
Logical Method for Reasoning
about Access Control and Data Flow

Control Models

Luigi Logrippo
Laboratoire de recherche en sécurité informatique

Université du Québec en Outaouais

Gatineau, Québec, Canada

Paper presentation at
7th International Symposium on Foundations and Practice of Security

Montréal, November 2014

Security invariants

• Many security properties can be expressed as
invariant properties of systems

– E.g. information of certain types remains within
certain boundaries

• However invariants are rarely mentioned and
security models are usually defined in terms
of operations which induce transformations

Invariant concept

• In Mathematics a property is invariant for
certain transformations if it remains true when
these transformations are applied

– Concept developed in Computer Science by Floyd,
Hoare, Dijkstra, many others

Invariant concept

• In Mathematics a property is invariant for
certain transformations if it remains true when
these transformations are applied
– Concept developed in Computer Science by Floyd,

Hoare, Dijkstra, many others

• In Computer Science,
– the invariant of a program tells what the program

is supposed to achieve

– the program itself tells how this works

Classical Example: Bell La Padula

• Usually described in terms of transformations such as:

Subjects cannot
read information from higher security levels

nor write information to lower ones

• While its invariant property could be expressed as:

Information belonging to a security level can be known only to
subjects of that level or higher

We show that this property remains invariant if the read and write
transformations satisfy the conditions specified just above

Isn’t it the same thing?

• Invariants make explicit system properties that
may not be obvious by looking at the
transformations

• These are two different views that must agree
– The one using programming terminology read, write

could be thought of as the implementation
– While the one using the concept of ‘knowledge’ could

be thought of as the specification

• It must be possible to prove that the
implementation corresponds to the specification
and vice-versa

Access control and flow control

• Read, write are access control concepts

– Direct relationship between a subject and an
object

• Knowledge is a flow control concept

– Where protected values can end up

Confidentiality and Integrity invariants

• Confidentiality: information can only be
known by authorized subjects

• Integrity: information can only be placed on
authorized objects

• [Sandhu 1993]

How does information flow?

• In access control systems, information can be
written by subjects on objects

• It can be read from objects by subjects

Basic Concepts
• Access Control:

– CanRead (S,O) : subject S can read from object O

– CanWrite (S,O) : subject S can write on object O

• Abbreviated CR, CW

• Flow control:
– CanKnow (S,x) : subject S can know variable x

– CanStore (O,x) : object O can contain variable x

• Abbreviated CK, CS

x

x

S O

S O

S

O

Flow control inference rules

1) Unconditional relationships are expressed in the form: CK(S,x)
or CS(O,x)

2) Inference rule for CK:

 O (CS(O,x) CR(S,O)) ⇒ CK(S,x)

3) Inference rule for CS:

 S (CK(S,x) CW(S,O)) ⇒ CS(O,x)

Closure property: All CS or CK relationships must be true either
unconditionally or by one of the two inference rules.

Derivation Example

– Given: CW(S1,O1), CR(O1,S2), CW(S2,O3) etc. (access control rules)

– Given: CK (S1,x): (unconditional relationship)

– Infer: CS (O1,x)
• Since CK (S1,x) CW(S1,O1)

– Infer: CK (S2,x)
• Since CS (O1,x) CR (S2,O1)

– Infer: CS (O2,x)
• Since CK (S2,x) CW (S2,O2)

– …

– Infer: CK(S4,x)

x x

Unconditional:

CK (S1,x)
Inferrred:
CK (S4,x) . . .

S1
S4

O1 S2

. . .

Formalizing confidentiality and
integrity invariants

• Confidentiality invariants express who can
know what, so they can be expressed in terms
of CK predicate

• Integrity invariants express where information
can end up so they can be expressed in terms
of CS predicate

In terms of sets

• CKS(S): (a set) the data that subject S can
know

• CSS(O): (a set) the data that object O can store

• Information transfer is irreversible, i.e. once a
data item has been included in CKS or CSS it
cannot be removed

Labels

• Data variables, Subjects and Objects are
labeled to indicate their security status

– x: TopSecret

– y: BankAmerica

– S: {BankAmerica, RoyalBank}

Example: Static Chinese Wall
Invariant view

• There are ‘compatible’ and ‘incompatible’
information domains

– E.g. two banks have incompatible information that
must be kept separate

• Invariants:

– Confidentiality: Subjects are allowed to know only
compatible information

– Integrity: Objects are allowed to store only
compatible information

Example: Static Chinese Wall
Transformation view

• Allowed transformations are:

– Subjects can only read from objects with
compatible information

– Subjects can only write on objects with compatible
information

Formalizing Static ChWall

• Security domains:

– Bank1, Bank2, Oil

– Compatibility relationship ∼

• Bank1∼Oil, Bank2∼Oil but not Bank1∼Bank2

• Allowed labels are sets of security domains
that contain only mutually compatible
domains

– {}, {Bank1}, {Bank2}, {Oil}, {Bank1, Oil}, {Bank2, Oil}

Allowed transformations for ChWall
(Access Control rules)

• CR(S:D, O:D’) ↔ D’⊆ D

– a subject can read from an object iff the object can
contain only data variables that the subject can know

• CW(S:D, O:D’) ↔ D ⊆ D’

– a subject can write on an object iff the subject can
know only data variables that the object can store

• The result is that incompatible information is not
allowed to cross the ChWall

ChWall Example

Oil

Alice

Bob

Bank1

Bank2

Alice: {Bank1, Oil}

Oil: {Oil}

Bob: {Oil}

Bank1: {Bank1,Oil}

Bank2: {Bank2, Oil}

• This label assignment is one of several that enforce ChWall
between Bank1 and Bank2

• Arrows show resulting CR, CW relationships

Formal Invariant Properties for ChWall

• D set of allowed labels

• Confidentiality:
– x:D∈CKS(S:D) ↔ D∈D

• E.g. x:Bank1 cannot be known by S:{Bank2,Oil}
– Invariant could be violated only for subjects containing both

Bank1 and Bank2 in their labels: not allowed

• Integrity:

– x:D∈CSS(O:D) ↔ D∈D

• E.g. x:Bank1 cannot be stored in O:{Bank2,Oil}
– Similar reason

Proving ChWall invariants

• So it is easy to prove that, given the set of
allowed transformations, the invariant
properties for CWall hold

– E.g. that x:Bank1 will never end up in
O:{…Bank2…}

– Since labels including {Bank1, Bank2} cannot exist

Proof technique

• Our proofs are based on the following simple
induction principle:

– Suppose that a property P is true for some set

– And suppose that there are rules for adding
elements to the set, which check whether P will
still be true after the addition

– Then obviously P will remain true in the set

• So P is invariant with respect to adding information to a
set of acquired information

Dynamic systems

• So far, labels were fixed
– Our ChWall is a simplification so far

• In dynamic systems, labels change as the
system progresses
– E.g. in real ChWall,

• Labels of subjects change as they read new objects
– They can now know new information

• Labels of objects change as more things are stored in
them
– They can now store new information

Dynamic ChWall

• Standard ChWall is dynamic:

– At the beginning, any subject can read from or write to any
object

– These operations alter the labels and the sets CKS and CSS,
thus changing the compatibility relationships between
subjects and objects hence the CR or CW relationships

– But labels with incompatible information are still not
allowed

Example
• Initial state:

– Alice:{}; Bob:{}; Bank1:{Bank1}; Bank2:{Bank2}; Oil:{Oil}

• Alice Reads from Bank1, now Alice: {Bank1}

26

Oil

Alice

Bob

Bank1

Bank2

{Bank1}

{Oil}

{}

ChWall

{Bank1}

{Bank2}

Dynamic ChWall Example
• Initial state:

– Alice:{}; Bob:{}; Bank1:{Bank1}; Bank2:{Bank2}; Oil:{Oil}

• Alice Reads from Bank1, now Alice: {Bank1}

• Bob Reads from Bank2, now Bob: {Bank2}

• Alice Reads from Oil, now Alice:{Bank1,Oil }

27

Oil

Alice

Bob

Bank1

Bank2

{Bank1,Oil }

{Oil}

{Bank2}

ChWall

{Bank1}

{Bank2}

Example
• Initial state:

– Alice:{}; Bob:{}; Bank1:{Bank1}; Bank2:{Bank2}; Oil:{Oil}

• Alice Reads from Bank1, now Alice: {Bank1}

• Bob Reads from Bank2, now Bob: {Bank2}

• Alice Reads from Oil, now Alice:{Bank1,Oil }

• Bob writes on Oil, now Oil: {Oil,Bank2}

• ¬(Bank1∼Bank2) so labels containing both are not allowed

• Future attempts of Alice to read from or write to Oil are blocked

28

Oil

Alice

Bob

Bank1

Bank2

{Bank1,Oil }

{Oil,Bank2}

{Bank2}

ChW

{Bank1}

{Bank2}

X

The construction

• We introduce Read and Write operations
• If executed when CR or CW are false they cause state

changes
• New states are characterized by new label

assignments, reflecting the new CK and CW
relationships

• However Read and Write operations that lead to
disallowed labels are not possible

• So at some point all allowed labels will be used
– The system becomes stabilized

• Go to ‘static ChWall’ case

Summary of results 1

• We have introduced a new method for reasoning
about properties of access control systems

– Formalizing intuitive concepts

• We have shown its applicability to a number of
classical access control models:

– Bell-La Padula, Biba, Lattice-Based, RBAC, High-Water
Mark, Chinese Wall

– These models were very simplified but there is no real
obstacle to extending the reasoning to the full models

Summary of results 2

• This single method has been shown to be
appropriate for proving several data flow
properties of these models

– Conventional presentations use different methods
for each model

– Proofs are simple and intuitive

Developments

New access control methods

• Our reasoning method allows to decompose
the classical methods into elementary
constituents

• This leads to the discovery of new elementary
access control methods, that can be combined
in many different ways

• They can be studied with our technique

Future work

• Assess and develop the usefulness of the
technique with respect to

– more realistically described access control models
of various kinds

– automatic theorem proving

– model combinations

• a new life for MAC models?

