Université d'Ottawa | University of Ottawa

Miodrag Bolic Associate Professor School of Electrical Engineering and Computer Science (EECS) Faculty of Engineering

Biomedical and Wireless Technologies for Pervasive Healthcare

www.uOttawa.ca

Active Research Areas

- Biomedical instrumentation and processing
 - Processing of physiological signals
 - Non-invasive stimulation
- Wireless communication
 - RFID systems
- Computer architectures
 - Software/hardware acceleration
 - New hardware architectures

Objectives

- Introduction to Pervasive Healthcare
- My recent research projects related to biomedical engineering and pervasive healthcare:
 - Blood pressure and ECG
 - Biomedical radar
 - Radio frequency Identification
 - Tongue display unit
 - Non-invasive brain stimulation

Pervasive Healthcare

Support continuous well-being, treatment and care of people rather than focusing on acute treatment and care.

Pervasive Healthcare Sensors and Actuators

Pervasive Healthcare Applications

- Monitoring
 - Monitoring of health signs
 - Monitoring daily life activities and social interactions
 - Monitoring for falls, wandering, location tracking
- Assistive technologies
 - Supporting elderly and disabled people
- Technologies for rescuing
- Treatment and stimulation

My Current Research

Applications

- Monitoring of health signs
- Monitoring daily activities and interactions
- Rescue
- Assistive systems
- Stimulation devices

Technologies

- Blood pressure and ECG
- Biomedical radar
- Radio-frequency Identification (RFID)

- Tongue display unit
- Non-invasive brain stimulation

Blood Pressure

Applications

- Monitoring of health signs \implies ECG-assisted blood pressure ${}^{\bullet}$
- Localization, detection of ۲ activities and interactions
- Rescue operations
- Stimulation devices
- Assistive systems ۲

Technologies

Blood Pressure – Research

Problem	Approach	Method		
Inaccurateblood pressuremonitors for:atrial fibrillation,diabetes	 Multifunctional device: ECG+Blood pressure Novel way to determine blood pressure 	 Developed dry ECG electrodes New ECG-assisted blood pressure algorithms Mathematical Modeling 		

uOttawa

Blood Pressure - Experiment

Biomedical Radar

Applications

- Monitoring of health signs
- Localization, detection of activities and interactions
- Rescue
- Stimulation devices
- Assistive systems

Technologies

Biomedical radar

Biomedical Radar - Applications

- Through-the-wall radar
 - Police, firefighters
- Finding people under the rubble
- Detection of posture and activities of people
- Detection of stop-breathing events
 - Suicide events
 - Independent living

Biomedical Radar – Research

Problem	Approach	Method		
 Reliable detection of a single subject Distinguish between multiple subjects 	 Remove noise Localize subject(s) Obtain clear breathing signal 	 New signal processing algorithms for breathing extraction New method for posture detection 		

- Future direction
 - Distinguishing between people and animals for rescuing operations
 - Detection of stress level of people
 - Detecting suicide attempts

Biomedical Radar - Experiments Ranging and Detection of breathing

Radio Frequency IDentification-RFID

Applications

- Monitoring of health signs
- Localization, detection of activities and interactions
- Rescue
- Stimulation devices
- Assistive systems

Technologies

RFID

What is RFID?

RFID is a wireless technology that uses radio-frequency waves to transfer data between a reader and a tagged item to identify, categorize and track the items.

- Identification
 - Every item will have a unique identification number
- Radio frequency
 - 900 MHz

RFID - Research

Problem	Approach	Method
 Detection daily activities of people Detecting their interactions 	 Detecting proximity between tagged people and tagged objects Localize moving objects with RFID tags 	 New component - sensatag (ST) that detects proximity of RFID tags New algorithms for localization

Non-Invasive Brain Stimulation

Applications

- Monitoring of health signs
- Localization, detection of activities and interactions
- Rescue
- Stimulation devices
- Assistive systems

Technologies

Transcranial direct current stimulation (tDCS)

What is transcranial Direct Current Stimulation?

Ottawa

- Device
 - Current: 2 mA DC
 - Current delivery: 2 wet electrodes
 - Duration of session: 20 min
- Effect
 - Long lasting effect in modulating the neurons
- Applications
 - Depression
 - Pain relief
 - Recovery from stroke
 - Addiction treatment

tDCS - Research #1

Problem	Approach	Method		
Optimizing parameters of the stimulation	 Determine Salinity Stimulation time Number of sessions 	 Developed electrode array board Phantom 		
	Electrode design	 Simulation of current propagation 		

tDCS - Research #2

Problem	Approach	Method
 Is patient responding? Does patient need more sessions? Non-responders? 	Obtaining feedback during stimulation	 Measuring bioimpedance Clinical studies for opiate addicts

Tongue Display Unit

Applications

- Monitoring of health signs
- Localization, detection of activities and interactions
- Rescue
- Stimulation devices
- Assistive systems

Technologies

Tongue display unit

What is Tongue Display Unit?

- Why Tongue
 - highly mobile
 - very sensitive to touch
 - It has a large representation in the brain
- Device
 - Electrode array that faces the tongue
 - We can selectively activate electrodes as well as measure their impedance
 - Wireless communication
 - Smartphone control
- Applications
 - assistive devices
 - for diagnosis
 - for rehabilitation

Tongue Display Unit - Assistive Device

Problem	Approach	Method
Translation of tongue	Detect contact	Bioimpedance
gestures into mouse	between the tongue	measurements of the
cursor movements and	and the electrodes –	each electrode
clicks	transfer the map to PC	

Electrode Array

Display of the electrode contact map

	🛃 MouthPa	d					- 0 %
	File Help						
	Controls Mo	outhPad					
	1	2	3	4	5	6	7
	8	9	10	11	12	13	14
	15	16	17	18	19	20	21
	22	23	24	25	26	27	28
	29	30	31	32	33	34	35
	36	37	38	39	40	41	42
	43	44	45	46	47	48	49
	Connected t	o: RN42-5700	0				
iOttav	va						

Tongue Display Unit - Rehabilitation

Problem	Approach	Method
Tongue stimulation - Stroke rehabilitation - Gaming	Turn on electrodes selectively to simulate desired patterns	Several applications/games have been developed.

Concluding thoughts

- Home healthcare monitoring requires
 - Inexpensive, maintenance-free, reliable sensors and electrodes
 - Ways to express confidence in the measurement
 - Knowledge of situation awareness
- Stimulation and treatment requires
 - better understanding and utilizing feedback from the human body
- Combining everything together
 - based on sensing information, location and user actions
 - adaptively determine parameters of treatment/stimulation

Acknowledgements

- Thanks to my students
- Thanks to NSERC, OCE, MITACS, IRAP and for industrial partners for support
- Thank you for your attention

