Chapter 18 solutions

1.

(a) Since the tag transmits data once every minute, the total number of transmissions per day is given by: [DISP]

 $N = 1 \ge 60 \ge 24 = 1440.$ [DISPX]

[FT]The tag is operational for 20 milli-seconds per transmission when programmed in the beacon mode.Therefore, total time per day when active is given by:[DISP]

 $t_2 = N \ge 20 = 28.8 \text{ sec.}$ [DISPX]

[FT]The tag operates at 3V and requires 20 milli-amperes when active. Therefore, total energy consumed per day when active is given by:

[DISP]

 $E_{active} = 3$ V x 20 x $t_2 = 1.728$ Watt-sec. [DISPX]

[FT]Total time in sleep state per day is given by: [DISP]

 $t_1 = (24 \text{ hr x } 60 \text{ min x } 60 \text{ sec}) - t_2 = 86400 - 28.8 = 86371.2 \text{ sec.}$ [DISPX]

[FT]The tag consumes 20 micro-amperes in sleep state. Therefore, total energy consumed in sleep state per day is given by:[DISP]

Raj Bridgelall, CTO and VP of Engineering, Axcess International, Inc. Abhiman Hande, Ph.D., Principal Engineer, Texas Micropower, Inc.

 $E_{sleep} = 3$ V x 20 x $t_l = 5.182$ Watt-sec. [DISPX]

[FT]Total energy consumed per day is given by: [DISP]

 $E_{total} = E_{active} + E_{sleep} = 6.91$ Watt-sec. [DISPX]

(b) The harvester produces 300 micro-watts per cm³ per 0.1g of source excitation. Therefore, at one g excitation the available power is:
 [DISP]

 $P_{vib} = 10 \text{ x } 300 = 3 \text{ milli-watts.}$ [DISPX]

[FT]Total energy consumed by the tag per day is calculated to be: [DISP]

 $E_{total} = 6.91$ Watt-sec. [DISPX]

[FT]Therefore, the number of hours of sustained vibrations is: [DISP]

 $t_3 = E_{total} / (P_{vib} \ge 3600) = 0.64$ hours. [DISPX]

[FT]Table 18.1 summarizes solution for problems 1 and 2.

Table 18.1 Power analysis summary for problems 1 and 2.

Raj Bridgelall, CTO and VP of Engineering, Axcess International, Inc. Abhiman Hande, Ph.D., Principal Engineer, Texas Micropower, Inc.

Axcess tag powered by battery	3V
Power available from vibrations/cm ³	3000 uW
Current available from vibrations (<i>i</i> source)	1000.00μΑ
Transmission of ID to receiver takes	20ms
Current draw during transmission (i active)	20mA
Energy necessary/transmission	0.0012 Watt-sec.
Number of transmissions/day	1440
Transmission time/day (t_2)	28.8 sec.
Energy necessary for transmissions (E_{active})	1.728 Watt-sec.
Idle state current draw (<i>i</i> sleep)	20 µA
Idle state time/day (t_2)	86371.2 sec.
Energy necessary for idle conditions/day (E_{deep})	5.18 Watt-sec.
Total energy reqd (idle + transmission)/day (E_{total})	6.91 Watt-sec.
Time required to gather this energy from vibrations/day (t_3)	0.64 hrs

(c) With two hours of sustained vibrations, the energy available from harvester must be:

[DISP]

 $E_{harvester} \ge E_{total}.$ $\therefore P_{vib} \ge 2 \ge 3600 \ge 6.91$ Watt-sec $\therefore P_{vib} \ge 0.96$ mill-Watts.

[DISPX]

[FT]For a harvester producing 3 milli-Watts per cm³ at 1 g of source excitation, the size must be: [DISP] $Size \ge 0.96 / 3 \ge 0.32 \text{ cm}^3$.

[DISPX]

[FT]Similarly, for a harvester producing 300 micro-Watts per cm³ at 1 g of source excitation, the size must be:

[DISP]

Size \geq 0.96 / 0.3 \geq **3.2 cm**³.

[DISPX]