
ODP COMPUTATIONAL MODEL

1

INTRODUCTION TO
ODP
COMPUTATIONAL
MODEL

BY

KAZI FAROOQUI,

LUIGI LOGRIPPO,

DEPARTMENT OF COMPUTER SCIENCE,

UNIVERSITY OF OTTAWA,

OTTAWA K1N 6N5, CANADA.

E-mail: farooqui@csi.uottawa.ca, luigi@csi.uottawa.ca

ODP COMPUTATIONAL MODEL

2

This paper presents a tutorial introduction to the major features of the RM-ODP compu-
tational model [1-4]. The elements of the computational model are introduced and
briefly explained.The model is described as an object-oriented framework of distributed
applications. Major aspects of the computational model as aninteraction model, acon-
struction model, and as a distributedprogramming model are presented.

1. What is a computational model

The ODP computational model is a framework for describing the structure, specification
and execution of the (components of the) distributed application on the distributed com-
puting platform.

The computational model provides a set of basic (abstract) concepts and elements for
the construction of a distributed programming (specification) language for which the
model does not provide any syntax. Using the computational model, one can specify
(program) a distributed application without worrying about the details of the underlying
distributed execution platform (the engineering model). The design principle of the
computational model is to minimize the amount of engineering detail that the applica-
tion programer is required to know, yet at the same time allowing the programmer to
exploit the benefits of distributed computing.

The computational model focuses on the organization of applications into distributable
components, identification of interactions between application components, and the
identification of the distribution requirements (from the underlying distributed execu-
tion environment) for the support of interactions between application components.

Thecomputational specification of a distributed application consists of the composition
of computational objects (which represent application components) interacting, by
operation invocations, at their interfaces. It identifies the activities that occur within the
computational objects, and the interactions that occur at their interfaces.

2. Computational model: An Object-Oriented view of distributed application

The computational model is based on adistributed-object model. It prescribes an object-
oriented view of the distributed application. Applications are collections of interacting
objects. In this model, objects are the units of distribution, encapsulation, and failure.

The computational model is an ‘object world’ populated with concurrent (computa-
tional) objects interacting with each other, in adistribution-transparent abstraction, by
invoking operations at their interfaces [5]. An object can have multiple interfaces and
these interfaces define the interactions that are possible with the object.

Activity is a unit of concurrency within an object. A collection of (computational)
objects may have any number of activities threading through them. Thestateencapsu-
lated by the object can be accessed and modified by the activities executing the opera-
tions in the interfaces of that object [6].

ODP COMPUTATIONAL MODEL

3

A distributed computation progresses by operation invocations at object interfaces. The
activity in an object (invoking object) can pass into another object (invoked object) by
invoking operations in the interface of the invoked object. Activities carry the state of
their computations with them, i.e., when an activity passes into an operation it carries
the parameters for that invocation, and returns carrying results. In the computational
model, concurrency within an object and communication between objects are separate
concerns. While concurrency is modelled by the concept of activity, communication
between object is modelled as (remote) invocation of an operation [6].

The computational model provides a view of the underlying ODP platform as a distrib-
uted, multi-tasking abstract machine supporting (concurrent) objects and interactions
between objects.

3. Distribution Issues in the Computational Model

The computational model places few constraints on the extent to which application pro-
grams can be distributed. Most of the constraints on distribution of application compo-
nents stem from discussion in other projections, such as enterprise viewpoint or
information viewpoint.

Computational specifications are intended to be distribution-transparent, i.e., written
without regard to the specifics of a physically distributed, heterogeneous environment.
However, the expression ofenvironment constraints in the computational interface tem-
plate provides a hint of the application requirements from the distributed platform, e.g.,
distribution transparencies, security mechanisms, specific resource requirements, etc.

At the computational level, user applications are unaware of how the underlying distrib-
uted platform is structured or how the distribution enabling and regulating mechanisms
are realised.

4. Elements of the Computational Model

The design philosophy of the computational model has been to find the smallest number
of concepts (elements) needed to describe distributed computations and to propose a
declarative approach to the formulation of each concept [7].

The basic elements of the computational model are:computational object, computa-
tional interface, operation invocation at computational interface,activities that occur
within a computational object,environment constraints on operation invocation, etc.

This section is a brief introduction of these basic computational elements out of which
thecomputational specification of the distributed application is constructed. The defini-
tions are introduced in terms of thetemplates (specification) of the corresponding ele-
ments.

ODP COMPUTATIONAL MODEL

4

4.1 Activity: Activity is agency by which computations make progress [6]. It is the unit
of concurrency of the computational object. A computational object may have multiple
activities threading through it, of which one or more may actually be executing on a pro-
cessor at any one instant, depending upon the number of processors available. An activ-
ity may pass from one object to another by the first invoking anoperation on the
interface of the second. Activities may split into parallel sub-activities and later recom-
bine. New activities can be initiated to proceed in parallel, independent of their initiat-
ing activity.

Figure 1. ODP COMPUTATIONAL MODEL: An object world supported by distributed
platform (engineering model).

4.2 Computational Operation: Computational objects may support multiple interfaces
asservice provision points. A service is an association between object state (some data)
and the programs that operate upon them [6]. The ways that a user can interact with a
service are completely defined by the set ofoperationsthat the service supports. Opera-
tions affect the state of the object. An operation is a service primitive. Each operation
has two parts: theoperation signature which defines how the operation is invoked by a
user of the service (client), and theoperation body, which is the piece of program code
executed by the provider of the service (server) when that operation is invoked.

� � � � � �

� � �

� � �

� � � � � �

� � 	 �
 � � � � � � � 	 � � � � � � �

� � � � � � � � � � � � � � � � � �

ODP COMPUTATIONAL MODEL

5

An operation signature template has three parts [6]:

1. Theoperation name is an intrinsic part of the operation. When a client wishes to
invoke an operation in a particular server interface it identifies it by its name within that
interface. To ensure that there is no ambiguity, no two operations in the same service
may have the same name.

2. Theparameter partof an operation specifies the number and types of the parameters
and the order in which they are passed to the operation when it is invoked.

3. Theresult part of an operation specifies the number and types of result for each pos-
sible outcome from the operation.

Operations have distinct outcomes, each of which can convey different numbers and
types of results. An operation’s possible outcomes are calledterminations, and are dis-
tinguished by their names. For convenience one outcome from each operation can be
left unnamed; this is called theanonymous termination, and is conventionally used to
represent the normal or expected outcome, while named terminations are often used to
represent unusual or unexpected results.

In the computational model, the (engineering) infrastructure failures in invoking an
operation on a (remote) interface are reported (to the clients) by the infrastructure
objects through the use of termination mechanism. This permits the detection of invoca-
tion failures in the infrastructure.

4.3 Computational Interface: While computational objects are the units of structure
and encapsulation of (application-specific) services, interfaces are the units of provision
of services; they are the places at which objects can interact and obtain services.

The distributed application components (modelled as computational objects) may be
written in different programming languages and may run on heterogeneous environ-
ments. In order for a component to be constructed independently of another component
with which it is to interact, a precise specification of the interactions between them is
necessary. The specification of interaction between application components and of their
requirements of distribution are captured in computational interfaces.

The computational interfaces model different interaction concerns of a computational
object. An application component acting as a client may request a number of other com-
ponents to perform operations and thus needs a different interface with each of these.
Similarly, the application component acting as a server may perform actions requested
by a number of client components. There is no reason to restrict a server to provide
interfaces with identical specifications to each of its clients. Allowing a server to pro-
vide multiple interfaces with distinct specifications enables a computational specifica-
tion to directly reflect the different roles identified in the enterprise specification,
especially with regard to access control. Multiple interfaces also enable knowledge of
other components to be more tightly scoped [7].

ODP COMPUTATIONAL MODEL

6

A computational object may support multiple computational interfaces which need not
be of the same type. Interfaces of the same type may be provided by objects which are
not of the same type. Each object may provide interfaces which are unlike those pro-
vided by the other object.

In the ODP computational model, interactions are specified in terms of either opera-
tional or non-operational interfaces.

1. Operational Interface

2. Non-operational Interface.

4.3.1 Operational Interface: The specification of an operational interface template
consists of [3]:

1. Operation Specification

2. Property Specification

3. Behavior Specification

4. Role Indication

Operation Specification: The definition of operations that are supported by the inter-
face. Operation specification includes:

1. Operation name: Each operation has a local name within an interface template. No
two operations, within the interface, may have the same name.

Data Specification:

2. The number, sequence, and type of arguments that may be passed in each operation.

3. The number, sequence, and type of results that may be returned in each termination.

The operation name together with the type of argument and result parameters consti-
tutes theoperation signature. Both the operation names and the arguments can be repre-
sented as abstract data types.

Most interface specifications, to date, have concentrated on the syntactic requirements
of the interface such as the operation signature. Aspects other than pure syntax are also
important in facilitating the interaction between a pair of objects. This additional seman-
tic information falls into two categories [8]:

* information affecting the way in which the infrastructure supports the interactions;
this information constrains the type of distribution transparencies, choice of communi-

ODP COMPUTATIONAL MODEL

7

cation protocols, etc. that must be placed in the interaction path between the interacting
objects.

* the behavior (or the semantics) of the service offered at the interface; an interface is
viewed as a projection of an object’s behavior, seen only in terms of a specified set of
observable actions. As a result, signature compatibility is less discriminating than inter-
face compatibility.

Property Specification: The property specification in the computational interface tem-
plate defines the following attributes:

1. distribution transparency requirement on operation invocation.

2. quality of service (including communication quality of service) attributes associated
with the operations.

3. temporal constraints on operations (e.g., deadlines).

4. dependability constraints (e.g., availability, reliability, fault tolerance, security etc.)

5. location constraints on interfaces (and hence their supporting objects).

6. other environment constraints on operations (e.g., those arising from enterprise and
information viewpoint).

These attributes may be associated with individual operations or the entire interface.
Property specification is an important component of the computational interface tem-
plate and has a direct relationship to the realized engineering structures and mecha-
nisms.

Behavior Specification: It defines the behavior exhibited at the interface. All possible
orderings of operation invocations at or from this interface can be specified. This
includes ordering and concurrency constraints between operations as well as sequential
and parallel operation invocations. The behavior constitutes the protocol part of the
interface.

Role Indication: In general, an interface specification may be bi-directional and specify
the operations each of a pair of application components could request the other to per-
form. For simplicity, the ODP computational model only contains uni-directional inter-
face specifications which directly support client-server interaction.

Often an object assumes the role of eitherclient or server. All interactions of an object,
both as a client and as a server, between it and its environment occur at object interfaces.
It is convenient to partition client-role interaction concerns from server-role interaction
concerns in different interfaces.

4.3.2 Non-operational Interface: The computational objects may perform both the
information processing task as well as act as containers of information. There is a need

ODP COMPUTATIONAL MODEL

8

to model not only the interfaces which provide ‘service’, but also those interfaces which
model ‘continuous’ information flow. Such interfaces are modelled, in the computa-
tional model, asnon-operational interfaces (also known asstream interfaces).

The non-operational interface is a set of information flows whose behavior is described
by a single action which continues throughout the life time of the interface. Information
media such as voice and video inherently consists of a continuous sequence of symbols.
Such media are described ascontinuous and the termstream is used to refer to the
sequence of symbols comprising such a medium [9].

Examples include the flow of audio or video information in a multimedia application, or
the continuous flow of periodic sensor readings in a process control application. The
computational description does not need to be concerned with detailed mechanisms; the
fact that the flow is established and continues during the relevant period is enough.

The template for a non-operational or stream interface consists of:

Stream Signature: A specification of the type of each information flow contained in a
stream interface and, for each flow, the direction in which the flow takes place.

Envir onment Constraint: Continuous media have strict timing and synchronization
requirements. The environment constraints that are relevant to stream interfaces include
synchronization and clocking properties, time constraints, priority constraints, through-
put, jitter, delay, media-specific communication quality requirements, etc., in addition to
the properties applicable to operational interfaces.

Role: A role for each information flow, e.g., a producer object or a consumer object.

4.4 Computational Object: The components of a distributed application are repre-
sented as computational objects in the computational model. The computational objects
are the units of (application) structure and distribution. A computational object is an
encapsulation of (an application-specific) state and mechanism which are not directly
accessible to any other object. The computational objects model both the application
components that perform information processing and those components that store the
information. Objects can create interfaces or stop them during their lifetime.

 A computational object template consists of:

1. a set of computational interface templates (both operational and stream) which the
object can instantiate.

2. an action template for initializing the state of new instances of the object.

3. a specification of environment constraints applicable to the object as a whole.

A computational object can perform the followingactivities [3]:

ODP COMPUTATIONAL MODEL

9

1. instantiation of interface templates (creating an interface),

2. instantiation of object templates (creating an object),

3. trading for an interface,

4. binding to an interface,

5. invoking an operation at an operational interface,

6. reading and writing the state of the object,

7. spawning, forking, and joining actions,

8. stopping of interfaces,

9. stopping of object.

These basic actions can be composed in sequence or in parallel.

5. Multiple views on Computational Model

There are several ways in which the general computational model can be described.
This section identifies the major aspects of the computational model. The computational
model can be viewed as:

1. interaction model - an environment for interaction between computational objects.

2. construction model - construction of configuration of computational objects.

3. programming model - an application programming environment.

Together, these aspects address the issues related to the functional decomposition of the
distributed application, inter-working, and portability of application components.

5.1 Interaction Model: One view of the computational model is as an environment that
supports the existence of and the interaction between computational objects. Computa-
tional objects interact by invoking operations at their interfaces. The interaction model
defines aninvocation schemeand atype scheme [10].

The invocation scheme describes the permitted forms of interaction, i.e., how clients
may use the interfaces provided by the server. It defines the mechanisms for parameter
passing between interfaces.

ODP COMPUTATIONAL MODEL

10

The type scheme provides a set of types into which computational interfaces can be
classified. It defines a conformance relation over interface types which are a set of
matching rules between interfaces which must be satisfied before a binding between
interfaces can be established.

The interaction model (invocation scheme) is simple and uniform. It is based on the
concept ofoperation invocation. The interaction between computational interfaces is
via operation invocations which carry input argument parameters and the result of oper-
ation execution is returned to the invoker of the operation viatermination.

The interaction model (invocation scheme) supports two styles of interactions between
computational objects (or more precisely between computational interfaces):interroga-
tions andannouncement: to model interactions with and without the reply respectively.

Interrogation is a synchronousrequest-response invocation style; theactivity that
invoked the interrogation passes (viaoperation) to the object that provides the invoked
operation, and subsequently returns (via termination) to the object from which the invo-
cation was made. There is no change in the degree of concurrency of the system using
an interrogation type of invocation.

Announcement is an asynchronousrequest-only invocation style; a newactivity is cre-
ated in the object that provides the invoked operation, and the invoking activity contin-
ues in the object from which it made the invocation. Invoking an announcement
increases the concurrency in the system, the completion of the evaluation of the body of
an announcement decreases the concurrency in the system. The object that invoked the
announcement is informed neither of the completion of evaluation (of body of opera-
tion) nor of the results delivered (if any).

The interaction model is independent of the kind of computational objects that partici-
pate in the interaction as well as of the way in which a computational object has been
structured internally. The interaction model thus supports the notion of encapsulation
and information hiding [11]. This model establishes the interpretation of parametriza-
tion and gives failure semantics for the interaction [12].

5.2 Construction Model: The construction model is concerned with the construction of
the configuration of computational objects, and supports the creation of complex net-
works of interacting objects, giving the rule which govern object composition and
decomposition [12].

The computational objects can be connected in various ways, and networks of such
objects can be treated as a single computational object. Similarly, a single computa-
tional object can be decomposed into networks of computational objects [11].

5.3 Programming Model: The computational model provides an abstract, distribution-
transparent, language-independentspecification andprogramming modelfor distributed
applications, and of their execution and interaction semantics. Concerns in this view-

ODP COMPUTATIONAL MODEL

11

point essentially include specification/programming language and programming system
interface issues. The computational model expresses theprogrammability of the distrib-
uted platform [13].

The language-independentprogramming framework offered by the computational
model provides:

1. Application programming interfaces (APIs).

2. Programming concepts and abstractions necessary for the development of distributed
applications (an abstract programming language).

From this viewpoint an ODP system appears as a large programming environment capa-
ble of building and executing applications on the supporting engineering infrastructure.
The distributed programming model provided by the computational model, abstracts
away, in an integrated framework, the generic set of distributed services provided by the
engineering model from distributed applications designers and programmers. The ODP
engineering model, that describes the structure and organization of these distribution
enabling and regulating services, constitutes avirtual machine model for executing dis-
tributed programs conforming to the ODP computational model [14].

Hence, the computational model provides the equivalent of programming language, for
use on top of theabstract machine realized by the engineering infrastructure. Such a
computational model will contain programming language features which are commonly
found in advanced object-based distributed platforms. As such, the computational
model can be seen as some form of implementation language for building applications
on top of ODP systems [15].

The ODP computational model is based on a remote procedure call and a lightweight
threads style of programming. This can very easily be noted since, in the computational
model, all object interactions are considered remote and the invocation of interrogation
corresponds to the procedure call. Such a style is a natural extension of the procedural
style found in the majority of programming languages.

The computational model hides the actual degree of distribution of an application from
its programmer, thereby ensuring that application programs contain no deep-seated
assumptions about which of their components are co-located and which are separated.
Because of this, the configuration and degree of distribution of the underlying platform
on which ODP applications are run can easily be altered without having a major impact
on the applications software [16]. This desirable characteristic is calleddistribution
transparency.

Since the main objective of ODP is to provide a generic architecture for distributed sys-
tems, the role of the computational model is particularly important. The computational
model masks the effects of distribution and heterogeneity, when required from applica-
tions.

By conforming to the computational model, application programmers are given a guar-
antee that their programs will operate in a variety of different quality environments,
without modification of the source. The engineering model offers standardized system

ODP COMPUTATIONAL MODEL

12

programming interfaces for supporting the computational programming environment
[17].

6. Conclusion

The computational model concentrates on the problems and the opportunities presented
by the execution of application components on distributed computing systems. It identi-
fies the functions that must be available to the programmer and the constrains on the
application structure necessary to enable distribution, rather than a particular syntax of
the computational language. The outcome of this approach is that all programs, in what-
ever language, are written with the same abstract (distributed) machine as their target.
As suggested in [11], porting a program from one system to another is then a matter of
only changing the local representation of the abstract machine as it appears in the appli-
cation programming language, which does not require any changes to the application
program itself.

7. References

[1]. Draft Recommendation ITU-T X.901 / ISO 10746-1: Basic Reference Model of
Open Distributed Processing - Part-1: Overview.

[2]. Draft International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model
of Open Distributed Processing - Part-2: Descriptive Model.

[3]. Draft International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model
of Open Distributed Processing - Part-3: Prescriptive Model.

[4]. Draft Recommendation ITU-T X.904 / ISO 10746-4: Basic Reference Model of
Open Distributed Processing - Part-4: Architectural Semantics.

[5]. S.Proctor, “An ODP Analysis of OSI Systems Management”, Proceedings of the
Third Telecommunication Information Networking Architecture Workshop, (TINA 92),
Narita, Japan, January 1992.

[6]. ANSA: An Application Programmer’s Introduction to the Architecture, TR.017.00,
Advanced Projects Management Limited, Cambridge, U.K., November 1991.

[7]. ANSA: An Engineer’s Introduction to the Architecture, TR.03.02, Advanced
Projects Management Limited, Cambridge, U.K., November, 1989.

[8]. ANSA Reference Manual, Volume C., Release 01.01, Advanced Projects Manage-
ment Limited, Cambridge, U.K., July 1989.

[9]. ANSA Technical Report: Integrating Multimedia into ANSA Architecture,
TR.028.00, Advanced Projects Management Limited, Cambridge, U.K., February 1993.

ODP COMPUTATIONAL MODEL

13

[10]. ANSA Computational Model, AR.001.01, Advanced Projects Management Lim-
ited, Cambridge, U.K., February 1993.

[11]. ANSA Reference Manual, Volume A., Release 01.01, Advanced Projects Manage-
ment Limited, Cambridge, U.K., JUly 1989.

[12]. P.F.Linington, “Introduction to Open Distributed Processing Basic Reference
Model”, Proceedings of the IFIP TC6/WG6.4 International Workshop on Open Distrib-
uted Processing (October 1991), North Holland 1992.

[13]. G.Bregant, “Platform Modelling Requirements from the ROSA Project”, Proceed-
ings of the Third Telecommunication Information Networking Architecture Workshop,
(TINA 92), Narita, Japan, January 1992.

[14]. J.B.Stefani, E.Najm, “A Formal Semantics for the ODP Computational Model”, to
appear in the CN&ISDN special issue on Open Distributed Processing.

[15]. J.B.Stefani, “Open Distributed Processing: The Next Target for the Application of
Formal Description Techniques, Proceedings of the IFIP TC6/WG6.1 Third Interna-
tional Conference on Formal Description Techniques for Distributed Systems and Com-
munication Protocols, FORTE’90.

[16]. ANSA Technical Report: DPL Programmers Manual, TR.031.00, Advanced
Projects Management Limited, Cambridge, U.K., February 1993.

[17]. J.B.Stefani, “Towards a Reflexive Architecture for Intelligent Networks”, Pro-
ceedings of the Second Telecommunication Information Networking Architecture
Workshop, (TINA 91), Chantilly, France, March 1991.

