Chapter 5 solutions

1.

(a)

	47–74MHz, 87.5–	Other frequencies	Frequencies above
	118MHz, 174–	below 1GHz	1GHz
	230MHz, 470–		
	862MHz		
Emission limit	-53.98	-36.02	-30
(dBm)			
Relative to 30 dBm	-83.98	-66.02	-60
carrier (dBc)			

(b) The minimum transmit phase noise requirement is -84 dBc.

(c) When the transmitter operates at 20 dBm, the transmit noise requirement drops to -74 dB.

2. Sensitivity = thermal noise floor (50 Ω , -174 dBm/Hx) + receiver noise figure + required Eb/No for demodulation + data rate represented in dB=

[DISP] -174 + 15 + 15 + 10*log10(75e3) = -95 dBm

[DISPX]

3. (a)

```
[DISP]
Path loss = 10*\log 10(4 * \pi * d/\lambda)^2
1m - path loss 40dB
2m - 46 dB
[DISPX]
```

[DISP] Pr = Pt + Gt + Gr - polarization loss - path loss (all in dBs)1m - 19.74uW2m - 4.94 uW[DISPX]

(c)

[DISP]

Pr = Pt + Gt + Gr - Ltag -round trip path loss 1m requires -73 dBm receiver sensitivity 2m requires -85.13 dBm receiver sensitivity [DISPX]

(d) If the tag cannot harvest enough energy, the range can be improved by improving the reader antenna gain, the tag antenna gain, or increase the power conversion efficiency of the tag.

[BT]If the range is limited by the back scattering, the range can be improved by increasing the reader antenna gain, the reader receiver sensitivity, or increasing the tag reflected power.

(b)