
1

Ahmed Layouni

Luigi Logrippo

Ken J.Turner – University of Stirling

Conflict Detection in Call Control

Using First-order Logic Model Checking

luigi@uqo.ca

http://w3.uqo.ca/luigi/

2

Changing views of FI

Process-based view:

Early research on FI was based on the idea that Fis

were the result of complex interleavings of features

• See Feature Interaction contexts

Logic-based view:

Later it became understood that many or most FIs

are the result of logical inconsistencies in the

specification of features we are composing

3

User Policies

With the flexibility provided by IP, features will

increasingly be directed by user policies

In a policy directed system, features

Acquire logical complexity

While losing state complexity

Hence the logic-based view becomes dominant

4

Policy systems as ECA systems

Event (trigger, signal, stimulus)

Condition (consultation of data base)

Action(s) to be performed

5

Main idea

Feature interactions are the

result of logic flaws

Inconsistency of specs

E.g. for the same event and

condition, execute different

actions

Do this Do that

6

FIs as inconsistencies

There is FI when there is inconsistency between:
Two simultaneous actions of one or several agents

• They lead to inconsistent results

An action and a following action

• Where the first makes the second impossible

• Or the second contradicts the first

An action and the requirements of a user

Actions and systems requirements

Inconsistency of actions may be visible only after complex
domain-dependent considerations

It is usually a fact provided as human input to FI detection tools

7

This idea is present in a number of

works

Within an explicit logic framework:
Felty and Namjoshi, FIW 2000

Various papers of Aiguier and Le Gall, e.g. Formal Methods 2006 (LNCS
4085)

More generally talking about ‘conflicts’, ‘broken assumptions’,
etc.

Kolberg, Magill, Wilson, IEEE Comm., 2003

Gorse, Logrippo, Sincennes, originally in Gorse’s Master’s thesis of 2000
and eventually published in SoSym 2006

Metzger et al., FIW 2003 and 2005

Turner, Blair 2006

Etc.

8

In fact, from the beginning

Seminal paper by Cameron et al. identifies as

main causes of FI:

Violation of assumptions

• a clear case of inconsistency

Limitation of network support

• inconsistency between concurrent claims of resources

9

FI symptoms according to

Gorse, Logrippo, Sincennes

Basic cases of FI:

Features leading to different results

• Non-contradicting ones (non-determinism)

• Contradicting ones

A feature enables another, with contradicting results

A feature enables another, which directly or indirectly

enables the first (infinite loop)

10

Connections…

Considerable work exists on

Consistency in software requirements

Consistency of viewpoints in requirements

These connections have not yet been fully

exploited within FI research

11

How do we know about the conflicts

This can be obvious, in cases where there is a

straight contradiction

A and not A

• But this is rarely the case

In many cases, contradiction is a result of

domain-dependent considerations

E.g. accept call contradicts disconnect

12

Next step of analysis:

Considering pre- & post-conditions

Wu and Schulzrinne (ICFI-Leicester) have

moved forward by

Introducing the idea of conflicts between pre- and

post-conditions of actions

Determining action conflicts on the basis of their pre-

and post-conditions

This can provide information also on possible FI

resolution

13

Interactions of pre- and post-conditions

Enable(A,B) (positive interaction)
the post-condition of A implies the pre-
condition of B

Disable(A,B) (negative interaction)
The post-condition of A does not imply the pre-
condition of B

Conflict of post-conditions: (negative
interactions)

The expected postconditions of two actions
conflict directly

• Special case: they request the same resources

The expected postconditions of two actions
conflict because of parameters

A

B

post(A)

pre(B)

A B

post(A) post(B)

14

Three types of conflicts

Concurrency conflict Disabling conflict Results conflict

postAction1pre postAction1pre

postAction2pre postAction2pre

Call State

phase1

p
h
a
s
e
2

phase3

postAction1pre postAction1pre

postAction2pre postAction2pre

Call State

phase1 phase2 phase3

postAction1pre postAction1pre

postAction2pre postAction2pre

Call State

phase1 phase2 phase3

15

How to choose pre- and post-condition:
APPEL case study

Software systems are complex and every action is the result of,
also produces, complex conditions

Only few elements can be expressed in logic statements that are
meant for analysis

These elements must be chosen in terms of broad
generalizations

The choice of these elements is vital for producing a useful
analysis

In terms of the characteristics of APPEL, we have chosen to
focus on two elements:

Call states

Media state

16

How to determine conflicts

Similarly, conflicts must be determined in terms

of broad generalizations

E.g. if one action requests a resource of a certain

type, then it might disable another action that

requires the same type of resources

17

APPEL Actions

connect_to initiates a new and independent call

reject_call rejects a call

forward_to changes the destination of the call

fork_to adds an alternative leg to the call

add_party adds a new party to an existing call

remove_party removes a party from the call

add_medium adds a new medium to the call

remove_medium removes a medium from the call

remove_default removes the def. medium from the call

disconnect disconnects the call

18

APPEL Example 1

reject_call concurrent with add_party
Precondition for reject_call:
• CallSetup state

Precondition for add_party:
• MidCall state

State conflict for these two actions

If a feature or a combination of feature requires simultaneous
execution of these actions, this won’t be possible because of
state conflict

19

APPEL Example 2

remove_party concurrent with fork_to

Resulting media state by remove_party:

• DefaultAvailable

Resulting media state by fork_to:

• DefaultReserved

Resource conflict for these two actions

20

APPEL Example 3

add_party followed by forward_to

Resulting call state by AddCaller vs precondition call

state by ForwardTo:

• MidCall vs CallSetup Conflict

Resulting media state by AddParty vs precondition

media state by ForwardTo:

• DefaultReserved vs DefaultReserved OK

21

Now for a systematic analysis

22

Pre-and post-conditions of call actions

DefaultAvailNoCallDefaultReservMidCalldisconnect

DefaultAvailMidCallDefaultReservMidCallremove_default

MediumAvailMidCallMediumReservMidCallremove_medium

MediumReservMidCallMediumAvailMidCalladd_medium

DefaultAvailMidCallDefaultReserv
MidCall,

PartyAddedToCall
remove_party

DefaultReserv
PartyAddedToCall,

MidCall
DefaultAvailMidCalladd_party

DefaultReservCallForkedDefaultReservCallSetupfork_to

DefaultAvailCallForwardedDefaultReservCallSetupforward_to

DefaultAvailNoCallDefaultReservCallSetupreject_call

DefaultReservCallSetupDefaultAvailNoCallconnect_to

Media StateConnection StateMedia StateConnection State

Post-conditionsPre-conditionsAction

23

Connection state incompatibilities:
the system cannot be in two different states

CallSetupMidCall

NoCallMidCall

NoCallCallSetup

MidCallCallSetup

CallSetupNoCall

MidCallNoCall

Connection State 2Connection State 2Connection State 2Connection State 2Connection State 1Connection State 1Connection State 1Connection State 1

24

Media state incompatibilities
concurrency conflict

MediumAvailableMediumReserved

MediumReservedMediumAvailable

DefaultAvailableDefaultReserved

DefaultReservedDefaultAvailable

PreconditionPreconditionPreconditionPrecondition media media media media

state Action2state Action2state Action2state Action2

PreconditionPreconditionPreconditionPrecondition media media media media

state Action1state Action1state Action1state Action1

25

Example of conflict:
two actions that cannot be executed in parallel

DefaultAvailNoCallDefaultReservMidCalldisconnect

DefaultAvailMidCallDefaultReservMidCallremove_default

MediumAvailMidCallMediumReservMidCallremove_medium

MediumReservMidCallMediumAvailMidCalladd_medium

DefaultAvailMidCallDefaultReserv
MidCall,

PartyAddedToCall
remove_party

DefaultReserv
PartyAddedToCall,

MidCall
DefaultAvailMidCalladd_party

DefaultReservCallForkedDefaultReservCallSetupfork_to

DefaultAvailCallForwardedDefaultReservCallSetupforward_to

DefaultAvailNoCallDefaultReservCallSetupreject_call

DefaultReservCallSetupDefaultAvailNoCallconnect_to

Media StateConnection StateMedia StateConnection State

Post-conditionsPre-conditionsAction

26

Two actions that

cannot follow each other

DefaultAvailNoCallDefaultReservMidCalldisconnect

DefaultAvailMidCallDefaultReservMidCallremove_default

MediumAvailMidCallMediumReservMidCallremove_medium

MediumReservMidCallMediumAvailMidCalladd_medium

DefaultAvailMidCallDefaultReserv
MidCall,

PartyAddedToCall
remove_party

DefaultReserv
PartyAddedToCall,

MidCall
DefaultAvailMidCalladd_party

DefaultReservCallForkedDefaultReservCallSetupfork_to

DefaultAvailCallForwardedDefaultReservCallSetupforward_to

DefaultAvailNoCallDefaultReservCallSetupreject_call

DefaultReservCallSetupDefaultAvailNoCallconnect_to

Media StateConnection StateMedia StateConnection State

Post-conditionsPre-conditionsAction

27

Extent of analysis

10 actions x 10 actions x 6 predicates:

600 cases were considered

• Analysis is complete within the framework of our

abstractions

Quite a number of potential interactions was

discovered between the 10 actions

See Fig. 6 in paper

28

Symptoms of conflicts

Due to the inability to formalize all elements of a
domain, action inconsistency is usually a
symptom

Based on knowledge of expected systems behavior

Detection is tentative

Detection tool identifies possible conflict scenarios
and interaction must be confirmed by human
inspection

29

Granularity

This analysis has coarse granularity

Relatively to what one could envisage…

• But still better than other techniques

Improvements possible:

More detailed analysis of pre- and post-conditions

Parameters, addresses

30

FI Resolution

This approach provides little immediate help for

FI resolution

However, it might eventually, because the more

information is available regarding the reasons for

interaction, the more we can address it

appropriately

Research topic…

31

How to detect

Specifications must be precise!

Sometimes they are already sufficiently precise, e.g. in a

XML-based language

Constraint Logic Programming

Given a set of logic constraints, CPL tools can tell whether

• There is a solution, constraints are satisfiable

• There is no solution, in fact there is a counterexample

First order model checking

A related technique

32

Alloy

Formal language and related tool developed at MIT
Daniel Jackson

Tool is a first-order logic model checker with FINITE MODELS
Note difference wrt temporal logic model checkers

Alloy’s front end:
A logic-based language

Alloy’s engine:
an efficient Constraint Satisfaction (SAT) algorithm

Alloy includes many interesting concepts, and it would not be
possible to present it well in few minutes

33

Alloy specifications

Alloy allows to specify a set of constraints in any

of, or a combination of

Logical style (1st order pred calculus)

Relational style

‘Navigational’ style

Very expressive user language

34

Some elements of Alloy

Facts, Predicates, Functions: describe the system, in
terms of constraints

Assertions: state properties that are believed to be true
of the system

Check: checks a given assertion, trying to find a
counterexample

Run: runs a given predicate, trying to find an example
Run and check have to specify how many instances should
be created for each type: FINITE MODELS

35

How Alloy works

Alloy expresses the constraints in terms of boolean
expressions and then tries to solve these by invoking
off-the-shelf SAT solvers

This problem is NP-complete, however improvements in
efficiency of SAT solvers allows many non-trivial
problems to be treated

Current solvers can handle
thousands of boolean vars,

hundreds of expressions
• But much depends on the type of the expressions

36

Feasible part

of the curve

37

First order logic – overkill?

Yes, for our specific problem

We do simple comparisons

However, in general, pre- post-conditions can be

arbitrarily complex logic statements

Approach will need first order logic in order to be

generalized

38

Conclusions

Complex designs require the composition of complex

features

With user control of what will happen in different situation

(user policies)

Introduction of these features requires sophisticated

methods to detect different situations of feature conflicts

Model checkers and constraint logic programming

provide tools to detect potential conflicts

39

Merci! – Questions?

