
1

Normative Systems
The meeting point between
Jurisprudence and Information
Technology?

Luigi Logrippo

2

Main thesis

� We shall see that Jurisprudence and IT
� Have some commonalities of concepts

and issues

� Deal with them in similar ways
� They may be slowly pulling together

3

Normative Systems

� The term normative system is being used
in the literature with different definitions

� A much cited book by Alchourron and
Bulygin bears this title, and claims
application to social sciences only
� Loosely defines norms as statements that

relate cases to solutions

4

General importance of
normative system

� Jones and Sergot wrote in 1990:
� “at the appropriate level of abstraction, law ,

computer systems , and many other kinds of
organisational structure may be viewed as
instances of normative systems

� “we use the term to refer to any set of interacting
agents whose behaviour may be usefully
regarded as governed by norms

� “norms prescribe how the agents ought to
behave and specify how they are permitted to
behave and what their rights are

5

Two corrections, perhaps?

� Jones and Sergot wrote in 1990:
� Normative systems:
� “we use the term to refer to any set of

interacting agents whose behaviour may be
usefully regarded as governed by norms

� “norms prescribe how the agents ought to
behave and specify how they are permitted
to behave and what their rights are

Set of norms?

Excessive
reliance on
deontic
concepts?

6

Forces

� The behavior of computer systems is of increasing legal
relevance
� Security
� E-commerce, E-contracts
� IT governance

� Ideally, it should be possible for law and regulations to be
directly implemented in computer policies,
� these should automatically change as the law changes

� This will force the law to be more precise, at least in
certain areas

7

More forces

� Computer networks will be like social
systems, with their own norms
(policies)

8

Deontic Logic

� Deontic logic is a modal logic of obligation and
permission

� Based on the observation that the De Morgan
laws apply to these concepts:

not obligatory not P = P is permitted
not permitted not P = P is obligatory

Def.: forbidden P = P is not permitted
Def.: X has a right = State has obligation to X

9

Deontic logic in normative
systems

� It is often assumed that norms are
expressed in deontic logic
� See previous statement by Jones and

Sergot

� BUT…

10

The study of elementary
normative forms

� As biologists can learn much by
studying elementary life forms, we can
learn much by studying elementary
normative forms
� Firewalls
� Hammurabi code

11

Hammurabi code
(3700 years ago)

If any one steals cattle or sheep, or an ass, or a If any one steals cattle or sheep, or an ass, or a If any one steals cattle or sheep, or an ass, or a If any one steals cattle or sheep, or an ass, or a
pig or a goat, if it belong to a god or to the pig or a goat, if it belong to a god or to the pig or a goat, if it belong to a god or to the pig or a goat, if it belong to a god or to the
court, the thief shall pay thirty fold; court, the thief shall pay thirty fold; court, the thief shall pay thirty fold; court, the thief shall pay thirty fold;
if they belonged to a freed man of the king he if they belonged to a freed man of the king he if they belonged to a freed man of the king he if they belonged to a freed man of the king he
shall pay tenfold; shall pay tenfold; shall pay tenfold; shall pay tenfold;
if the thief has nothing with which to pay he if the thief has nothing with which to pay he if the thief has nothing with which to pay he if the thief has nothing with which to pay he
shall be put to deathshall be put to deathshall be put to deathshall be put to death

This code is written strictly in
Event-Condition-Action (ECA) style

12

Event, condition, action

If any one steals cattle or sheep, or an ass, or a If any one steals cattle or sheep, or an ass, or a If any one steals cattle or sheep, or an ass, or a If any one steals cattle or sheep, or an ass, or a
pig or a goat,pig or a goat,pig or a goat,pig or a goat,

if it belong to a god or to the courtif it belong to a god or to the courtif it belong to a god or to the courtif it belong to a god or to the court,,,,

the thief shall pay thirty foldthe thief shall pay thirty foldthe thief shall pay thirty foldthe thief shall pay thirty fold

A question is whose action this is:
The judge’s? The thief’s?

13

Firewalls

DROP all DROP all DROP all DROP all -------- nuisance.comnuisance.comnuisance.comnuisance.com anywhereanywhereanywhereanywhere

A rule in a Linux router to drop packets having
any (“all”) protocol, that come from node
“nuisance.com” and go anywhere

Also trigger-condition-action

14

Rules

� Thus, the most elementary
normative systems are simply made
of rules:
�Given such a behaviour, and such a

situation, such is the resulting action
�Norms can exist without the

notion of obligation

15

Enter deontic logic
with Moses’ law

8. Thou 8. Thou 8. Thou 8. Thou shaltshaltshaltshalt not stealnot stealnot stealnot steal

We have gained abstraction (this covers
a dozen articles from Hammurabi code)

But lost specificity
• What happens if one steals?
• How to enforce?

This is a requirement to be implemented

16

Rules and Requirements

� We have identified two normative styles
� Rule style
� Requirement style

� This is consistent with the distinction
between requirement and implementation
in Software Engineering

� There are of course other styles

17

Consistency

Are there incompatible norms for the
same situations?

18

Cases…

� Inconsistency between requirements
� Inconsistency between rules and

requirements
� Inconsistency between rules

� The second case is often solved by
giving the priority to the requirement

19

Inconsistency in law

� Inconsistency is one of the major
issues for lawyers and judges

� It is often dealt with by showing that
apparently incompatible rules deal
with different cases
� Although its origin may be an error…

20

Inconsistency in sets IT
policies: it’s an error

� It can be an implementation error
� In the spec or in the implementation

• The method to avoid these has been to
rigorously check specs and implementations

• Software Engineering, Formal methods

� Or it can be a Feature Interaction problem
� Methods have been ad-hoc

• We’ll get back to this

21

What does inconsistency
mean in norms?
� In classical logic, a single inconsistency

invalidates the whole system, anything
becomes derivable
� (A and not A) = False and anything can be

derived from False
• Which btw means that an inconsistent system is

complete!

� However in practice inconsistencies in sets
of rules are dealt with by trying to ‘isolate
and fix’ the inconsistent rules
� Logics to justify this exist

22

Detection of inconsistency

� Theorem provers
� Satisfaction algorithms

� Tool Alloy http://alloy.mit.edu/

� Algorithms are NP-complete (or
worse) but a lot can be done if few
variables are involved
� In many practical cases we have

seen, the problem was treatable

23

Completeness

Are all cases covered?

24

Examples of incompleteness

� A set of rules can be incomplete if some aspects
of the requirements are not covered

� E.g. Canadian charter of rights protects the right to
life
� However Canada has no law about abortion

• Is Canada’s law incomplete wrt requirements?
� Requirements can be implicit

� E.g. does the Hammurabi code cover all cases of
theft?

• This question makes sense even though
Hammurabi did not know Moses’ law, because he
covers several cases of theft

• Similarly, in common law requirements are induced
from cases, i.e. rules

25

Incompleteness in IT

� IT has standard ways to deal with
incompleteness:
� The default solution

• For every program, set of rules, etc. we
know what will happen in the case where
none of the specified conditions is true

� However this might not correspond to
the specification or the intention of the
user

26

Incompleteness in law

� The lawyer’s reasoning wrt incompleteness
is totally different

� There will be attempts to derive rules
� From requirements
� From similar rules

• Which means inducing the requirements from
similar rules

� Only if this fails, then the IT approach is
taken
� Situation not covered by law, nothing to do

27

Some common research
topics

�Defeasible logic and meta-
rules

�Feature interactions
�Ontologies

28

Defeasible Logic

Applies to both consistency and
completeness

29

Priority among norms in
firewalls

� In firewalls, the rules are scanned top-down
� The first applicable norm is applied and all

following ones are ignored

� So is solved the problem of several
applicable rules (policy interaction)

� This can’t be justified easily:
� The order of axioms is not important in logic
� The order of norms is not important in law

• although later norms can abrogate earlier ones

30

Defeasible Logic

� A non-monotonic logic proposed by Donald Nute. In
defeasible logic, there are three types of
propositions:
� Hard rules

• specify that a fact is always a consequence of
another;

• All birds have wings
� Defeasible rules

• specify that a fact is typically consequence of
another;

• All birds fly
� Defeaters

• specify exceptions to defeasible rules.
• Ostriches don’t fly

� Before applying a defeasible rule, check for
defeaters!

31

Defeasible logic by priorities

� R1: Professor(X) => Tenured(X)
� R2: Visiting(X) => Non-Tenured(X)

� Is a Visiting Professor tenured?
� Which one is the defeater?

• One common way to answer is to give
priorities to rules, most probably here
R2>R1

32

Firewall example

� In a firewall, the first applicable rule
defeats all following ones
� R1>R2>R3…

� So all rules are defeasible by a
previous one
� Legal theory and IT have

independently discovered the same
problem, and solved it in similar ways

33

Meta-rules

� A normative system can also include meta-
rules, to decide which rule(s) should be
defeated in case of inconsistency
� Priority rule can be considered a meta-rule
� In XACML: access control language
� It is possible to specify combining

algorithms
• Deny override
• Permit override
• Etc.

34

Meta-rules in law

� lexlexlexlex specialisspecialisspecialisspecialis derogatderogatderogatderogat legilegilegilegi generaligeneraligeneraligenerali
� lexlexlexlex posterior posterior posterior posterior derogatderogatderogatderogat legilegilegilegi priori priori priori priori
� lexlexlexlex superior superior superior superior derogatderogatderogatderogat legilegilegilegi inferioriinferioriinferioriinferiori

� A law can be overridden by
• a more special one,
• a posterior one,
• or a superior one

35

Another application:
Closure norm

� A closure norm is a norm that makes
a system complete, e.g.
� In Cisco firewalls, all packets for which

there is no rule are rejected
• Similar to a legal system where all

behaviours that are not explicitly allowed
are forbidden

� In Linux firewalls, the rule is opposite
• A ‘more liberal’ legal system

• NullaNullaNullaNulla poenapoenapoenapoena sine sine sine sine legelegelegelege

36

Closure norm
as defeasible norm

� In defeasible logic, a closure norm is a norm
that exists in the system, but can be
defeated by any other norm (G.Governatori)

� It applies only if no other norm applies

� If defeasible logic is not used, it is a norm
that applies when the negation of the
premises of all other norms holds
� Difficulty in constructing this negation, it

changes as the set of norms changes

37

Feature Interactions

38

C
3. A gets connected to C

1. A calls B 2. B forwards to C

A has C in OCS list

A

B has CF to C

B

OCS goal is violated.

OCS: Originating Call Screening
CF: Call Forward

39

Feature Interaction

� Multi-user feature interaction, i.e.
resolution of conflicts between agents
resulting from conflicting goals, is
precisely the subject of law!

� This suggests that in order to solve
FIs in IT systems we’ll have to
develop the equivalent of generally
recognized laws

40

Wired-in solution
� The law, even common sense, knows

perfectly how to deal with this, why don’t we?
� If Alice lends a book to Bob, and Bob wants

to lend it to Carla, of course he must check
first with Alice!

� If Alice delegates a task to Bob, and Bob
wants to delegate it to Carla, of course he
must check with Alice

� In computing we are haven’t really developed
a culture yet…

� Very slowly, we’ll have to develop principles:
� Ownership, delegation…
� Who owns a connection, when can it be

delegated…

41

Trusted third party (TTP)

� In ‘real life’, arbitrators, judges,
notaries are essential to prevent and
solve feature interaction

� And so they must be in computer
communications
� TTPs to apply FI resolution policies

� In some implicit way, connecting
parties will have to recognize the
jurisdiction of a TTP

42

OCS-CF Interaction with
TTP

� Parties will keep TTP informed of their
intentions, asking for approvals

� CF will be ‘disapproved’ by TTP

CC
3. A gets connected to C

1. A calls B 2. B forwards to C

A has C in OCS list

A

A has C in OCS list

A

A has C in OCS list

A

B has CF to C

B
B has CF to C

B

43

TTP Present and Future

� At present, TTPs are not much used,
except for authentication

� Users tend to trust the other party
they are dealing with, which often has
conflicting interests

� Application areas:
� Web services
� E-commerce, E-contracts in particular

44

Ontologies

45

Ontologies (in CS sense…)

� In legal systems, just as in IT policies,
there is yet another type of norm, the
definitional norm.
� Wikipedia: An ontology is typically a

hierarchical data structure containing
all the relevant entities and their
relationships and rules within that
domain (e.g. a domain ontology).

46

Ontologies as generators

� We can have a norm saying that theft is punished in a
certain way, then definitions saying that certain
behaviours are theft
� Another way to bridge betw. Moses and Hammurabi…

� In a company, we can program the switchboard with
the company’s organizational tree
� Then we can have a rule such as:

• When an employee is absent, calls for him go to the
supervisors

� This can generate dozens of rules
� Enterprise security systems are built on enterprise

ontologies
� E.g. Role-based Access Control (RBAC)

47

Conclusions

� Many concepts are common between
Jurisprudence and IT

� Forces exist that will draw the two
areas closer in the long run

� Conceptual consolidation is desirable
and will surely occur

� Much is to be learned from such
consolidation, in both fields

