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Abstract. In this paper, we first discuss some drawbacks of the ex-
isting conflict authorization resolution methods when access rights are
delegated, and then propose a flexible authorization model to deal with
the conflict resolution problem with delegation. In our model, conflicts
are classified into comparable and incomparable ones. With comparable
conflicts, the conflicts come from the grantors that have grant connec-
tivity relationship with each other, and the predecessor’s authorizations
will always take precedence over the successor’s. In this way, the access
rights can be delegated but the delegation can still be controlled. With
incomparable conflicts, the conflicts come from the grantors that do not
have grant connectivity relationship with each other. Multiple resolution
policies are provided so that users can select the specific one that best
suits their requirements. In addition, the overridden authorizations are
still preserved in the system and they can be reactivated when other
related authorizations are revoked or the policy for resolving conflicts
is changed. We give a formal description of our model and describe in
detail the algorithms to implement the model. Our model is represented
using labelled digraphs, which provides a formal basis for proving the
semantic correctness of our model.

1 Introduction

In an access model with both positive and negative authorizations, conflicting
situations can arise. If a subject (user) is granted both positive and negative
authorizations on the same object, then we say that these two authorizations
conflict with each other with respect to this subject. For instance, when a subject
s is granted both “read” and “not read” rights on a file F from different subjects
(grantors), then these two authorizations are in conflict with each other. Solving
authorization conflicts in security policy specification is an important design
issue in an access control model. Several previous research work have looked at
this issue of conflict resolution policy, though in practice the realisation of such
schemes has lagged behind the need.

Currently the proposed conflict resolution policies can be summarised as
follows(see references [2,3,5,6,7,8]):

Negative (Positive)-takes-precedence: If a conflict occurs on some subject, the
negative (positive) authorizations will take precedence over positive (negative)
ones.
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Strong-and-Weak: Authorizations are classified into two types, strong and
weak. The strong authorizations will always override the weak ones when conflict
occurs. Conflicts between strong authorizations are not permitted. When conflict
occurs between weak authorizations, the negative ones will take precedence.

More specific-take-precedence: The authorization granted to a subject will
take precedence over the authorizations granted to a group to which the subject
belongs when conflict occurs.

Time-take-precedence: The new authorization will take precedence over the
old one.

In a flexible access control model, it is necessary to have delegation of access
rights between subjects especially in a large distributed system. Furthermore,
there could be multiple administrators in such a distributed authorization model.
Most of the conflict resolution policies are limited when delegation requirements
are taken into consideration. For instance, they suffer from the following com-
mon problem: when a subject s1 delegates some privilege to another subject s2,
s1 can lose control of the delegated privilege with respect to further delegations.
This situation can lead to unexpected situations; for instance, s2 may then give
back to s1 a negative authorization for the same access privilege. For example,
in a company, suppose the chairman creates a file and then delegates its “read”
right to each member of the executive committee. Let us assume that each mem-
ber of the executive committee further delegates this “read” right to his (her)
subordinate managers so that they can grant the “read” right to the members
in their project teams. In this circumstance, this file’s “read” right has multiple
administrators, i.e. the chairman, executive committee members and managers.
If the policies mentioned above are used to resolve the conflicts, it may not be
possible to prevent the following situation: a manager can grant a “not read”
right for the file to the member of the executive committee (his/her) grantor)
or even to the chairman (his/her) grantor’s grantor); furthermore, this negative
authorization can dominate the previous positive one the member already has.
As a result, the member of the executive committee or the chairman can be
denied to read the file. This is certainly not reasonable in practice. We claim
that the problem comes from delegation without any control. This can lead to
users not exercising the delegation of access rights since this means that they
can lose control of the object and therefore risk sacrificing their privileges. We
believe that delegation of rights should be supported in a large-scale decentral-
ized access control system for flexibility, but at the same time, the delegation
must be controlled. A promising approach to exercising this control is to adopt
an appropriate conflict resolution policy.

In this paper, we propose a conflict resolution policy to achieve this con-
trolled delegation. In our policy, if s1 delegates or transtively delegates to s2
some privilege, then for this privilege, s1’s granted privilege will have higher
priority than s2’s granted privilege whenever they conflict over some other sub-
ject. Moreover s2 is not allowed to grant s1 any further authorizations. In other
words, the priority of the subject decreases as the privilege delegation moves
from one subject to another, and the subject with lower priority cannot grant
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authorizations to the subject with higher priority. Assuming all the rights on an
object are first delegated from the owner of this object, the owner will always
have the highest priority for this object and his/her authorizations can never be
overridden. Thus users do not need to worry about losing control of the objects
by using delegation of rights. The priority information comes from the grant
connectivity relationship, which is dynamic and is usually different from object
to object. In this way we can support controlled delegation of access rights, and
take advantage of both distributed and centralised administrations of rights. As
for the above example, since the priorities of subjects for “read” right on the
file decreases from the chairman to committee members to managers, the unex-
pected situation discussed above will not occur. Furthermore, if some member of
a team gets both “read” right on the file from his manager and “not read” right
from the chairman, the chairman’s granted privilege will dominate the other.

The remainder of this paper is organized as follows. In section 2, we propose
a formal model of authorization conflict resolution. In section 3, we present the
relevant algorithms that implement our model. In section 4, we briefly consider
authorization state transformations based on our model. Finally, in section 5 we
summarize the major contributions of this paper and outline some future work.

2 The Authorization Conflict Resolution Model

In this section, we outline the basic idea and provide a formal description of our
authorization conflict resolution model.

2.1 The Basic Idea

In our authorization model, we allow both positive and negative authorizations,
and permit access rights to be delegated from one subject to another. So, for any
access right on any object, it may have multiple administrators that can grant
authorizations. Different to the previously proposed conflict resolution policies,
we classify conflict authorizations into two categories namely comparable and
incomparable conflicts. Consider the situation where a subject s3 is granted two
conflicting authorizations with respect to an access right r on an object o from
subjects s1 and s2 respectively. We say that these two conflicting authorizations
are comparable if s2’s administrative privilege for r on o is granted (or transi-
tively granted) by s1, or vice versa. In the first case we assign a higher priority to
s1’s grant than s2’s grant to solve the conflict occurring over the subject s3. On
the other hand, if there is no grant connectivity relationship between s1 and s2,
then this conflicting authorization is said to be incomparable. In our model, we
support multiple policies to solve incomparable conflicts to meet different users’
requirements. For example, we may use the positive authorization to override
the negative authorization or vice versa. We require that all the rights of an
object be originally delegated from the owner of the object, so that the owner’s
authorization will take precedence over any other conflicting authorizations.
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In addition, although some authorizations may be overridden by other autho-
rizations, they are not eliminated from the authorization state. We preserve all
the authorizations; they are either revoked explicitly or by recursive revocation.
So conflicting authorizations can be present simultaneously in our model. The
main advantages of this approach include the ability of re-activating the over-
ridden authorizations after the other related authorizations are revoked, and the
ability of changing the policy of incomparable conflicts resolution.

2.2 Notation and Definitions

Let S be a finite set of subjects (users), O be a finite set of objects (files, rela-
tions), R be a finite set of access rights (e.g. read, write, select, etc.), and T be a
finite set of grant types. Then we have the following definition for authorization.

Definition 1. (Authorization) An authorization is a 5-ary tuple (s, o, t, r, g),
where s ∈ S,o ∈ O, t ∈ T , r ∈ R, g ∈ S.

Intuitively, an authorization (s, o, t, r, g) states that a grantor g has granted
subject s the access right r on object o with grant type t. In this paper, we will
consider three grant types: T = {∗,+,−}, where

∗ : delegatable, which means the subject has been granted the access right r
on o as well as the privilege for administration of r on o.

+ : positive, which means the subject has been granted the access right r on o.
− : negative, which means the subject has been denied the access right r on o.

For example, (user1, file1,+/−, read, user2) states that user1 is granted /
denied to “read” file1 by user2, and (user1, file1, ∗, read, user2) states that
user1 is granted by user2 not only the privilege to “read” file1, but also the
privilege to grant authorizations with respect to the “read” right on file1 to
other subjects.

Note that ∗ means + together with administrative privilege on an access.
The administrative privilege is related to a specific access right on an object.
That is a subject may have the administrative privilege for “read” but not for
“write”.

Definition 2. (Authorization State) An authorization state is the set of all
authorizations at a given time.

In this paper, we will usually use A and a (possibly with subscripts) to denote
an authorization set and a single authorization respectively, and use a.s, a.o, a.t,
a.r, a.g to denote the corresponding components of subject, object, type, right
and grantor of a respectively.

In order to formalize our approach, we use a labelled digraph to represent an
authorization state as follows. For every object o, Go is used to represent all the
authorizations with respect to the object o. Let Go = (V,E, t, l) be a labelled
digraph, where V is a finite set of vertices representing the subjects that hold
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some authorizations on o, E is a finite set of arcs such that if there exists an
authorization (s, o, t, r, g) in authorization state A, then (g, s) is in E, t is a type
function from E to T , which maps every arc in E to a specific type in T . We will
use different types of arcs, denoted as t(e), to represent different grant types, as
shown in Figure 1.

-* +

Fig. 1. Different Arc Types for Different Grant Types.

Suppose E∗, E+, E− denote the sets of ∗ arcs, + arcs, and − arcs respectively.
Then E = E∗ ∪ E+ ∪ E−. l is a label function from E to the power set of R,
which maps every arc (g, s) of type t in E to a set of rights on o

that g grants to s and the grant type is t. For instance, if t((g, s)) = ∗, then
l((g, s)) = {r | ∃(s, o, ∗, r, g) ∈ A}. In Go, every arc e is labelled with l(e). In the
rest of this paper, we will sometimes omit t and l and simply write G = (V,E),
whenever there is no confusion in the context. Following this, an authorization
state A can be represented by a digraph G, which is a set of Go for all objects
o in the system. That is, G = {Go | o ∈ O}. Figure 2 is an example of Go.

R
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Fig. 2. Go: an example of graph representation of authorizations on an object o, where
S1, ..., S9 are subjects, R and W are access rights.

In addition, we will use Go,r to denote all the authorizations with respect
to a specific access right r on o. That is, Go,r is a subgraph of Go = (V,E, t, l)
that contains all arcs with the label containing r and the corresponding vertices.
More formally, Go,r = (V ′, E′, t′), where E′ = {(s1, s2) | (s1, s2) ∈ E and
r ∈ l((s1, s2))}, V ′ = {v | ∃v′(v, v′) ∈ E′ or (v′, v) ∈ E′}, and for any e′ ∈ E′,
t′(e′) = t(e′). Note that there is no need for arc labels in Go,r anymore. For
example, with reference to the Go denoted in Figure 2, Go,R and Go,W can be
illustrated in Figure 3 and Figure 4 respectively.

S9
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S2 S4

S3 S5

S7 S8

S6

Fig. 3. Go,R of Figure 2.
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Fig. 4. Go,W of Figure 2.

In the rest of this paper, we will use the following graph terminologies. For
an arc (a, b) in a digraph, a is called the initial vertex of (a, b), and b is called
the terminal vertex of (a, b). In-arc of a vertex v is the arc with v as its terminal
vertex and in-degree of a vertex v is the number of its in-arcs. Out-arc of a
vertex v is the arc with v as its initial vertex and out-degree of a vertex v, is
the number of its out-arcs. A path of length n from a to b is a sequence of one
or more arcs (a, x1) (x1, x2), ..., (xn−1, b), denoted by a, x1, · · · , xn−1, b, and a is
called the predecessor of b, while b is called the successor of a.

Now we define a binary relation on the set of subjects.

Definition 3. (Grant Connectivity Relation <o,r on Subjects) Given an
authorization state A, for any subjects s1,s2 ∈ S, object o ∈ O, and access right
r ∈ R, we say that s1 is grant-connected to s2 with respect to r and o in A,
denoted by s1 <o,r s2, if there exists an authorization (s2, o, t, r, s1) for some t
in A, or there exists some subject s3 satisfying s1 <o,r s3, and s3 <o,r s2.

s1 <o,r s2 means there exists a sequence of subjects s1, x1, x2, · · · , xn, s2 such
that (x1, o, t0, r, s1), (x2, o, t1, r, x1), · · ·, (s2, o, tn, r, xn) are all in the authoriza-
tion state. In terms of our graph notation, s1 <o,r s2 if and only if there exists a
path from s1 to s2 in Go,r, or in other words, s1 is the predecessor of s2 and s2 is
the successor of s1 in Go,r. The grant connectivity relation provides us with an
important priority information about the subjects, which will be used later to
solve the conflict problem. When the object and right are clear in the context,
we sometimes simply write s1 < s2. For example, in the digraph Go,R of Figure
3, we have:

S1 < S2 < S4 < S6 < S7 < S8,
S1 < S2 < S4 < S6 < S9, and
S1 < S3 < S5 < S7 < S8.

2.3 Formal Description of the Model

We say that an authorization state A is delegation correct, if for any subject
s, object o and right r, s can grant r on o to other subjects if and only if s has
been granted r on o with delegation type ∗, that is, ∃g, (s, o, ∗, r, g) ∈ A. In our
graph representation, this means that in Go,r, only the vertices pointed to by at
least one ∗ arc can have out-arcs, while the vertices pointed to only by + or −
arcs must be terminal ones, that is, their out-degrees must be zero. We assume
that for every object o, only the owner of o, denoted by so, has been implicitly
granted all the rights on o with delegation type by the system when the object
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is created. So if a state is delegation correct, then there will be a path from so

to any other vertex in Go,r.
We say that an authorization a1 contradicts an authorization a2 if a1.s =

a2.s, a1.o = a2.o, a1.g = a2.g, a1.r = a2.r, but a1.t �= a2.t. The contradictory
authorizations state that a grantor gives the same subject two different types
of authorizations over the same object with the same access right. For example,
authorizations (s2, F1, ∗, R, s1), (s2, F1,+, R, s1) and (s2, F1,−, R, s1) contradict
each other. Figure 5 gives the corresponding graph representation. An autho-
rization state A is not contradictory if for any a and a′ in A, a does not
contradict a′. In our graph representation, this means that in any Go,r there is
only one arc from each vertex to another.

R

S1 S2

R

R

Fig. 5. Contradictory grants on object F1.

Definition 4. (Consistent Authorization State) An authorization state is
consistent if it satisfies the following three conditions: 1. It is delegation correct,
2. It is not contradictory, and 3. For any object o and access right r, <o,r is a
strict partial order.

Recall that a strict partial order is transitive and anti-symmetric. In our
graph notation, requiring relation <o,r to be a strict partial order means that
the corresponding Go,r is acyclic.

In fact, by considering the properties of delegation correctness and not con-
tradictory together, we have the following theorem:

Theorem 1. Let A be a consistent state, then for any object o and access right
r, Go,r in A is a simple rooted acyclic digraph, with the owner of the object as
the root.

Remember that in a simple graph there are no multiple arcs between each
pair of vertices, and in the rooted acyclic graph, from the root one can reach
any vertex in the graph. This theorem is easy to prove using the definition
of consistent authorization state; so we omit the proof here. Figure 6 shows
three examples of inconsistent authorization state, where G1o,r is not delegation
correct because of the arc (s2, s3); G2o,r is contradictory because there are two
arcs from s5 to s6; and G3o,r is cyclic because of the cycle s8, s9, s8.

By requiring that Go,r acyclic, we have the following: if a subject s receives
an authorization directly or indirectly from another subject s′ on some object
o and access right r, then s cannot grant s′ any further authorization on o and
r later on. In this way, we can solve the problem that exists in most conflict
resolution methods discussed in section 1.
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For a consistent authorization state A and a single authorization a, if A∪{a}
is still consistent, then we call a is consistent with A. In our model, we require
that the authorization state should always be consistent.

G1: S1 S2 S3

S4 S5 S6

S7 S8 S9

G2:

G3:

Fig. 6. Examples of Inconsistent Authorization State.

Definition 5. (Conflicting Authorizations) For any two authorizations a1
and a2 in A, a1 conflicts with a2 if a1.s = a2.s, a1.o = a2.o, a1.r = a2.r,
a1.t �= a2.t and a1.g �= a2.g.

From the definition, two authorizations are in conflict if they have the same
subject, object and access right, but have different grant types and grantors.
In our graph Go,r, this means that the conflicting arcs have the same terminal
vertex but different initial vertices and arc types. Since there are three grant
types in our model, three kinds of conflicts may arise, as illustrated in Figure 7.

Note that type ∗ and + are considered conflicting in the sense that ∗ holds
the administrative privilege on an access right while + does not. Conflicts are
additionally classified into comparable conflicts and incomparable conflicts as
follows.

Definition 6. (Comparable Conflicts) Suppose a1 and a2 are any two con-
flicting authorizations on object o and access right r. Then a1 and a2 are com-
parable if a1.g <o,r a2.g or a2.g <o,r a1.g. Otherwise they are incomparable.

In other words, two conflicting authorizations are comparable if their grantors
are grant-connected to each other. In our graph Go,r, two conflicting arcs are
comparable if there is a path between their initial vertices. For example, in Figure
3, (s2, s6) and (s4, s6), (s4, s7) and (s6, s7) are two pairs of comparable conflicts,
while (s4, s7) and (s5, s7) are pairs of incomparable conflicts.

S2

S1

S3

S2

S1

S3

S2

S1

S3

Fig. 7. Three Kinds of Conflicting Grants.

In fact, the grantors are comparable in comparable conflicts. In the grant
relation path, we have higher priorities for the predecessors than the successors.
So, when authorizations conflict with each other, the predecessor’s grant will
take precedence over the successor’s. This idea can be formalized by the following
overriding rule.
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Definition 7. (Overriding Rule) For any two authorizations a1 and a2 in A,
a1 overrides a2 if a1.s = a2.s, a1.o = a2.o, a1.r = a2.r, and a1.g <o,r a2.g. An
authorization is inactive if there exists some authorization that overrides it. Oth-
erwise it is active. We use Act(A) to denote the set of all active authorizations
in an authorization state A.

The overriding rule tells us that if two authorizations are about the same sub-
jects, objects and rights, and their grantors are grant-connected to each other,
then the authorization from the predecessor will override the one from the suc-
cessor. Note that this definition does not require the grant types of the two
authorizations to be different. Hence the predecessor’s authorization will over-
ride the successor’s even though they are not in conflict. This is reasonable since
this means that the two authorizations are identical except for the grantor.

Correspondingly in the graph Go,r for some o and r, if two arcs point to the
same vertex, and there is a path between their initial vertices, then the arc from
the predecessor will override the arc from the successor. Let G be the graph
corresponding to an authorization state A; then active graph of G, denoted
by Act(G), is the subgraph of G that contains only active arcs. It is easy to
show that for any Go,r, Act(Go,r) is still a rooted acyclic graph, since by using
the overriding rule, the in-degrees of some vertices may be reduced but not to
zero. But Act(Go,r) may become inconsistent. For example, in Figure 3, (s2, s6)
overrides (s4, s6) because s2 is s4’s predecessor. For the same reason (s4, s7)
overrides (s6, s7). Figure 8 gives the active graph of Figure 3. Note that it is
inconsistent because the arc (s6, s9) is not delegation correct.

S7

S1

S2 S4

S3 S5

S8

S9S6

Fig. 8. Active Graph of Figure 3.

Definition 8. (Effective State) If an authorization state A is consistent, then
the maximal consistent subset of Act(A) forms the effective state of A, denoted
by Eff(A).

Let G be the graph corresponding to an authorization state A, then the
effective graph of G, denoted by Eff(G), corresponds to Eff(A). Eff(G) is
in fact a set of Eff(Go,r) for all objects o and access rights r of the system.
Note that in the effective state, we have already eliminated all the comparable
conflicts, that is, the conflicts in which their grantors are grant-connected to
each other. Hence only the incomparable conflicts exist. Figure 9 gives effective
graph of Figure 3.
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S6

S1

S2 S4

S3 S5

S7 S8

Fig. 9. Effective Graph of Figure 3.

Theorem 2. A consistent authorization state A has a unique effective state
Eff(A).

Proof. Obviously Act(A) is unique. So we only need to prove that the maximal
consistent subset of Act(A) is unique.

Let A1 and A2 be two maximal consistent subsets of Act(A), and a =
(s, o, t, r, g) be any authorization in A1. Then there should be a correspond-
ing arc (g, s) in G′

o,r of A1. We need to prove (g, s) is also in G′′
o,r of A2. Since

A1 and A2 are both consistent, G′
o,r and G′′

o,r are both rooted acyclic graph with
root so. Let maxlen(g) denote the length of the largest paths from the root so

to g in G′
o,r. We will prove by induction of the maxlen(g).

When maxlen(g) = 0, g is the root of G′
o,r, and is the owner of object

o, and hence the result is certainly true. Suppose that the result is true when
maxlen(g) ≤ k. Consider the case when maxlen(g) = k+1. Suppose (g, s) is not
in G′′

o,r, then since A2 is a maximal consistent subset of Act(A), (g, s) must be
not consistent with G′′

o,r . But (g, s) can not make G′′
o,r contradictory (i.e. there

is more than one arc from g to s) or cyclic, since G′′
o,r ∪ (g, s) is still a subgraph

of Go,r of A and this will lead to A to be inconsistent. So (g, s) must make G′′
o,r

to be not delegation correct. This means that the in-arcs of g does not have ∗
type in G′′

o,r. According to the inductive hypothesis, all the in-arcs of g in G′
o,r

will be in G′′
o,r too and hence this will lead to G′

o,r being not delegation correct.
This is a contradiction. So (g, s) is also in G′′

o,r. This concludes that A1 ⊆ A2.
For the same reason A2 ⊆ A1. Thus A1 = A2.

Now let us consider the incomparable conflicts. We call an authorization state
A is conflict-free if for any a1 ∈ A and a2 ∈ A, a1 is not in conflict with a2.

Definition 9. (Stable State) If an authorization state A is consistent, then
the maximal consistent and conflict-free subset of Eff(A) forms a stable state
of A, denoted as stable(A).

Note that an authorization state may have more than one stable state. In
theory, one stable state presents one resolution to incomparable conflicts. Let G
be the graph corresponding to an authorization state A, then the stable graph
of G, denoted by stable(G), corresponds to stable(A). stable(G) is in fact a set
of stable(Go,r) for all objects o and access rights r in the system. Figure 10 and
Figure 11 are two stable graphs of Figure 3.
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S7

S1

S2 S4

S3 S5

S8

S6

Fig. 10. One Stable Graph of Figure 3.

S6

S1

S2 S4

S3 S5

S7

Fig. 11. Another Stable Graph of Figure 3.

For incomparable conflicts, we cannot resolve them using their grantor’s pri-
orities, since their priorities are not comparable. In our model we can support
different strategies for resolving incomparable conflicts by evaluating different
stable states. For example, we can support the following three strategies accord-
ing to the grant types of authorizations:

(1) Pessimistic: the priority sequence is − > + > ∗;
(2) Optimistic: the priority sequence is ∗ > + > −;
(3) Any : the priority sequence is ∗ = + = −.

Hence a user can select the appropriate strategy that best suits the needs of
his/her application. Even in one application, the strategy can vary from object
to object. For example, for some objects that are very confidential, one can select
the pessimistic strategy; for other objects that are not that sensitive, one can
select the optimistic strategy. One can tell the system which strategy to apply
to an object when the object is created, and one can change the strategy later
when the sensitivity of the object is changed.

Another possible strategy for resolving incomparable conflicts is to grant an
additional authorization to the subject over whom the conflicts occur by a com-
mon predecessor of the grantors of these conflicting authorizations, in particular,
by the owner of the object. In this way we can change the incomparable con-
flicts to comparable conflicts and then can resolve them. In fact, the common
predecessor here works like a judge in the sense that his/her decision has higher
priority and hence can solve the dispute.

Now we can define our access control policy. We use 3-ary tuple (s, o, r) to
denote an access request to the system, where s ∈ S, o ∈ O, r ∈ R. It states
that a subject s requests to exercise access right r on object o. Then we have
following access control policy.

Definition 10. (Access Control Policy) Let A be an authorization state,
(s, o, r) be an access request, P be a policy to resolve the incomparable conflict
authorizations on o, and stable(A, P ) be a stable state of A when applying P
to o. We say that (s, o, r) is permitted if there exists some grantor g such that
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(s, o, ∗, r, g) or (s, o,+, r, g) is in stable(A, P ); (s, o, r) is denied if there is some
grantor g such that (s, o,−, r, g) is in stable(A, P ); otherwise, (s, o, r) is unde-
cided.

It is worth mentioning that in our model, the system is the implicit grantor
of any object’s owner for all access rights on this object with delegatable grant
type. In practice, the answer undecided may be treated as denial too. We prefer
to distinguish them here to make the semantics more clear.

3 Algorithms

According to our access control policy, to determine an access request (s, o, r),
we need to compute stable(Go,r), which then need to compute Eff(Go,r), and
then compute Go,r from Go. Go,r can be easily obtained by selecting all the arcs
with r in their label and corresponding vertices from Go. For Eff(Go,r) and
stable(Go,r), we give the detailed algorithms in this section. We will also give
the theorems about correctness and computational complexity of the algorithms,
but will omit their proofs because of space limit.

Algorithm 3.1 is used to evaluate the effective graph of a Go,r for some
object o and right r. The output is a graph G′, and G′′ is a temporary working
graph used to construct a topological sorting of <o,r.

Algorithm 3.1: Evaluate Eff Graph(Go,r, so)
Input: Go,r = (V,E, t) for some object o and access right r, with root so

and arc type function t
Output: Eff(Go,r) = G′ = (V ′, E′, t′)
begin
1 E′ = {(so, x)|(so, x) ∈ E};
2 V ′ = {so} ∪ {x|(so, x) ∈ E′};
3 for all e′ ∈ E′ do t′(e′) = t(e′);
4 E′′ = E − E′;
5 V ′′ = V − {so}; (∗ copy the root and out-arcs of root from Go,r to G′ and
then copy

the remaining part of Go,r to G′′∗)
6 for each v ∈ V ′′ with 0 in-degree do begin
7 if the in-arcs of v in E′ include ∗ type then begin
8 P = {x|(x, v) ∈ E};
9 for each p ∈ P do P = P ∪ {x|(x, p) ∈ E};

(∗ compute all predecessors of v in Go,r∗)
10 for each arc (v, x) that goes out from v in E do begin
11 if for each p ∈ P , (p, x) /∈ E then begin
12 E′ = E′ ∪ {(v, x)} ;
13 V ′ = V ′ ∪ {x};
14 t′(e′) = t(e′);
15 end
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16 end
17 end
18 E′′ = E′′ − {(v, x)|(v, x) ∈ E′′};
19 V ′′ = V ′′ − {v};
20 end
end

Theorem 3. Algorithm Evaluate Eff Graph is correct, and Eff(Go,r) can
be computed by Evaluate Eff Graph(Go,r, s) in O(N3) time, where N is the
number of vertices in Go,r.

Algorithm 3.2 evaluates a stable graph according to the policy for incompa-
rable conflicts. Its input includes an effective graph G of Go,r for some object
o and right r, the root so, and the policy P to be used. Its output is G′, the
stable graph of Go,r corresponding to P . G′′ is a temporary working graph used
to construct a topological sorting of <o,r.

Algorithm 3.2: Evaluate Stable Graph(G,P, so)
Input: G = (V,E, t) – G is a effective graph of Go,r for some object o and access
right r,

with root so and arc type function t,
P – the policy of solving incomparable conflicts over o

Output: stable(Go,r, P ) = G′ = (V ′, E′, t′)
begin
1 E′ = {(s, x)|(s, x) ∈ E};
2 V ′ = {s} ∪ {x|(s, x) ∈ E′};
3 for all e′ ∈ E′ do t′(e′) = t(e′);
4 E′′ = E − E′;
5 V ′′ = V − {s}; (∗ copy the root and out-arcs of root in G to G′ and

then copy the remaining part in G to G′′ ∗)
6 for each v ∈ V ′′ with 0 in-degree do begin
7 if the in-degree of v is greater than 1 in G′

8 then select any in-arc that has the highest priority according
to policy P for incomparable conflicts and delete other in-arcs

from G′

9 if v’s in-arc in E′ is type ∗ then begin
10 E′ = E′ ∪ {(v, x) | (v, x) ∈ E} ;
11 V ′ = V ′ ∪ {x | (v, x) ∈ E′};
12 t′((v, x)) = t((v, x)) for all (v, x) ∈ E′;
13 end
14 E′′ = E′′ − {(v, x)|(v, x) ∈ E′′};
15 V ′′ = V ′′ − {v};
16 end
end
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Theorem 4. Algorithm Evaluate Stable Graph is correct, and stable(Go,r)
can be computed by Evaluate Stable Graph(G,P, s) in O(N2) time, where N is
the number of vertices in G.

4 Authorization State Transformation

In a dynamic environment, an authorization state is not static since users may
need to add, update, or revoke certain authorizations. In this section, we consider
how our proposed authorization state can be changed. Since an update can
be implemented by revoking and adding, here we only consider the addition
and revocation of authorizations in our model. Note that adding and revoking
authorizations will update both the effective and stable state.

In the case of addition, an authorization a = (s, o, t, r, g) can be added to
the authorization state A if and only if it is consistent with the current state
A. This means that in A, g must get the delegatable right for r on o, a can not
contradict with any other authorization in A and <o,r must still be a partial
order after the addition.

For revocation, on the other hand, we adopt a cascading revocation approach
to implement this operation. An authorization a = (s, o, t, r, g) can be revoked
from the system if the requester is g, and the authorization state must remain
consistent after the revocation. Users are also allowed to change the policy of
resolving incomparable conflicts for an object. This would lead to an update of
the stable state.

For example, for the Go,R shown in Figure 3, (s3, o, R,−, s7) or
(s8, o, R,−, s7) cannot be added to Go,R because adding (s3, o, R,−, s7) will
result in a cyclic graph while adding (s8, o, R,−, s7) generates a graph which
represents a contradictory authorization state. But adding (s5, o, R,+, s1) is al-
lowed. On the other hand, consider the situation where s2 requests to revoke
(s4, o, R, ∗, s2). This will lead to the deletion of arc (s2, s4) and cascading dele-
tion of arcs (s4, s6), (s6, s9), (s6, s7) (s4, s7), and (s7, s8) from the graph. The
resulting Go,R after the addition and revocation is shown in Figure 12.

S7
S1

S2

S3 S5

S6

Fig. 12. Go,R after update.

5 Conclusions and Future Work

In this paper, we have proposed a conflict resolution model to resolve conflicts
that can occur when access rights are delegated. A major feature of our approach
is that we classified conflicts into comparable and incomparable ones and this
classification is useful not only in the control of access right delegation but also
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for supporting multiple policies to resolve conflicts. Our model also provides a
flexible framework to preserve conflict authorizations so that it is possible to re-
activate some early overridden access rights if proper authorizations are revoked
or the policy of conflict resolution is changed.

With respect to the incomparable conflict resolution, our current model pro-
vides four different policies. In fact, this can be further extended. For example,
under some situations, we may expect to have a logical mechanism to deal with
incomparable conflicts. In this case, we can re-formalize the notion of stable state
by associating proper logical relationships among those incomparable conflicts.
The other issue we have not discussed in this paper is concerned with inheri-
tance in conflict resolution. If we consider the inheritance relationship between
subjects, objects, and access rights respectively, then the conflict resolution can
become complex because many conflicts may be implicit and solving these im-
plicit conflicts will require some reasoning procedure to deal with inheritance in
the access control model. These issues will be investigated in our future work.
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