo() is described in the following table.

Table 5–5  Supported List param_name and Return Values for clGetEventInfo()

cl_event_info Return Type Info returned in parm_value

CL_EVENT_COMMAND_QUEUE cl_command_queue Return the command queue associated with
the event

CL_EVENT_COMMAND_TYPE cl_command_type Command type is one of the following:

CL_COMMAND_NDRANGE_KERNEL

CL_COMMAND_TASK

CL_COMMAND_NATIVE_KERNEL

CL_COMMAND_READ_BUFFER

CL_COMMAND_WRITE_BUFFER

CL_COMMAND_COPY_BUFFER

CL_COMMAND_READ_IMAGE

CL_COMMAND_WRITE_IMAGE

CL_COMMAND_COPY_IMAGE

CL_COMMAND_COPY_BUFFER_TO_IMAGE

CL_COMMAND_COPY_IMAGE_TO_BUFFER

CL_COMMAND_MAP_BUFFER

CL_COMMAND_MAP_IMAGE

CL_COMMAND_UNMAP_MEM_OBJECT

CL_COMMAND_MARKER

CL_COMMAND_ACQUIRE_GL_OBJECTS

CL_COMMAND_RELEASE_GL_OBJECTS

CL_EVENT_COMMAND_EXECUTION_STATUS cl_int Execution status is one of the following:

CL_QUEUED — command has been
enqueued int the command queue

CL_SUBMITTED — enqueued command has
been submitted to the OpenCL device

CL_RUNNING — the command is currently
executing by the device

CL_COMPLETE — the command has
completed

Error code — negative integer value
indicating command was terminated
abnormally.

CL_EVENT_REFERENCE_COUNT cl_unit Returns the reference counter of the event
object.

The following code shows how to get the execution status of an event object:
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cl_int status;
size_t return_size;
err = clGetEventInfo(
     event, 
     CL_EVENT_COMMAND_EXECUTION_STATUS, 
     sizeof(cl_int), 
     &status,  
     &return_size
);
            

If the function is executed successfully, clGetEventInfo() returns CL_SUCCESS.
Otherwise, one of the following values are returned:

• CL_INVALID_EVENT — The event object is invalid.

• CL_INVALID_VALUE — The param_name is not valid, or the param_size is less
than the size of the return type.
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Chapter  6

The OpenCL C Language
The OpenCL C programming language is based on the ISO C99 specification with some
modifications and restrictions. This chapter highlights important aspects of the
OpenCL C language that are used to created kernels for execution on OpenCL devices.
For complete details on the language, see the OpenCL specification.

6.1 Restrictions
Key restrictions in the OpenCL C language are:

• Function pointers are not supported.

• Bit-fields are not supported.

• Variable length arrays are not supported.

• Recursion is not supported.

• No C99 standard headers such as ctypes.h, errno.h, stdlib.h, etc. can be included.

6.2 Data Types
OpenCL C language has many built-in scalar types that should be familiar to C
programmers. A set of vector data types and vector operations were also added for
easier manipulation of data set such as matrices. The OpenCL implement ensures that
data is portable, so when data must be moved from one device to another—such as
from a GPU to a CPU, OpenCL ensures that the data always endian safe and properly
aligned. This section describes the various data types supported by OpenCL C.

6.2.1 Scalar Data Types

The table below shows the common built-in scalar data types supported by OpenCL
C as well as the matching types declared in the OpenCL API that can be used in the
host application. Refer to the OpenCL specification for complete list of supported
scalar data types.
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Table 6–1  Supported Scalar Data Types

OpenCL C Type OpenCL API Type for host app Description

bool n/a conditional data type can be either true
expanding to constant 1 or false expanding to
constant 0

char cl_char signed two's complement 8-bit integer

unsigned char, uchar cl_uchar unsigned 8-bit integer

short cl_short signed two's complement 16-bit integer

unsigned short, ushort cl_ushort unsigned 16-bit integer

int cl_int signed two's complement 32-bit integer

unsigned int, unit cl_uint unsigned 32-bit integer

long cl_long signed two's complement 64-bit integer

unsigned long, ulong cl_ulong unsigned 64-bit integer

float cl_float IEEE 754 single precision floating point

6.2.2 Vector Data Types

One addition to the OpenCL C language is support of various vector data types. The
vector data is defined with the type name follow by a value n that specifies the number
of elements in the vector. For example a 4 component floating point vector would be
float4. The supported components are: 2, 4, 8, and 16. The table below shows the built-
in vector data types supported by OpenCL C as well as the matching types declared in
the OpenCL API that can be used in the host application.

Table 6–2  Supported Vector Data Types

OpenCL C Type OpenCL API Type for host app Description

charn cl_charn signed two's complement 8-bit integer vector

ucharn cl_ucharn unsigned 8-bit integer vector

shortn cl_shortn signed two's complement 16-bit integer vector

ushortn cl_ushortn unsigned 16-bit integer vector

intn cl_intn signed two's complement 32-bit integer vector

uintn cl_uintn unsigned 32-bit integer vector

longn cl_longn signed two's complement 64-bit integer vector

ulongn cl_ulongn unsigned 64-bit integer vector

floatn cl_floatn floating point vector

Note: Even if the OpenCL device does not support any of all of the above vector data
types, the OpenCL compiler will convert the vector types to the appropriate types
supported built-in types supported by the OpenCL device.

There are several ways to access the components of a vector data type depending on
the how many components are in the vector. Vectors types with 2 components such
as char2, unint2, etc. can access the different components using <vector2>.xy. Vector

Introduction to OpenCL™ Programming PID: 137-41768-10 ∙ Rev: A ∙ May, 2010

58 The OpenCL C Language



types with 4 components such as long4, float4, etc. can access components using
<vector4>.xyzw. An example:

float2 pos;
pos.x = 1.0f;
pos.y = 1.0f;
pos.z = 1.0f; // illegal since vector only has 2 components

float4 c;
c.x = 1.0f;
c.y = 1.0f;
c.z = 1.0f;
c.w = 1.0f;
            

Vector components can also be accessed using numeric index to address the particular
component. Table below shows the numeric indices used for accessing. When using
number index to access the components, the indices must be prefixed with by the
letter s or S.

Vector components Numeric indices

2 components 0, 1

4 components 0, 1, 2, 3

8 components 0, 1, 2, 3, 4, 5, 6, 7

16 components 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, F

Examples:

float8   f;

f.s0 = 1.0f; // the 1st component in the vector
f.s7 = 1.0f; // the 8th component in the vector

float16   x;

f.sa = 1.0f; // or f.sA is the 10th component in the vector 
f.sF = 1.0f; // or f.sF is the 16th component in the vector
            

OpenCL also provides quick addressing to a grouping of components in a vector:

Vector access suffix Description

.lo Returns the lower half of a vector

.hi Returns the upper half of a vector

.odd Returns the odd components of a vector

.even Returns the even components of a vector

Examples:
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float4 f = (float4) (1.0f, 2.0f, 3.0f, 4.0f);
float2 low, high;
float2 o, e;

low = f.lo; // returns f.xy (1.0f, 2.0f)
high = f.hi; // returns f.zw (3.0f, 4.0f)
o = f.odd; // returns f.yw (2.0f, 4.0f)
e = f.even; // returns f.xz (1.0f, 3.0f)

6.2.3 Vector Operations

In addition to all the typical operator C programmers are used to, such as +, -, *, /, &,
|, etc., the OpenCL C language allows the same operators to be perform on vectors.
Vector operations are perform on each component in the vector independently. The
following examples illustrate this:

Example 1:

int4 vi0, vi1;
int v;

vi1 = vi0 + v;
            

is equivalent to:

vi1.x = vi0 + v;
vi1.y = vi0 + v;
vi1.z = vi0 + v;
vi1.w = vi0 + v;  
            

Example 2:

            
float4 u, v, w;
w = u + v
w.odd = v.odd + u.odd;

is equivalent to:

            
w.x = u.x + v.x;
w.y = u.y + v.y;
w.z = u.z + v.z;
w.w = u.w + v.w;

w.y = v.y + u.y;
w.w = v.w + u.w;

6.3 Type Casting and Conversions
OpenCL C language allows implicit conversion of scalar data types and pointer types
as described in the C99 specification. The implicit conversion process converts the
value of a type into an equivalent value in the new type. The built-in scalar types
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shown in Table 6–1  Supported Scalar Data Types all support implicit conversion. For
built-in vector types, implicit conversions are not allowed. Thus, the following is
illegal:

int4 v4;
float4 f = v4; // not allowed   
            

Explicit conversions through casting for built-in data types are also supported. For
example, the following will convert the floating point value of x into an integer value:

float    x;
int i = (int)x;
            

If, however, explicit casting is applied between vector data types such as those used
in the following example, an error is generated:

int4 i;
float4 f = (float4) i;  // not allowed
            

OpenCL provides a set of built-in function to explicitly convert between the data types.
These functions can operate on both scalar and vector data types. The conversion
functions take the form:

convert_<destination_type>(source_type)                

Examples:

int4 i;
float4 f = convert_float4(i); // converts an int4 vector to float4

float f;
int i = convert_int(f); // converts a float scaler to an integer scaler 
            

When converting between vector types, the number of components in each vector
must be the same. The following example is illegal.

int8 i;
float4 f = convert_float4(i); // illegal  
            

Sometimes the conversion may not produce the expected results due to rounding or
out-of-range values. OpenCL allows us to specify how out-of-range values and and
rounding should be treated by using two optional modifiers on the conversion
functions.

convert_<destination_type><_sat><_roundingMode>(source_type)
            

The saturation (_sat) modifier specifies how an out-of-range conversion is handled.
When the value to be converted is beyond the range that can be represented by the
target type, the values are clamped to the nearest representable value. The _sat
modifier is only supported when converting to an integer type. Conversion to a
floating point type follows IEEE754 rules, and may not use the saturation modifier.
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The rounding modifier specifies the rounding mode to use in the conversion. The table
below list the supported rounding modes.

Rounding Modifier Description

_rte Round to nearest even

_rtz Round towards zero

_rtp Round towards positive infinity

_rtn Round towards negative infinity

No modifer Defaults to _rtz for conversions to integer

Defaults to _rte for conversions to floating point

Explicit conversion examples:

float4    f = (float4)(-1.0f, 252.5f, 254.6f, 1.2E9f);
uchar4    c = convert_uchar4_sat(f);
// c = (0, 253, 255, 255)
// negative value clamped to 0, value > TYPE MAX is set to the type MAX
// -1.0 clamped to 0, 1.2E9f clamped to 255

float4    f = (float4)(-1.0f, 252.5f, 254.6f, 1.2E9f);
uchar4    c = convert_uchar4_sat_rte(f);
// c = (0, 252, 255, 255)
// 252.5f round down to near even becomes 252 

int4 i;
float4 = convert_float4(i);
// convert to floating point using the default rounding mode

int4 i;
float4 = convert_float4_rtp(i);
// convert to floating point. Integer values not representable as float
// are rounded up to the next representable float
            

Built-in scalar and vector data types can also be reinterpreted as another data type as
long as they are the same size. The function as_<typen>(value) reinterprets the bit
pattern in the source to another type without any modification. For example, the value
1.0f is represented as 0x3f800000 in an IEE754 value. The value 1.0f can be
reinterpreted as a uint this way:

uint i = as_uint(1.0f);
// i will have value 0x3f800000
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6.4 Qualifiers

6.4.1 Address Space Qualifiers

3.3.3 The Memory Model briefly described the OpenCL memory model defines four
regions of memory for work-items to access when executing a kernel. The different
address spaces allow memory to be shared between work-items, or allow us to choose
the best memory space for the operations to be performed. The four disjointed
address spaces are: __global, __local, __constant, and __private. To allocate
memory for a specific region of memory, one of the above qualifiers may be used in
the variable declaration.

All functions (including the __kernel function) and their arguments or local variables
are in the __private address space. Arguments of a __kernel function declared as a
pointer type can point to only one of the following memory spaces: __global,
__local, or __constant. Assigning a pointer address to one space to another is not
allowed. For example, a pointer to __global can only be assigned to a pointer to
__global. Casting of pointers between different address spaces may cause
unexpected behavior. A __kernel function with arguments declared as image2d_t or
image3d_t can only point to the __global address space.

Examples:

__global float *ptr // the pointer ptr is declared in the __private address
                    // space and points to a float that is in the __global
                    // address space

int4  x    // declares an int4 vector in the __private address
            

Global address space
This address space refers to memory objects such as scalars, vectors, buffer objects,
or image objects that are allocated in the global memory pool. For a GPU compute
device, this is typically the frame buffer memory.

Local address space
This address space is typically used by local variables that are allocated in local
memory. Memory in the local address space can be shared by all work-items of a
work group. For example, local memory on a GPU compute device could be the
local data store for one of the compute units (or core) on the GPU.

Constant address space
This address space describes variables that allocated in global memory pool but can
only be accessed as read-only variables. These variables are accessible by the entire
global work-items. Variable that need to have a global scope must be declared in
the constant address space.

Private address space
This address space describes variables that are passed into all functions (including
__kernel functions) or variables declared without a qualifier. A private variable
can only be accessed by the work-item in which it was declared.
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6.4.2 Image Qualifiers

OpenCL also provides access to qualifiers when passing an image memory object as
arguments to __kernel functions. The qualifier __read_only and __write_only can
specify whether the image object passed to the kernel is read-only or write-only.
Default access is __read_only when no qualifier is explicitly provided. Kernel
functions cannot have both read and write access to the same image memory object.

The following kernel declaration declares the argument inputImage as a read-only
image object, and outputImage as a write-only image object:

__kernel void myfunc(__read_only image2d_t inputImage, 
                     __write_only image2d_t outputImage)
            

6.5 Built-in Functions
The OpenCL C language includes a wide set of built-in functions for many types of
operations such as math functions, work-item functions, image access functions. Refer
to the OpenCL Specification for details of all the built-in function. This section will
describes some of the common functions used to operate on work-items, image
objects, and work-items synchronization.

6.5.1 Work-item Functions

Work-item functions can be used to query the information relating to the data that the
kernel is asked to process. These functions allow querying of dimension size of the
data, the global size for each dimension, the local work size, number of work-groups,
as well the unique global and local work-item ID of the kernel that is being executed.

// returns the number of dimensions of the data problem space
uint get_work_dim()

// returns the number total work-items for the specified dimension
size_t get_global_size(dimidx)

// returns the number of local work-items in the work-group specified by dimension
size_t get_local_size(dimidx)

// returns the unique global work-item ID for the specified dimension
size_t get_global_id(dimidx)

// returns the unique local work-item ID in the work-group for the specified dimension
size_t get_local_id(dimidx)

// returns the number of work-groups for the specified dimension 
size_t get_num_groups(dimidx)

// returns the unique ID of the work-group being processed by the kernel
size_t get_group_id(dimidx)
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The following kernel function illustrates how these functions are used:

__kernel void square(__global int *input, __global int *output)
{
    size_t id = get_global_id(0);
    output[id] = input[id] * input[id];
}       
            

The following figure shows the input and expected output:

Since the kernel function is a data parallel function, it is executed for each work-item.
When a work-item calls get_global_id(0) the request is for the unique global work-
item ID used to index the data. The example below, the work-item instance is returned
id=6 when it makes a call to get_global_id(0). The work-item can then use the id to
index the data to perform the operation.
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If, for example, the kernel function is enqueued by indicating that the input will be
divided into groups of eight elements, the results of the various work-item functions
will appear as shown in the following image.

6.5.2 Image Access Functions

When using image memory objects, the data in the image object can only be read and
written using the built-in image access functions. A wide range of read and write
functions are available, depending on the image channel data type when the image
memory object is created. The following is a list of some of the built-in image access
functions. Refer to the OpenCL specification for the details of each function.

read_imagef()  // for reading image with float-point data channel
read_imagei()  // for reading image with integer data channel
read_imageui() // for reading image with unsigned integer data channel

write_imagef()  // for writing image with float-point data channel
write_imagei()  // for writing image with integer data channel
write_imageui() // for writing image with unsigned integer data channel

get_image_width()  // returns width of the 2D or 3D image 
get_image_height() // returns height of the 2D or 3D image
get_image_depth()  // returns depth of the 3D image
            

6.5.3 Synchronization Functions

The OpenCL C language provides functions to allow synchronization of work-items.
The memory model discussion in Chapter  3  Introduction to OpenCL described how
synchronization can only occur between work-items in the same work-group. To
achieve that, OpenCL implements a barrier memory fence for synchronization.
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The function barrier(mem_fence_flag) creates a barrier that blocks the current
work-item until all other work-items in the same group has executed the barrier
before allowing the work-item to proceed beyond the barrier. It is important to note
that when using barrier, all work-items in the work-group must execute the barrier
function. If the barrier function is called within a conditional statement, it is important
to ensure that all work-items in the work-group enter the conditional statement to
execute the barrier.

For example, the following function is an illegal use of barrier because the barrier will
not be encountered for more than five work-items:

__kernel void read(__global float *input, __global float *output)
    {
        size_t id = get_global_id(0);
        if (id < 5)
            barrier(CLK_GLOBAL_MEM_FENCE);
        else
        ...
    }
            

The mem_fence_flag can be either CLK_LOCAL_MEM_FENCE, or
CLK_GLOBAL_MEM_FENCE is use by the barrier function to either flush any variable
in local or global memory or setup a memory fence to ensure that correct ordering of
memory operations to either local or global memory.

OpenCL C language implements memory fence functions to provide ordering
between memory operations of a work-item. Memory fence can be useful when work-
items needs to write data to a buffer and then read back the updated data. Using
memory fence ensures that reads or writes before the memory fence have been
committed to memory. OpenCL allows explicit setup of memory fence by using one
of the following functions.

// ensures all reads and writes before the memory fence have committed to memory
void mem_fence(mem_fence_flag)

// ensures all reads before memory fence have completed
void read_mem_fence(mem_fence_flag)

// ensures all writes before memory fence have completed
void write_mem_fence(mem_fence_flag)
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Chapter  7

Application Optimization and Porting
This chapter describes OpenCL kernel debugging and provides performance and
optimization tips for kernel execution on AMD GPU and CPU devices. Also included
are language equivalents for use in porting applications from NVIDIA's C for CUDA
language to OpenCL.

7.1 Debugging OpenCL
The ATI Stream SDK v2 provides debugging features that allow the debugging of
OpenCL kernels on Linux using GDB. This section covers only some of the basic GDB
commands; for complete GDB documentation, see GDB: The GNU Project Debugger.

7.1.1 Setting Up for Debugging

To enable debugging, an OpenCL program passes the "-g" option to the build
clBuildProgram() function:

err = clBuildProgram(program, 1, devices, "-g", NULL, NULL);              
            

To avoid changes to the source code, the following environment variable can be used
to force debugging when compiling for a CPU device:

export CPU_COMPILER_OPTIONS=-g
            

When debugging, the kernel program must be set to execute on a CPU device. It is also
important to set the environment variable so the kernel program is executed
deterministically:

export CPU_MAX_COMPUTE_UNITS=1
            

7.1.2 Setting Breakpoints

If no breakpoint is set during a GDB session, the program does not stop until execution
has completed. To set a breakpoint using GDB:
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b linenumber 
                

or

b function_name | kernel_function_name
            

A breakpoint can be set at a particular line in the source code by simply specifying the
line number. A break point can also be set at the start of a function by specifying the
function_name. To set a break point for a kernel function, use the construct
__OpenCL_function_kernel. For example, to set a breakpoint for the following kernel
function:

__kernel void square(__global int *input, __global int *output)        
            

Use the following code:

b __OpenCL_square_kernel
            

Note:  The OpenCL kernel symbols are not visible to the debugger until the kernel is
loaded, when a question is asked about making the breakpoint pending on future
library load:

To check that the symbol is correct, set a breakpoint in the host code at the
clEnqueueNDRangeKernel function, then list all OpenCL symbols using the GDB
command:

info functions __OpenCL
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Figure 7–1  Listing OpenCL Debugging Symbols

A conditional breakpoint can also be set to stop the program at a particular work-item.
This is done by setting a conditional breakpoint when get_global_id == ID. For
example, to set a breakpoint at the kernel function for the work-item with global
id==5:

b __OpenCL_square_kernel if get_global_id(0) == 5
            

Figure 7–2  Setting a Conditional Breakpoint

7.2 Performance Measurement
The OpenCL runtime provides a built-in mechanism for timing the execution of
kernels. This allows the developer to evaluate kernel performance for maximum
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optimization. Kernel command profiling is done by specifying the
CL_QUEUE_PROFILING_ENABLE properties when creating the command queue with
clCreateCommandQueue(). The command queue properties can also be set after the
queue has been created by using the clSetCommandQueueProperties() function.

When queue profiling is enabled, the OpenCL runtime automatically records
timestamp information for every kernel and memory operation submitted to the
queue. The profiling function and supported data are as follows:

err = clGetEventProfilingInfo(
     event,               // the event object to get info for
     param_name        // the profiling data to query - see list below
     param_value_size  // the size of memory pointed by param_value
     param_value       // pointer to memory in which the query result is returned
     param_actual_size // actual number of bytes copied to param_value
);

Table 7–1  Supported Profiling Data for clGetEventProfilingInfo()

Profiling data Return Type Information returned

CL_PROFILING_COMMAND_QUEUE cl_ulong A 64-bit counter in nanoseconds when the command
is enqueued in a command queue.

CL_PROFILING_COMMAND_SUBMIT cl_ulong A 64-bit counter in nanoseconds when the command
that has been enqueued is submitted to compute the
device for execution

CL_PROFILING_COMMAND_START cl_ulong A 64-bit counter in nanoseconds when the command
started execution on the compute device

CL_PROFILING_COMMAND_END cl_ulong A 64-bit counter in nanoseconds when the command
has finished execution on the compute device

If the function executes successfully, clGetEventProfilingInfo() returns
CL_SUCCESS. Otherwise, one of the following error codes are returned:

• CL_INVALID_EVENT — The event object is not valid.

• CL_PROFILING_INFO_NOT_AVAILABLE — The command queue does not
have the CL_QUEUE_PROFILING_ENABLE properties flag set, or the event
associated with the command is not completed.

• CL_INVALID_VALUE — The query data param_name is not valid, or the size
param_actual_size is greater than param_value_size.

The following sample code determines the execution time for a kernel command:
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cl_event myEvent;
cl_ulong startTime, endTime;

clCreateCommandQueue (…, CL_QUEUE_PROFILING_ENABLE, NULL);
clEnqueueNDRangeKernel(…, &myEvent);
clFinish(myCommandQ); // wait for all events to finish

clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_START,
                        sizeof(cl_ulong), &startTime, NULL);
clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_END,
                        sizeof(cl_ulong), &endTime, NULL);
cl_ulong elapsedTime = endTime-startTime;          
            

7.2.1 Using the ATI Stream Profiler

The ATI Stream Profiler provides a Microsoft® Visual Studio® integrated view of key
static kernel characteristics such as work-group dimensions and memory transfer
sizes, as well as kernel execution time, dynamic hardware performance counter
information (ALU operations, local bank conflicts), and kernel disassembly. The ATI
Stream Profiler is installed if the SDK was installed using the express option.

To confirm that the profiler is installed:

1. Open a Visual Studio solution file.

2. Select Help ▷ About Microsoft Visual Studio from the Visual Studio's main menu
bar. Under Installed products, you should find ATI Stream Profiler 1.1. If you
don't see it, open a command window using the Run as Administrator option
and run C:\Program Files (x86)\Microsoft Visual Studio
9.0\Common7\IDE\devenv.exe /setup for a 64-bit system or C:\Program Files
\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe /setup for a 32-bit
system from a command line prompt (with "Run as Administrator" option).

To use the profiler plugin:

1. Open an OpenCL solution or project file.

2. Set a startup project by right-clicking on a project and selecting Setup as StartUp
Project.

3. Compile the project and run it. Verify that it compiles and runs successfully.

4. To start profiling, click on the Start Profiling button under the OpenCL Session
List panel. If you can't find the OpenCL Session List Panel, enable it by selecting
on View ▷ Other Windows ▷ OpenCL Session List Window from the Visual
Studio's main menu bar. An OpenCL Session panel will be docked to the main
document panel. This panel shows the profiling result.

5. Hover the mouse pointer over the profile header in the OpenCL Session panel
to get the description of the counters.

6. Click on the kernel name (the first column) to see the ISA and IL code of the
kernel. An OpenCL Code Viewer panel will be docked to the main document
panel.
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Note:

• If you run the kernel in the CPU mode, only the global work size, work group
size, local memory, memory transfer size, and kernel time statistics will be
available.

• Under the project directory, a new ProfilerOutput directory is created. This
directory holds the profiling result of each session in a .csv file.

The following table lists the performance counters available through the ATI Stream
Profiler.

Name Description

Method The kernel name or the memory operation name.

ExecutionOrder The order of execution for the kernel and memory operations from the program.

GlobalWorkSize The global work-item size of the kernel.

GroupWorkSize The work-group size of the kernel.

KernelTime Time spent executing the kernel in milliseconds (does not include the kernel setup
time).

LocalMem The amount of local memory in bytes being used by the kernel.

MemTransferSize The memory transfer size in bytes.

ALU The average ALU instructions executed per thread (affected by flow control).

Fetch The average Fetch instructions (from global memory) executed per thread (affected
by flow control).

Write The average Write instructions (to global memory) executed per thread (affected by
flow control).

Wavefront Total wavefronts.

ALUBusy The percentage of time ALU instructions are processed relative to GPUTime.

ALUFetchRatio The ratio of ALU to Fetch instructions.

ALUPacking The ALU vector packing efficiency (in percentage). This value indicates how well the
Shader Compiler packs the scalar or vector ALU in your kernel to the 5-way VLIW
instructions. Values below 70 percent indicate that ALU dependency chains may be
preventing full utilization of the processor.

FetchUnitBusy The percentage of time the Fetch unit is active relative to GPUTime. This is measured
with all extra fetches and any cache or memory effects taken into account.

FetchUnitStalled The percentage of time the Fetch unit is stalled relative to GPUTime. Try reducing the
number of fetches or reducing the amount per fetch if possible.

WriteUnitStalled The percentage of time Write unit is stalled relative to GPUTime.

Additional counters available for the ATI Radeon HD 5000 Series graphics cards:

Name Description

ALUStalledByLDS The percentage of time ALU is stalled by LDS input queue being full and output queue
is not ready relative to GPUBusy. If there are LDS bank conflicts, reduce it. Otherwise,
try reducing the number of LDS accesses if possible.

LDSBankConflict The percentage of time LDS is stalled by bank conflicts relative to GPUTime.
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For additional information regarding the ATI Stream profiler, consult the ATI Stream
Profiler Knowledge Base.

7.3 General Optimization Tips
This section offers general tips for optimizing kernel execution on AMD GPUs and
CPUs. For more information, such as how the AMD GPU architecture maps to the
OpenCL implementation, see the ATI Stream SDK OpenCL Programming Guide.

7.3.1 Use Local Memory

Using local memory is typically an order of magnitude faster than using global
memory. AMD GPU includes a fast, high-bandwidth local memory for each work-
group. All work-items in the work-group can efficiently share data using the high-
bandwidth local memory. Collaborative read/write to the local memory can lead to
highly efficient memory accessing. Collaborative write works by having each work-
item write a subsection of an array, and as the work-item execute in parallel, the entire
array is written. Before reading the values written collaboratively, the kernel must
issue a barrier() call to ensure that memory is consistent across all work-items.

The following example calculates the transpose of a matrix using collaborative writes,
then reads, from local memory. This implementation is twice as fast as the equivalent
implementation that uses only global memory.
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__kernel
void matrixTranspose(__global float * output,
                     __global float * input,
                     __local  float * block,
                     const    uint    width,
                     const    uint    height,
                     const    uint blockSize)
{
    uint globalIdx = get_global_id(0);
    uint globalIdy = get_global_id(1);
    
    uint localIdx = get_local_id(0);
    uint localIdy = get_local_id(1);
    
    /* copy from input to local memory */
    block[localIdy*blockSize + localIdx] = 
    input[globalIdy*width + globalIdx];
    
    /* wait until the whole block is filled */
    barrier(CLK_LOCAL_MEM_FENCE);
    
    uint groupIdx = get_group_id(0);
    uint groupIdy = get_group_id(1);
    
    /* calculate the corresponding target location for transpose
    by inverting x and y values*/
    uint targetGlobalIdx = groupIdy*blockSize + localIdy;
    uint targetGlobalIdy = groupIdx*blockSize + localIdx;
    
    /* calculate the corresponding raster indices of source and target */
    uint targetIndex  = targetGlobalIdy*height     + targetGlobalIdx;
    uint sourceIndex  = localIdy       * blockSize + localIdx;
    
    /* read final data from the local memory */
    output[targetIndex] = block[sourceIndex];
}
            

7.3.2 Work-group Size

The OpenCL data-parallel model allows you to divide work-items into work-groups.
Work-group division can be performed explicitly or implicitly.

• Explicitly: the developer defines the total number of work-items to execute in
parallel, as well as the division of work-items into specific work-groups.

• Implicitly: the developer specifies the total number of work-items to execute in
parallel, and OpenCL manages the division into work-groups.

Explicit group division generally offers better performance. To maximize efficiency,
however, always choose the largest group size supported by the target device.

AMD GPUs are optimized with work-groups sized in multiple of 64. The maximum
supported device work-group size can be determined by querying
CL_DEVICE_MAX_WORK_GROUP_SIZE with clGetDeviceInfo(). Sometimes, depending
on kernel resource usage or instructions used by the kernel, it may not be possible to
use the maximum work group size supported by the device and specified by
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CL_DEVICE_MAX_WORK_GROUP_SIZE. In this case, clGetKernelWorkGroupInfo() can be
used to retrieve information about the kernel object that is specific to a device. The
parameter of interest is CL_KERNEL_WORK_GROUP_SIZE, which determines the
maximum work-group size that can be used to execute a kernel on a specific device
based on the resource requirement of the kernel. Refer to the OpenCL specification
for more details on clGetKernelWorkGroupInfo().

7.3.3 Loop Unrolling

OpenCL kernels typically are high instruction-per-clock applications. Thus, the
overhead to evaluate control-flow and execute branch instructions can consume a
significant part of resource that otherwise can be used for high-throughput compute
operations. The ATI Stream SDK v2 OpenCL compiler performs simple loop unrolling
optimizations. However, for more complex loop unrolling, it may be beneficial to do
this manually. For more on image convolution using OpenCL and how to further
optimize the OpenCL kernel by performing loop unrolling, see the Image Convolution
tutorial at the ATI Stream SDK v2 product page.

7.3.4 Reduce Data and Instructions

If possible, create a smaller version of the data set for easier debugging and faster
turnaround. GPUs do not have automatic caching mechanisms and typically scale well
as resources are added. In many cases, therefore, performance optimization for the
smaller data implementation also benefits the full-size data set.

The profiler reports statistics on a per-kernel granularity. To further narrow down
bottlenecks, it can be useful to remove or comment-out sections of code, then re-collect
timing data to determine problem areas.

7.3.5 Use Built-in Vector Types

When possible, use built-in vector types such as float4 and the built-in vector functions
(vload, vstore, etc.). These enable the ATI Stream SDK OpenCL implementation to
generate efficiently-packed SSE instructions when running on the CPU. Vectorization
can benefit both AMD CPUs and GPUs.

7.4 Porting CUDA to OpenCL
The data-parallel programming model in OpenCL shares some functionality with
NVIDIA's C for CUDA programming model, making it relatively straightforward to
convert programs from CUDA to OpenCL. This section describes terminology
equivalents in C for CUDA and OpenCL.

PID: 137-41768-10 ∙ Rev: A ∙ May, 2010 Introduction to OpenCL™ Programming

Application Optimization and Porting 77

http://developer.amd.com/gpu/ATIStreamSDK/ImageConvolutionOpenCL/Pages/ImageConvolutionUsingOpenCL.aspx
http://developer.amd.com/gpu/ATIStreamSDK/ImageConvolutionOpenCL/Pages/ImageConvolutionUsingOpenCL.aspx


7.4.1 General Terminology

The following table provides general terminology equivalents for describing
computations and memory spaces between C for CUDA and OpenCL.

Table 7–2  General Terminology Equivalents

C for CUDA Terminology OpenCL Terminology

Thread Work-item

Thread block Work-group

Global memory Global memory

Constant memory Constant memory

Shared memory Local memory

Local memory Private memory

7.4.2 Kernel Qualifiers

The following table provides equivalents for qualifiers used when writing kernel
functions in both C for CUDA and OpenCL. The most significant difference is the main
entry point to the kernel function. C for CUDA uses the __global__ qualifier and local
functions (not callable by the host) are prefixed with the __device__ qualifier. In
OpenCL, entry functions use the __kernel qualifier, and qualifiers are not required
for local (non-entry point) functions.

Table 7–3  Kernel Qualifier Equivalents

C for CUDA Terminology OpenCL Terminology

__global__ function __kernel function

__device__ function function (no qualifier required)

__constant__ variable declaration __constant variable declaration

__device__ variable declaration __global variable declaration

__shared__ variable declaration __local variable declaration

7.4.3 Kernel Indexing

The following table indexing access function equivalents for C for CUDA and
OpenCL. CUDA provides indexing via special predefined variables, while OpenCL
accomplished the same through function calls. Global indexing in CUDA requires
manual computation, while OpenCL provides a global indexing function.
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Table 7–4  Indexing Terminology Equivalents Used in Kernel Functions

C for CUDA Terminology OpenCL Terminology

gridDim get_num_groups()

blockDim get_local_size()

blockIdx get_group_id()

threadIdx get_local_id()

Global index calculated by combining blockDim, blockIdx, and threadIdx. get_global_id()

Global size calculated by combining blockDim, gridDim. get_global_size()

7.4.4 Kernel Synchronization

The following table provides equivalents for functions used for synchronization in
kernel functions in C for CUDA and OpenCL. __syncthreads() and barrier()
functions are similar in that they provide synchronization for all work-items in a
work-group. In OpenCL, work-items are blocked until all work-items in the work-
group have called barrier().

__threadfence() and mem_fence() force various orderings on outstanding memory
transactions, which can allow for more sophisticated sharing of data. For example,
mem_fence() forces all outstanding loads and stores to be completed before execution
proceeds, disallowing the compiler, runtime, and hardware from reordering any
loads and stores through the mem_fence(). This can be used to ensure that all data
produced in a work-group is flushed to global memory before signaling another work-
group that execution has completed.

Table 7–5  Synchronization Terminology Equivalents Used in Kernel Functions

C for CUDA Terminology OpenCL Terminology

__syncthreads() barrier()

__threadfence() No direct equivalent.

__threadfence_block() mem_fence(CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE)

No direct equivalent. read_mem_fence()

No direct equivalent. write_mem_fence()

7.4.5 General API Terminology

The following table provides general API terminology equivalents between C for
CUDA and OpenCL. Note that in OpenCL, command queues provide task parallelism
by allowing the developer to declare dependences between commands executing on
a device. CUDA does not have a direct equivalent. The closest approximation would
be the CUDA Stream mechanism, which allows kernels and memory transaction to be
placed in independent streams. This is different from the command queue, since it
does not provide parallelism within the stream, making synchronization between
streams difficult.
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Table 7–6  General API Terminology Equivalents

C for CUDA Terminology OpenCL Terminology

CUdevice cl_device_id

CUcontext cl_context

CUmodule cl_program

CUfunction cl_kernel

CUdeviceptr cl_mem

No direct equivalent. Closest approximation would be the CUDA Stream
mechanism.

cl_command_queue

7.4.6 Important API Calls

The following table provides equivalents for calls used to set up host programs to
execute parallel kernels in C for CUDA and OpenCL. A significant difference is that
OpenCL is capable of compiling programs off-line or during runtime. CUDA only
allows programs to be compiled off-line.

Table 7–7  API Call Equivalents

C for CUDA Terminology OpenCL Terminology

cuInit() No OpenCL initialization required

cuDeviceGet() clGetContextInfo()

cuCtxCreate() clCreateContextFromType()

No direct equivalent clCreateCommandQueue()

cuModuleLoad() Note: Requires pre-compiled
binary.

clCreateProgramWithSource() or
clCreateProgramWithBinary()

No direct equivalent. CUDA programs are
compiled off-line

clBuildProgram()

cuModuleGetFunction() clCreateKernel()

cuMemAlloc() clCreateBuffer()

cuMemcpyHtoD() clEnqueueWriteBuffer()

cuMemcpyDtoH() clEnqueueReadBuffer()

cuFuncSetBlockShape() No direct equivalent; functionality is part of
clEnqueueNDRangeKernel()

cuParamSeti() clSetKernelArg()

cuParamSetSize() No direct equivalent; functionality is part of
clSetKernelArg()

cuLaunchGrid() clEnqueueNDRangeKernel()

cuMemFree() clReleaseMemObj()
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7.4.7 Additional Tips

• Pointers in OpenCL kernels must be prefixed with their memory space. For
example, a pointer to local memory would be declared as __local int* p;. This
applies to kernel arguments as well; data passed to a kernel are usually arrays
represented by __global pointers.

• CUDA encourages the use of scalar code in kernels. While this works in
OpenCL as well, but depending on the target architecture it may be more
efficient to write programs operating on OpenCL's vector types (such as float4)
rather than pure scalar types. This is useful for both AMD CPUs and AMD GPUs,
which can operate efficiently on vector types. OpenCL also provides flexible
swizzle/broadcast primitives for efficient creation and rearrangement of vector
types.

• CUDA does not provide rich facilities for task parallelism, so it may be beneficial
to think about how to take advantage of OpenCL's task parallelism when porting.
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Chapter  8

Exercises
This chapter offers exercises to help further your understanding of OpenCL
programming. Solutions are available in the Appendix.

8.1 Matrix Transposition Exercise
This exercise involves creating an OpenCL application that takes as input a matrix
(width × height) and determines the transposition of the input matrix.

In the following example, the transposition of matrix A is obtained by swapping the
writing of the rows in A with the columns of AT:

8.1.1 Completing the Code

Given the source skeleton below, complete the necessary OpenCL host portions in the
main application as well as the kernel function that perform the matrix transposition
using parallelism. The kernel source is to be placed in a file called
transposeMatrix_kernel.cl and read into the kernel_source string by the main
program.

Skeleton OpenCL host application to find a matrix transposition:
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001  // tranposeMatrix.c
002  #include &stdio.h>
003  #include &stdlib.h>
004  #include "CL/cl.h"
005  
006  #define DATA_SIZE 65536
007  #define ROWS 16
008  #define COLS 16
009  
010  int main()
011  {
012      
013      cl_float *inputMatrix;
014      cl_float *results;
015      cl_uint width = COLS;
016      cl_uint height = ROWS;
017      
018      // OpenCL host variables go here:
019      
020      // variables used to read kernel source file
021        FILE *fp;
022        long filelen;
023        long readlen;
024        char *kernel_src;  // char string to hold kernel source
025  
026  
027      // initialize inputMatrix with some data and print it
028      int x,y;
029      int data=0;
030  
031      inputMatrix = malloc(sizeof(cl_float)*width*height);
032      results = malloc(sizeof(cl_float)*width*height);
033      printf("Input Matrix\n");
034      for(y=0;y<height;y++)
035      {
036          for(x=0;x<width;x++)
037          {
038             inputMatrix[y*height+x]= data;
039             results[y*height+x]=0;
040                     data++;
041  
042             printf("%.2f, ",inputMatrix[y*height+x]);
043          }
044          printf("\n");
045      }
046  
047      // read the kernel
048      fp = fopen("transposeMatrix_kernel.cl","r");
049      fseek(fp,0L, SEEK_END);
050      filelen = ftell(fp);
051      rewind(fp);
052  
053      kernel_src = malloc(sizeof(char)*(filelen+1));
054      readlen = fread(kernel_src,1,filelen,fp);
055      if(readlen!= filelen)
056      {
057             printf("error reading file\n");
058             exit(1);
059      }
060      
061      // ensure the string is NULL terminated
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062      kernel_src[filelen+1]='\0';
063  
064  
065  // ----- Insert OpenCL host source here ----
066  
067  
068  
069  // ----- End of OpenCL host section  ----
070  
071  
072      // print out the transposed matrix 
073      printf("\nTransposed Matrix \n");
074      for(y=0;y<height;y++)
075        {
076         for(x=0;x<width;x++)
077         {
078            printf("%.2f , ",results[y*height+x]);
079         }
080         printf("\n");
081      }
082        
083      free(kernel_src);
084      free(inputMatrix);
085      free(results);
086      return 0;
087  }               
            

Skeleton kernel source for calculating transpose of matrix:

// Kernel source file for calculating the transpose of a matrix
__kernel void matrixTranspose(.....)
   {
       // insert kernel source here 
   }
                
            

For the solution to this exercise, see A.1 Matrix Transposition Solution.

8.2 Matrix Multiplication Exercise
This exercise demonstrates how to improve the performance of a kernel by breaking
the work into subgroups. Use the kernel implementation below that performance the
multiplication of two matrices and create a new kernel function that decomposes the
multiplication into small work-groups working in parallel.
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001 __kernel void multMatrixSimple(__global float *mO,
002                                __global float *mA,
003                                __global float *mB,
004                                uint widthA, uint widthB)
005 
006 {
007   int globalIdx = get_global_id(0);
008   int globalIdy = get_global_id(1));
009 
010   float sum =0;
011 
012   // multiply each element of the row with each
013   // element of the cols pointed by the current work-item
014   for (int i=0; i< widthA; i++)
015   {
016         float tempA = mA[globalIdy * widthA + i];
017         float tempB = mB[i * widthB + globalIdx];
018         sum += tempA * tempB;
019   }
020   // copy the sum to the device buffer
021   mO[globalIdy * widthA + globalIdx] = sum;
022 
023 }
            

The multiplication of two matrices is shown in the following images. The kernel
function simply does what is shown in the figure. For every element in matrix C, a
work-item calculates the sums of products for the corresponding rows in image A and
columns in image B.

For each element in image C, the kernel function must access the input data from the
global memory in images A and B. For very large matrices, a large amount of access
to global memory is required. Access to global memory is slow, however, and should
be minimized where possible. Also note that work-items that are on the same row or
column access the same data multiple times. In the previous figure, work-items C(1,0),
C(1,2), and C(1,3) all need to access the same column data from B as C(1,1). Thus, the
number of access to global memory increases.
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The number of global memory accesses can be minimized by changing the kernel
function to copy a block of data from A and B into fast local memory that can be shared
by all work-items in the group. The following figure shows one possible way to
decompose the matrix into local sub-matrices that can be shared by all work-items:

This kernel should copy a portion of A and B into local matrices (grpA and grpB) and
then calculate the grpC output by using the local matrices. For very large input
matrices, this method of decomposition dramatically minimizes the number of access
to global memory, since all work-items within grpC can make use of the local memory
matrices of A and B.

For the solution to this exercise, see A.2 Matrix Multiplication Solution.
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Appendix  A

Exercise Solutions

A.1 Matrix Transposition Solution
Solution to the 8.1 Matrix Transposition Exercise:
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001 // tranposeMatrix.c
002 #include <stdio.h>
003 #include <stdlib.h>
004 #include "CL/cl.h"
005 
006 #define ROWS 16
007 #define COLS 16
008 
009 int main()
010 {
011     
012     cl_float *inputMatrix;
013     cl_float *results;
014     cl_uint width = COLS;
015     cl_uint height = ROWS;
016     
017     // OpenCL host variables
018     cl_uint num_devs_returned;
019     cl_context_properties properties[3];
020     cl_device_id device_id;
021     cl_int err;
022     cl_platform_id platform_id;
023     cl_uint num_platforms_returned;
024     cl_context context;
025     cl_command_queue command_queue;
026     cl_program program;
027     cl_kernel kernel;
028     cl_mem input_buffer, output_buffer;
029     size_t global[2];
030     
031     // variables used to read kernel source file
032       FILE *fp;
033       long filelen;
034       long readlen;
035       char *kernel_src;  // char string to hold kernel source
036 
037 
038     // initialize inputMatrix with some data and print it
039     int x,y;
040     int data=0;
041 
042     inputMatrix = malloc(sizeof(cl_float)*width*height);
043     results = malloc(sizeof(cl_float)*width*height);
044     printf("Input Matrix\n");
045     for(y=0;y<height;y++)
046     {
047         for(x=0;x<width;x++)
048         {
049            inputMatrix[y*height+x]= data;
050            results[y*height+x]=0;
051                    data++;
052 
053            printf("%.2f, ",inputMatrix[y*height+x]);
054         }
055         printf("\n");
056     }
057 
058     // read the kernel
059     fp = fopen("transposeMatrix_kernel.cl","r");
060     fseek(fp,0L, SEEK_END);
061     filelen = ftell(fp);
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062     rewind(fp);
063 
064     kernel_src = malloc(sizeof(char)*(filelen+1));
065     readlen = fread(kernel_src,1,filelen,fp);
066     if(readlen!= filelen)
067     {
068            printf("error reading file\n");
069            exit(1);
070     }
071     
072     // ensure the string is NULL terminated
073     kernel_src[filelen+1]='\0';
074 
075 
076 // Insert OpenCL host source here ----
077 
078     // get a platform id
079     err = clGetPlatformIDs(1,&platform_id,&num_platforms_returned); 
080 
081     if (err != CL_SUCCESS)
082     {    
083         printf("Unable to get Platform ID. Error Code=%d\n",err);
084         exit(1);
085     }
086     
087     err = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_CPU, 1, 
088                            &device_id, &num_devs_returned);
089     if (err != CL_SUCCESS)
090     {    
091         printf("Unable to get Device ID. Error Code=%d\n",err);
092         exit(1);
093     }
094     
095     // context properties list - must be terminated with 0
096     properties[0]= CL_CONTEXT_PLATFORM;
097     properties[1]= (cl_context_properties) platform_id;
098     properties[2]= 0;
099     
100     // create context
101     context = clCreateContext(properties, 1, &device_id, NULL, NULL, &err);
102     if (err != CL_SUCCESS)
103     {    
104         printf("Unable to create context. Error Code=%d\n",err);
105         exit(1);
106     }
107 
108     // create command queue 
109     command_queue = clCreateCommandQueue(context,device_id, 0, &err);
110     if (err != CL_SUCCESS)
111     {    
112         printf("Unable to create command queue. Error Code=%d\n",err);
113         exit(1);
114     }
115      
116     // create program object from source. 
117       // kernel_src contains source read from file earlier
118     program = clCreateProgramWithSource(context, 1 ,(const char **)
119                                           &kernel_src, NULL, &err);
120     if (err != CL_SUCCESS)
121     {    
122         printf("Unable to create program object. Error Code=%d\n",err);
123         exit(1);
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124     }       
125     
126     err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
127     if (err != CL_SUCCESS)
128     {
129         printf("Build failed. Error Code=%d\n", err);
130 
131         size_t len;
132         char buffer[2048];
133         // get the build log
134         clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG,
135                                   sizeof(buffer), buffer, &len);
136         printf("--- Build Log -- \n %s\n",buffer);
137         exit(1);
138     }
139 
140     kernel = clCreateKernel(program, "matrixTranspose", &err);
141     if (err != CL_SUCCESS)
142     {    
143         printf("Unable to create kernel object. Error Code=%d\n",err);
144         exit(1);
145     }
146 
147     // create buffer objects to input and output args of kernel function
148     input_buffer =
149              clCreateBuffer(context,CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
150                         sizeof(cl_float) * ROWS*COLS, inputMatrix, NULL);
151     output_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
152                         sizeof(cl_float) * ROWS*COLS, NULL ,NULL);
153 
154     // set the kernel arguments
155     if ( clSetKernelArg(kernel, 0, sizeof(cl_mem), &output_buffer) ||
156          clSetKernelArg(kernel, 1, sizeof(cl_mem), &input_buffer) ||
157          //clSetKernelArg(kernel, 2, sizeof(cl_uint), &width) ||
158          clSetKernelArg(kernel, 2, sizeof(cl_uint), &width) != CL_SUCCESS)
159     {
160         printf("Unable to set kernel arguments. Error Code=%d\n",err);
161         exit(1);
162     }
163 
164     // set the global work dimension size
165     global[0]= width;
166     global[1]= height;
167 
168     // Enqueue the kernel object with 
169     // Dimension size = 2, 
170     // global worksize = global, 
171     // local worksize = NULL - let OpenCL runtime determine
172     // No event wait list
173     err = clEnqueueNDRangeKernel(command_queue, kernel, 2, NULL, 
174                                    global, NULL, 0, NULL, NULL);
175     if (err != CL_SUCCESS)
176     {    
177         printf("Unable to enqueue kernel command. Error Code=%d\n",err);
178         exit(1);
179     }
180 
181     // wait for the command to finish
182     clFinish(command_queue);
183 
184     // read the output back to host memory
185     err = clEnqueueReadBuffer(command_queue, output_buffer, CL_TRUE, 0,
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186                    sizeof(cl_float)*width*height, results, 0, NULL, NULL);
187     if (err != CL_SUCCESS)
188     {    
189         printf("Error enqueuing read buffer command. Error Code=%d\n",err);
190         exit(1);
191     }
192 
193 
194     // print out the transposed matrix 
195     printf("\nTransposed Matrix \n");
196     for(y=0;y<height;y++)
197       {
198        for(x=0;x<width;x++)
199        {
200           printf("%.2f , ",results[y*height+x]);
201        }
202        printf("\n");
203     }
204       
205     // clean up
206     clReleaseMemObject(input_buffer);
207     clReleaseMemObject(output_buffer);
208     clReleaseProgram(program);
209     clReleaseKernel(kernel);
210     clReleaseCommandQueue(command_queue);
211     clReleaseContext(context);
212     free(kernel_src);
213     free(inputMatrix);
214     free(results);
215     return 0;
216 }                                                                
            

A.2 Matrix Multiplication Solution
Solution to the 8.2 Matrix Multiplication Exercise:
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001 // ------ multMatrix.c ----------
002 
003 #include <stdio.h>
004 #include <stdlib.h>
005 #include "CL/cl.h"
006 
007 #define ROWS 2048
008 #define COLS 2048
009 
010 #define BLOCK_SIZE 8
011 int main()
012 {
013     
014     cl_float *inputMatrix1;
015     cl_float *inputMatrix2;
016     cl_float *results;
017     cl_uint width = COLS;
018     cl_uint height = ROWS;
019     
020     // OpenCL host variables
021     cl_uint num_devs_returned;
022     cl_context_properties properties[3];
023     cl_device_id device_id;
024     cl_int err;
025     cl_platform_id platform_id;
026     cl_uint num_platforms_returned;
027     cl_context context;
028     cl_command_queue command_queue;
029     cl_program program;
030     cl_kernel kernel;
031     cl_mem input_buffer1,input_buffer2, output_buffer;
032     size_t global[2];
033     size_t local[2];
034     
035     // variables used to read kernel source file
036     FILE *fp;
037     long filelen;
038     long readlen;
039     char *kernel_src;  // char string to hold kernel source
040 
041 
042     // initialize inputMatrix with some data and print it
043     int x,y;
044     int data=0;
045 
046     inputMatrix1 = malloc(sizeof(cl_float)*width*height);
047     inputMatrix2 = malloc(sizeof(cl_float)*width*height);
048     results = malloc(sizeof(cl_float)*width*height);
049 
050     for(y=0;y<height;y++)
051     {
052         for(x=0;x<width;x++)
053         {
054            inputMatrix1[y*height+x]= data;
055            inputMatrix2[y*height+x]= data;
056            results[y*height+x]=0;
057                    data++;
058 
059         }
060     }
061 
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062     // read the kernel
063     fp = fopen("multMatrix_kernel.cl","r");
064     fseek(fp,0L, SEEK_END);
065     filelen = ftell(fp);
066     rewind(fp);
067 
068     kernel_src = malloc(sizeof(char)*(filelen+1));
069     readlen = fread(kernel_src,1,filelen,fp);
070     if(readlen!= filelen)
071     {
072        printf("error reading file\n");
073        exit(1);
074     }
075     
076     // ensure the string is NULL terminated
077     kernel_src[filelen+1]='\0';
078 
079 
080 // OpenCL host source starts here ----
081 
082     // get a platform id
083     err = clGetPlatformIDs(1,&platform_id,&num_platforms_returned); 
084 
085     if (err != CL_SUCCESS)
086     {    
087         printf("Unable to get Platform ID. Error Code=%d\n",err);
088         exit(1);
089     }
090     
091     err = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_CPU, 1, &device_id, &num_devs_returned);
092     if (err != CL_SUCCESS)
093     {    
094         printf("Unable to get Device ID. Error Code=%d\n",err);
095         exit(1);
096     }
097     
098     // context properties list - must be terminated with 0
099     properties[0]= CL_CONTEXT_PLATFORM;
100     properties[1]= (cl_context_properties) platform_id;
101     properties[2]= 0;
102     
103     // create context
104     context = clCreateContext(properties, 1, &device_id, NULL, NULL, &err);
105     if (err != CL_SUCCESS)
106     {    
107         printf("Unable to create context. Error Code=%d\n",err);
108         exit(1);
109     }
110 
111     // create command queue 
112     command_queue = clCreateCommandQueue(context,device_id, 0, &err);
113     if (err != CL_SUCCESS)
114     {    
115         printf("Unable to create command queue. Error Code=%d\n",err);
116         exit(1);
117     }
118      
119     // create program object from source. kernel_src contains 
120     // source read from file earlier
121     program = clCreateProgramWithSource(context, 1 ,(const char **) &kernel_src, NULL, &err);
122     if (err != CL_SUCCESS)
123     {    
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124         printf("Unable to create program object. Error Code=%d\n",err);
125         exit(1);
126     }       
127     
128     err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
129     if (err != CL_SUCCESS)
130     {
131         printf("Build failed. Error Code=%d\n", err);
132 
133         size_t len;
134         char buffer[4096];
135         // get the build log
136         clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len);
137         printf("--- Build Log -- \n %s\n",buffer);
138         exit(1);
139     }
140 
141     //kernel = clCreateKernel(program, "multMatrix", &err);
142     kernel = clCreateKernel(program, "multMatrixSimple", &err);
143     if (err != CL_SUCCESS)
144     {    
145         printf("Unable to create kernel object. Error Code=%d\n",err);
146         exit(1);
147     }
148 
149     // create buffer objects to input and output args of kernel function
150     input_buffer1 = clCreateBuffer(context,CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, sizeof(cl_float) * ROWS*COLS, inputMatrix1, NULL);
151     input_buffer2 = clCreateBuffer(context,CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, sizeof(cl_float) * ROWS*COLS, inputMatrix2, NULL);
152     output_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(cl_float) * ROWS*COLS, NULL ,NULL);
153     // set the kernel arguments
154     if ( clSetKernelArg(kernel, 0, sizeof(cl_mem), &output_buffer) ||
155          clSetKernelArg(kernel, 1, sizeof(cl_mem), &input_buffer1) ||
156          clSetKernelArg(kernel, 2, sizeof(cl_mem), &input_buffer2) ||
157          clSetKernelArg(kernel, 3, sizeof(cl_uint), &width) ||
158          clSetKernelArg(kernel, 4, sizeof(cl_uint), &width) != CL_SUCCESS) 
159     {
160         printf("Unable to set kernel arguments. Error Code=%d\n",err);
161         exit(1);
162     }
163 
164     // set the global & local work size
165     global[0]= width;
166     global[1]= height;
167 
168     local[0]=BLOCK_SIZE;
169     local[1]=BLOCK_SIZE;
170 
171     // Enqueue the kernel object with 
172     // Dimension size = 2, 
173     // global worksize = global, 
174     // local worksize = local
175     // No event wait list
176     err = clEnqueueNDRangeKernel(command_queue, kernel, 2, NULL, global,local, 0, NULL, NULL);
177     if (err != CL_SUCCESS)
178     {    
179         printf("Unable to enqueue kernel command. Error Code=%d\n",err);
180         exit(1);
181     }
182 
183     // wait for the command to finish
184     clFinish(command_queue);
185 
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186     // read the output back to host memory
187     err = clEnqueueReadBuffer(command_queue, output_buffer, CL_TRUE, 0, sizeof(cl_float)*width*height, results, 0, NULL, NULL);
188     if (err != CL_SUCCESS)
189     {    
190         printf("Error enqueuing read buffer command. Error Code=%d\n",err);
191         exit(1);
192     }
193 
194     // clean up
195     clReleaseMemObject(input_buffer1);
196     clReleaseMemObject(input_buffer2);
197     clReleaseMemObject(output_buffer);
198     clReleaseProgram(program);
199     clReleaseKernel(kernel);
200     clReleaseCommandQueue(command_queue);
201     clReleaseContext(context);
202 
203 // ---- End of OpenCL host portion 
204 
205     
206 //  uncoment this block to print out matrix results
207 /*
208     printf("\nMatrix A\n");
209     for(y=0;y<height;y++)
210     {
211        for(x=0;x<width;x++)
212        {
213           printf("%.2f , ",inputMatrix1[y*height+x]);
214        }
215        printf("\n");
216     }
217       
218     printf("\nMatrix B\n");
219     for(y=0;y<height;y++)
220     {
221         for(x=0;x<width;x++)
222        {
223           printf("%.2f , ",inputMatrix2[y*height+x]);
224        }
225        printf("\n");
226     }
227     // print out the transposed matrix 
228     printf("\n Matrix A + Matrix B \n");
229     for(y=0;y<height;y++)
230     {
231        for(x=0;x<width;x++)
232        {
233           printf("%.2f , ",results[y*height+x]);
234        }
235        printf("\n");
236     }
237 */      
238     free(kernel_src);
239     free(inputMatrix1);
240     free(inputMatrix2);
241     free(results);
242     return 0;
243 }
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