
Applying the BDI paradigm in
Communications Systems

Romelia Plesa
PhD Candidate
OCICS - SITE, University of Ottawa

November 7, 2006

Presentation Overview

� Proposed architecture

� BDI basics
� Applying BDI

� AgentSpeak(L) basics
� Example

Motivation
Presence, Context and the personalization of services

� Most of today’s telephony communication services
could be characterized as context free.

– They provide no real-time context regarding the purpose or
the circumstances of a phone call that one is receiving.

� Context information is needed in order to manage the
use of the phone or other communication services.

� Context-aware support provides the application
relevant knowledge about the environment in which it
functions.

– The applications analyze available context information and
together with user preferences determine the best way to
communicate at any given point in time.

A vision of Context-based scenarios

The advocates of presence
technology and contextual
services promise a world
where people will be
connected when they
want, how they want,
and with whom they
want and their
communication will be
tailored on specific desires
and preferences.

Goal

� to propose an architecture that supports
presence and contextual services in telecom
and allows context-aware call handling
based on information about the environment
(context) and individual policies.

New Services

� Context-based services
– All calls from my students will have

announcement X played out.

� Availability services
– Secretaries are not available to answer enquires

during lunchtime

� Notification services
– Remind me of the 3 pm meeting if I am not

already in the meeting room.

� Personal addressing services
– If the call is from a person involved in project X,

redirect it to the team leader

The Architecture

Functional Requirements:

� collection of context
information using sensors

� dissemination of context
information

� publishing of presence
information from users and
their devices

� description of user policies
and preferences

� user preferences-based
handling of communication

Communication

System

Communication

System Policy

Server

Context

Information

Server

Personal

Communication

Manager

Call control context Context update

The Architecture

� architecture independent of
the communication protocol
(SIP, H.323 or other session
protocol).

� Context Information Server
updates, stores and
distributes the context
information.

� Policy Server manages the
user’s policies.
– Personal policies allow

users to establish
preferences about how
their calls should be
handled.

– Subscription/ Notification
policies allow users to
project different presence
to different persons.

Communication

System

Communication

System Policy

Server

Context

Information

Server

Personal

Communication

Manager

Call control context Context update

Personal Communication Manager

� a software agent that
represents each user.

� PCM receives request
messages (such as INVITE
for a SIP-based architecture)
and decides how they should
be handled.

• PCM has three components
– Presence Information Manager - a rule-based process that builds

the “consolidated presence information”.
– Presence Directory - a repository in which all known and deduced

presence information is deposited.
– Policies and Preferences Manager - contains the preferences logic

to respond to requests to contact an entity.

Communication

System

Communication

System
Policy

Server

Context

Information

Server

Call control context Context update

Personal Communication Manager (PCM)

Presence

Directory

Policies and

Preferences

Manager

(PPM)

Presence

Information

Manager

(PIM)

The Call Model

� Includes context update, service selection based on context
information and user personal policies as well as service
execution.
� The service selection and execution mechanisms will be

incorporated into the Personal Communication Manager (in the
Policies and Preferences Manager (PPM) component).

Personal Communication Manager (PCM)

Context

Information

Server

Communication

System

Communication

System

Presence

Directory

Presence

Information

Manager

(PIM)

Service Selection
Mechanism

Service Execution
Mechanism

Policy

Server

incoming request

obtain presence info
consult policies

execute action

PPM

select next action

The BDI Model

�� Belief, Desire, Intention (BDI) is an Belief, Desire, Intention (BDI) is an
architecture for modeling Intelligent Software architecture for modeling Intelligent Software
AgentsAgents

�� BDI agents can solve problems in dynamic BDI agents can solve problems in dynamic
and realand real--time environments with little or no time environments with little or no
human interventionhuman intervention

�� The BDI architecture is used in a variety of The BDI architecture is used in a variety of
applications ranging from robots that play applications ranging from robots that play
soccer to air traffic controllers in airportssoccer to air traffic controllers in airports

BDI Agents

� Systems that are situated in a changing
environment

� Receive perceptual input from the environment
� Take actions to affect their environment

From the various options and alternatives available to it
at a certain moment in time, the agent needs to select
the appropriate actions or procedures to execute.

The selection function should enable the system to
achieve its objectives, given

– the computational resources available to the system

– the characteristics of the environment in which the system is
situated.

BDI Agents

� two types of input data required for the selection
function:

� Beliefs:
– represent the characteristics of the environment
– are updated appropriately after each sensing

action.
– can be viewed as the informative component of

the system.

� Desires
– contain the information about the objectives to be

accomplished, the priorities and payoffs
associated with the various objectives

– can be thought as representing the motivational
state of the system.

BDI Agents

� Intentions
– represent the currently chosen course of action

(the output of the most recent call to the selection
function)

– capture the deliberative component of the system.

BDI AgentsBELIEFS
DESIRES

SELECTION
FUNCTION

INTENTION

BDI Mapping

� implementing PPM as a BDI agent

Personal Communication Manager (PCM)

Presence

Directory

(PPM)

Presence

Information

Manager

(PIM)

Service

Selection

Mechanism

Service

Execution

Mechanism

Context

Information

Server

Communication

System

Communication

System
Policy

Server

beliefs

desires

intensions

BDI Agent

Representing Context and Policies

� implement PPM as a BDI agent that
conforms to the AgentSpeak) formalism.

� An AgentSpeak(L) agent consists of a set of
beliefs and a set of plans.
– Beliefs � the content of the Presence Directory
– Plans � Policies (stored in the Policy Server).

� For implementation, we use Jason, an
interpreter for AgentSpeak(L)

AgentSpeak(L)

� attempt to bridge the gap between theory and
practice

� a model that shows a one-to-one
correspondence between the model theory,
proof theory and the abstract interpreter.

– provides an elegant abstract framework for programming BDI
agents.

– natural extension of logic programming for the BDI agent
architecture

– based on a restricted first-order language with events and
actions.

– the behavior of the agent (i.e., its interaction with the
environment) is dictated by the programs written in
AgentSpeak(L).

AgentSpeak(L) - Basic Notions

� The specification of an agent in AgentSpeak(L)
consists of:

– a set of base beliefs
� facts in the logic programming sense

– a set of plans.
� context-sensitive, event-invoked recipes that allow

hierarchical decomposition of goals as well as the
execution of actions with the purpose of
accomplishing a goal.

AgentSpeak(L) - Basic Notions

� belief atom
– is a first-order predicate in the usual notation
– belief atoms or their negations are termed belief

literals.

AgentSpeak(L) - Basic Notions

� goal
– is a state of the system, which the agent wants to achieve.

� two types of goals:
– achievement goals

� predicates prefixed with the operator “!”
� state that the agent wants to achieve a state of the world

where the associated predicate is true.
� in practice, these initiate the execution of subplans.

– test goals
� predicates prefixed with the operator‘?’
� returns a unification for the associated predicate with one

of the agent’s beliefs; it fails if no unification is found.

AgentSpeak(L) - Basic Notions

� triggering event
– defines which events may initiate the execution of a plan.

– an event can be
� internal, when a subgoal needs to be achieved
� external, when generated from belief updates as a result

of perceiving the environment.
– two types of triggering events:

� related to the addition (‘+’) and deletion (‘-’) of attitudes
(beliefs or goals).

AgentSpeak(L) - Basic Notions

� Plans
– refer to the basic actions that an agent is able to perform on its

environment.

Where:
� te - triggering event (denoting the purpose for that plan)

� ct - a conjunction of belief literals representing a context.
– The context must be a logical consequence of that agent’s current beliefs for

the plan to be applicable.

� h - a sequence of basic actions or (sub)goals that the agent has to
achieve (or test) when the plan, if applicable, is chosen for
execution.

p ::= te : ct <- h

+concert (A,V) : likes(A) <-
!book_tickets(A,V).

+!book_tickets(A, V) :

¬busy(phone)

<- call(V);

…;

!choose seats(A,V).

Triggering
event Context

Achievement
goal added

Basic action

AgentSpeak(L) - Basic Notions

� Intentions
– plans the agent has chosen for execution.
– Intentions are executed one step at a time.
– A step can

� query or change the beliefs
� perform actions on the external world
� suspend the execution until a certain condition is met
� submit new goals.

– The operations performed by a step may generate new events,
which, in turn, may start new intentions.

– An intention succeeds when all its steps have been completed. It
fails when certain conditions are not met or actions being
performed report errors.

AgentSpeak(L) Example

� During lunch time,
forward all calls to Carla.

� When I am busy,
incoming calls from
colleagues should be
forwarded to Denise.

ALICE

AgentSpeak(L) Example
Beliefs

user(alice).

user(bob).

user(carla).

user(denise).

~status(alice, idle).

status(bob, idle).

colleague(bob).

lunch_time(“11:30”).

AgentSpeak(L) Example
Plans

user(alice).
user(bob).
user(carla).
user(denise).
~status(alice, idle).
status(bob, idle).
colleague(bob).
lunch_time(“11:30”).

“During lunch time, forward all calls to Carla”.
+invite(X, alice) : lunch_time(t) ←←←←

!call_forward(alice, X, carla). (p1)

“When I am busy, incoming calls from colleagues
should be forwarded to Denise”.

+invite(X, alice) :

colleague(X) ←←←←
!call_forward_busy(alice,X,denise).

(p2)

+invite(X, Y): true ←←←← connect(X,Y).

(p3)

AgentSpeak(L) Example
Plans

user(alice).
user(bob).
user(carla).
user(denise).
~status(alice, idle).
status(bob, idle).
colleague(bob).
lunch_time(“11:30”).
+invite(X, alice) : lunch_time(t) ← !call_forward(alice, X, carla). (p1)
+invite(X, alice) : colleague(X) ← call_forward_busy(alice,X,denise).(p2)
+invite(X, Y): true ← connect(X,Y). (p3)

+!call_forward(X, From, To) : invite(From, X)
←←←← +invite(From, To), - invite(From,X) (p4)

+!call_forvard_busy(Y, From, To) : invite(From, Y)&
not(status(Y, idle)))

←←←← +invite(From, To), - invite(From,Y). (p5)

AgentSpeak(L) Example
user(alice).
user(bob).
user(carla).
user(denise).
~status(alice, idle).
status(bob, idle).
colleague(bob).
lunch_time(“11:30”).

+invite(X, alice) : lunch_time(t)
← !call_forward(alice, X, carla). (p1)

+invite(X, alice) : colleague(X)
← call_forward_busy(alice,X,denise). (p2)

+invite(X, Y): true ← connect(X,Y). (p3)
+!call_forward(X, From, To) : invite(From, X)

← +invite(From, To), - invite(From,X) (p4)
+!call_forvard_busy(Y, From, To) : invite(From, Y)& not(status(Y,

idle)))
← +invite(From, To), - invite(From,Y). (p5)

Simulation

John

Alice

Charles

Bob

Stella

Josh

Beliefs base

Plans

Plans

Plans

Plans

Plans

Plans

Belief base consultation

Belief base update

Plan retrieval

Addition of subplan

Action

Essential features (1)

� Plan selection
– In case there are a number of alternative plans for achieving

the same goal, the agent is able to make a choice based on
some comparison of the different plans.

– may depend on the time needed, the overall cost, the risk
factor, the user preferences, etc.

– Appropriate decision procedures must therefore be supplied
for supporting plan selection.

� Context-sensitivity
– Planning must take into account the current context in which

the user is situated (the current user’s physical location, the
latest changes in his schedule, etc.).

– The beliefs base is updated with all the changes in the
environment using the AgentSpeak mechanism of event
perception.

Essential features (2)

� Plan failure recovery
– If a plan fails at some stage, the agent is able to retract

properly and select another alternative plan.

� Conflict resolution and goal selection
– the user might have a number of goals that cannot be

achieved simultaneously.
– In such cases, the agent must be able to make a decision

about which goals to try to achieve.
– In making such decisions, it needs to take into account the

importance of the goals as well as the costs of executing
the plans.

Conclusions

� the BDI agent paradigm, although originally
developed for other purposes, is particularly
suited to the user communication domain.

� The actions that the agent decides to take
arise from the instantiation of partially
specified plans, selected to fulfill the user's
goals, given the beliefs that it has at that
point in time.

� The details of the plan are filled in as the
plan progresses, which allows for a wide
range of possible courses of action.

