
Noname manuscript No.
(will be inserted by the editor)

Specification and Analysis of Legal Contracts with Symboleo

Alireza Parvizimosaed · Sepehr Sharifi · Daniel Amyot · Luigi
Logrippo · Marco Roveri · Aidin Rasti · Ali Roudak · John Mylopoulos

Received: date / Accepted: date

Abstract Legal contracts specify the terms and con-
ditions – in essence, requirements – that apply to busi-
ness transactions. This paper proposes a formal speci-
fication language for legal contracts, called Symboleo,
where contracts consist of collections of obligations and
powers that define a legal contract’s compliant execu-
tions. Symboleo offers execution time operations such
as subcontracting, assignment, and substitution. Its for-
mal semantics is defined in terms of logical axioms on
statecharts that describe the lifetimes of contracts, obli-
gations, and powers. We have implemented two tools
to support the analysis of contract specifications. One
is a conformance validation tool that enables checking
that a specification is consistent with the expectations
of contracting parties. The other tool enables model-
checking of desired contract properties, expressed in
temporal logic. We envision Symboleo with its asso-
ciated tools as enablers for the formal verification of
contracts to detect requirements-level issues. Our pro-

Partially funded by an NSERC Strategic Partnership Grant
titled “Middleware Framework and Programming Infrastruc-
ture for IoT Services” and by SSHRC’s Partnership Grant
“Autonomy Through Cyberjustice Technologies”

A. Parvizimosaed, S. Sharifi, D. Amyot, L. Logrippo, A.
Raisti, J. Mylopoulos
School of EECS, University of Ottawa, Ottawa, Canada
E-mail: {aparv007, sshar190, damyot, logrippo, Aidin.Rasti,
jmylopou}@uottawa.ca

L. Logrippo
Université du Québec en Outaouais, Gatineau, Canada

M. Roveri
Dept. of Information Engineering and Computer Science,
University of Trento, Trento, Italy
E-mail: marco.roveri@unitn.it

A. Roudak
University of Duisburg-Essen, Duisburg, Germany
E-mail: aliroudak@yahoo.com

posal includes an evaluation through the specification
of two real life-inspired contracts.

Keywords Legal contracts · Software requirements
specifications · Formal specification languages · Model
checking · nuXmv · Smart contracts

1 Introduction

Legal contracts specify the terms and conditions that
apply to business transactions. Contracts are commonly
expressed in natural language and contain many legal
requirements that are often ambiguous, incomplete, and
possibly inconsistent. Smart contracts are programs in-
tended to partially automate, monitor, and control the
execution of legal contracts to ensure compliance with
relevant terms and conditions. We are interested in for-
mal specifications of legal contracts that can enable
automated analysis and can support the generation of
smart contract programs that monitor legal contracts.

For example, a smart contract may monitor the ex-
ecution of a Sale-of-Goods contract between an Argen-
tinian meat producer, call it A, and a Canadian su-
permarket chain, call it C, by receiving and record-
ing events on a blockchain ledger capturing the exe-
cution flow of the contract. Events monitored may be
the pickup of the meat from A, delivery to the Buenos
Aires port, loading on a cargo vessel, delivery to the
Halifax port, pickup, and delivery to C. The smart con-
tract may also carry out some of the actions called for
in the contract, such as payment for the transaction
by transferring funds held in an escrow account. There
is tremendous interest in the food supply chain indus-
try for such software systems, but also in other sectors,
including energy, insurance, and government [77].

2 A. Parvizimosaed et al.

The idea of smart contracts has been around for
more than 20 years, going back to seminal work by
Nick Szabo [86]. However, interest in them has surged
in the last ten years, thanks to increased availability
and reduced cost for IoT technologies (sensors, actua-
tors, robotic devices, etc.1), as well as the rise of dis-
tributed ledger or blockchain technologies. Blockchain
provides only one of several possible monitoring meth-
ods for smart contracts, but it can be essential when
integrity and security warranties for execution logs are
required. It should be noted that in this work, we sub-
scribe to Szabo’s original definition of smart contracts,
from which more recent views have deviated by refer-
ring to any application software running on a block-
chain platform, although there are common elements
in the two definitions [86].

This paper proposes a formal specification language
for contracts called Symboleo2, which has been designed
with the help of dozens of real-life legal contracts from
several different domains. We also envision the gener-
ation of smart contract code from Symboleo specifica-
tions to monitor legal contracts, but this is beyond the
scope of this paper. The outcomes of the research re-
ported herein were assessed by interacting with lawyers
from academia, industry, and government in a large,
six-year long international cyberjustice project.

A contract can be viewed as an outcomes-oriented
process that specifies its compliant executions. How-
ever, contracts specify legal processes (as compared to
business ones) where there are provisions for penalties
and compensations whenever any party violates its obli-
gations. Looking at them from this perspective, con-
tracts are very interesting processes because they pro-
vide alternative compliant executions if terms and con-

1 MarketsAndMarkets 2020, see online information at
http://bit.ly/IoTmarket2020

2 From the Greek word Συµβoλαιo, which means contract.

ditions are violated, including the imposition of new
obligations on non-compliant parties through powers.
They can also specify the possibility of subcontracting,
as well as the delegation of obligations to third parties
during contract execution.

Symboleo was designed with three basic require-
ments in mind. Firstly, it is founded on legal terms
lawyers use to think and talk about contracts. This
was accomplished by adopting an ontology whose core
consists of legal terms for contracts, namely obliga-
tion, power, and legal contract. Secondly, the language
should be sufficiently expressive to enable analysis of
specifications using inference engines such as model
checkers and SAT/SMT/OMT solvers. This was accom-
plished by adopting a state transition semantics for le-
gal concepts, but also by using First Order Logic with
quantification over finite domains for the specification
of terms and conditions. Thirdly, the language should
support the specification of requirements for smart con-
tracts. For this, we included in the ontology of the lan-
guage the notions of event and situation, thereby mak-
ing contract terms and conditions monitorable.

Figure 1 provides an overview of many constructs
and tools related to the Symboleo language, with tech-
nologies that will be further described and justified in
Section 2.3.

The contributions of this paper include:

– A formal specification language (Symboleo) for legal
contracts that accounts for obligations and powers,
using domain concepts and axioms. Symboleo spec-
ifications provide requirements for smart contracts
that can be monitored during execution.

– A formal syntax defined through a grammar ex-
pressed in Xtext [12], as well as semantics based
on statecharts and the Event Calculus that define
the lifecycle of contracts, obligations, and powers,

Fig. 1 Overview of Symboleo’s language constructs and tools.

http://bit.ly/IoTmarket2020

Specification and Analysis of Legal Contracts with Symboleo 3

following earlier work on process monitoring [20].
These are shown in yellow in Fig. 1.

– Two analysis tools for contract specifications that
support validation and verification. The first one
(SymboleoCC, in green in Fig. 1) is built on top
of a Prolog engine and checks if a contract specifica-
tion conforms to parties’ expectations by executing
test cases. The second one (SymboleoPC, in blue
in Fig. 1) is built on top of a model checker, namely
nuXmv [18], and verifies a contract specification
through liveness and safety properties expressed in
Linear Temporal Logic (LTL) [62] or Computation
Tree Logic (CTL) [35].

– Two illustrative examples (international meat sales
and transactive energy) inspired by real-life con-
tracts used to demonstrate the language as well as
its feasibility and applicability to different domains.

Note that Symboleo is intended to be used collabo-
ratively by lawyers and modellers, with lawyers making
decisions on disambiguating contractual terms and con-
ditions, while modellers build specifications. Likewise,
lawyers decide what are the critical properties a con-
tract is supposed to have, while modellers express these
properties formally so that they can be verified.

This paper constitutes an extension of a six-page
preliminary version of Symboleo [81] and of a paper
introducing execution-time operations [72]. It extends
and updates the presentation of Symboleo, improves
the ontology and the statechart-based lifecycle defini-
tions, adds a second specification example from a dif-
ferent domain (transactive energy), introduces a new
analysis tool that exploits a model checker for property
verification, and presents a comparative evaluation of
Symboleo as a formal specification language for smart
contracts.

The rest of this paper is structured as follows. Sec-
tion 2 presents our research baseline, including the na-
ture of legal contracts, the ontology we adopted that
constitutes the core of Symboleo, languages used in
its definition and analysis and some basic information
about the nuXmv model checker and the temporal logic
property languages we use for analyzing contract spec-
ifications. Section 3 presents our specification language
through an example. Section 4 presents the syntax and
semantics of Symboleo, while Section 5 presents its exe-
cution time operations. Section 6 demonstrates the ex-
pressiveness of the language with the specification of an
abridged version of a real-life contract from the transac-
tive energy domain, while Section 7 presents two valida-
tion and verification tools along with examples of the
kinds of analysis they support. Related work, includ-
ing a comparative analysis, is presented in Section 8.

Sections 9 and 10 present limitations, future work, and
general conclusions.

2 Research Baseline

In this section, we present already published results and
concepts we adopt and use in the rest of the paper.

2.1 Legal Contracts

Contracts are collections of obligations and powers,
agreed among participating parties, usually involving
exchanges of assets. As legal artifacts, contracts have
their own lifecycle that begins with proposals and ne-
gotiations, after which : i) There is an offer, and an
acceptance of a statement of obligations and powers.
ii) The execution (performance) of a contract is ini-
tiated after the agreement (formation). iii) Execution
may be suspended, successfully or unsuccessfully termi-
nated, renegotiated, or renewed. iv) There can be sub-
contracts. v) There can be surviving obligations.

Symboleo is intended to be used for the specification
and monitoring of contract executions, to ensure com-
pliance: as such, it deals with phases ii) to v). In this
paper, it is illustrated with the specification of a sales
contract, involving exchanges of assets, but we have
also used it to specify obligations and powers arising
from more generic agreements, such as a procurement
agreement between a government and a pharmaceutical
company.

As noted in the introduction, contracts can be un-
derstood as prescriptions of allowable process execu-
tions [28, 42]. Relative to business processes, contracts
are outcome-oriented processes focusing on ‘what’ the
obligations of different parties are, and leaving the ‘how’
to the responsible parties. In addition, contracts funda-
mentally differ from business processes in that they can
change during their execution through the exertion of
powers. For the following meat sales example, the con-
tract specifies that the seller needs to deliver the meat
to a freight company, who delivers it to a shipping com-
pany; however this obligation may be violated, which
may give the buyer the power to terminate the con-
tract, or ask the seller for compensation.

2.2 A Contract Ontology

We view Symboleo specifications as contract models.
Consequently, the core of the Symboleo language con-
sists of an ontology that captures the primitive concepts

4 A. Parvizimosaed et al.

Fig. 2 Symboleo’s contract ontology, with basic contractual concepts (yellow), legal positions (pink), situations (blue), and
events/time (grey).

for describing and reasoning about contracts. This on-
tology, depicted in Fig. 2, includes the concepts of obli-
gation and power inspired by the UFO-L core legal on-
tology [46] that trace back to Hohfeld’s theory of legal
positions [50]. These concepts are supplemented by con-
cepts specific to contracts, such as assets and parties,
relations such as subcontracting, as well as concepts
that relate to the monitoring of contract executions,
such as events and situations. The concepts of our con-
tract ontology are as follows:

– Contract: consists of a collection of obligations and
powers between two or more roles, which are assigned
to parties during execution, and are concerned with
assets. Obligations in a contract can be subcon-
tracted during execution through other contracts.
This means that subcontracting is a transient rela-
tionship, rather than part of a contract definition.

– Asset: a tangible or intangible item of value [92].
Normally at least one asset is associated with each
role and assets are exchanged during contract exe-
cution. Typically, contract conditions include asset
quantity and quality constraints.

– Legal Position: a legal relationship between two
roles. We consider two such relationships: obligation
and power [50], since these are sufficient Hohfeldian
concepts for describing the types of contracts we are
interested in.

– Obligation: the legal duty of a debtor towards a
creditor to bring about a legal situation (consequent)
when another legal situation (antecedent) holds. In
Symboleo, we assume, similarly to Hohfeld [50], a
right to be a correlative legal position of an obliga-
tion: if x is obliged to satisfy z for the benefit of
y, then y has the right to expect z to be satisfied
by x. As such, right is not included in the ontology.
Surviving obligations remain in effect after the ter-
mination of the contract. A 6-month non-disclosure
obligation after the end of the contract is an ex-
ample of a surviving obligation. Obligations concern
assets and are instantiated by conditions (trigger)3.

– Power: the right of a party to create, change, sus-
pend, or cancel legal positions. A power is instanti-
ated by a trigger and has an antecedent (legal situa-
tion) that must be met for it to become in effect.

– Legal Situation: a type of situation associated with
an obligation or power instance. Situations are states
of affairs and are comprised of possibly many inter-
related entities (including other situations) [48]. A
situation occurs during a time interval T, and holds
during any subinterval of T [4].

3 A trigger is true by default for most obligations. However,
suspensive obligations need to be triggered explicitly before
they are instantiated [3].

Specification and Analysis of Legal Contracts with Symboleo 5

– Event: a happening that occurs at a time point (a
date/time in everyday terminology), and cannot
change. Events have pre-state and post-state situa-
tions [4, 48]. For example, delivered is an event whose
pre-state is ‘being in transit’ and post-state is ‘being
at the point of destination’.

– Role: participates in legal positions as debtor or
creditor and is thereby obligated to fulfill obligations
or has the right to exert powers. Roles are assigned
to parties, who are bound to their roles, during each
contract execution.

– Party: a legal agent (person or institution) who
owns assets and is assigned roles in contracts.

As done elsewhere, e.g., in DOLCE and UFO, our
ontology only includes concepts and relationships, at
times with essential attributes. Naming is a mandatory
attribute but is taken for granted here as in many on-
tologies, including DOLCE and UFO.

This ontology is available online4, both in Eclipse’s
Ecore format [85] and in the Umple format [57]. Fig-
ure 2 was generated from the Ecore file, for consistency.
The Umple representation also includes the statecharts
for the contract, obligation, and power concepts illus-
trated in Fig. 3.

The Symboleo ontology is not only useful for pro-
viding a conceptual framework to formalize and analyze
contracts, but its Umple and Ecore representations en-
able the generation of code (classes, attributes, associa-
tions, and relevant operations to manipulate them) that
can be used for verification and monitoring purposes.

2.3 Languages Used

LTL and CTL are used in our approach to express prop-
erties to be verified on specifications of legal contracts.
Intuitively, given an infinite sequence of states (called
computation sequences), the LTL syntax and semantics
are as follows. Any propositional formula ϕ is an LTL
formula, which holds in a state if the formula evaluates
to true in that state. If ϕ and ψ are LTL formulas, then
¬ϕ, ϕ∧ψ, and ϕ∨ψ are LTL formulas with the standard
semantics. LTL also uses the following state operators:
i) Xϕ is an LTL formula that holds in a state of the
sequence if ϕ holds in the state at the next position in
the sequence, and ii) ϕUψ, which holds in a state if ϕ
holds at every point in the sequence starting from the
given state until ψ holds. In the following, we use Fϕ

as a shorthand for >Uϕ, which holds in a state of a
sequence if eventually in a subsequent state ϕ holds,

4 https://github.com/Smart-Contract-Modelling-uOttawa/
Symboleo-JS-Core/tree/main/ontology

and Gϕ as a shorthand for ¬F¬ϕ, which holds in a
state of a sequence if in all subsequent states ϕ holds.

CTL extends LTL state operators with path quanti-
fiers A (for all paths) and E (there exists a path) to be
applied only in front of state formulas (e.g., EX, AX,
EF, AF, EG, AG, E[·U ·], A[·U ·]). CTL semantics,
unlike LTL that uses computation sequences, is given
on computation trees. Thus, i) EXϕ holds in a state
if there exists a computation starting from that state
such that in at least one next state ϕ holds, ii) EGϕ

holds in a state if there is a computation starting from
that state such that for at least a path ϕ holds in all
the states, and iii) E[ϕUψ] holds in a state if there is
a computation starting from the state such that for at
least a path ϕ holds at least until at some point in the
future ψ holds. We also use EFϕ as a shorthand for
E[>Uϕ] to state that there exists a path of a compu-
tation such that along the path eventually ϕ holds.

We remark that both LTL and CTL are well es-
tablished declarative languages for specifying qualita-
tive properties about the behavior of systems to be
verified, with efficient algorithms for checking exhaus-
tively that the system satisfies the property, or vio-
lates it while generating a counterexample witnessing
the violation. On the other hand, the Event Calculus
(EC) [54] is often adopted for reasoning logically about
action and change by specifying (through axioms) con-
straints about partial, evolving execution traces consist-
ing of events5. Moreover, and differently from LTL and
CTL, EC supports the possibility to express quantita-
tive time constraints, thus it is more expressive along
that dimension. However, many useful properties ex-
pressible in LTL/CTL, including those that mix uni-
versal and existential quantifiers, cannot be expressed
in EC. For example, verifying that for all executions,
if a contract starts there exists an execution where
the contract eventually ends (AG(contract_starts →
EF contract_ends)) cannot be expressed in EC. Hence,
we leverage on the EC to complement other constructs
(e.g., to specify guards on transitions that affect multi-
ple statecharts) in providing the semantics of Symboleo,
and we use CTL and LTL to specify qualitative proper-
ties of interest about contracts expressed in Symboleo
(see Fig. 1).

Several other languages, also mentioned in our
ecosystem described in Fig. 1, are used in this paper:

1. Xtext [12] is used to specify the grammar that de-
fines the syntax of Symboleo. Xtext was selected
because it enables the automated generation of an
Integrated Development Environment (IDE) for the

5 For the interested reader, a good tutorial on Event Cal-
culus is provided by Shanahan et al. [78].

https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-JS-Core/tree/main/ontology
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-JS-Core/tree/main/ontology

6 A. Parvizimosaed et al.

Eclipse platform, further enabling the editing of
Symboleo specifications with features such as syntax
highlight, type checking, and code completion.

2. Statecharts [69], along with the Event Calculus [78],
are used to express the semantics of Symboleo. The
statecharts describe the states and transitions of the
different Symboleo entities, while Event Calculus
axioms are used to specify the guards and effects
that govern these transitions, as well as other quan-
titative constraints.

3. Prolog is used to implement and execute the Sym-
boleo statecharts-based and axiomatic semantics in
our compliance tool (SymboleoCC). Prolog was
selected mainly because it enables the rapid proto-
typing of tools that exploit axiomatic semantics. It
also enabled us to debug many of our axioms.

4. nuXmv [19] is the language used to verify particular
instances of Symboleo specifications against proper-
ties of interest. nuXmv is both a model checking tool
and the name of the input language for that tool.
The next subsection further discusses nuXmv’s fea-
tures and reasons for its selection.

5. Xtend [11] is a dialect of Java that is commonly used
to develop Eclipse-based IDEs and transformation.
Xtend was used here to support type checking in our
Symboleo IDE, and to generate nuXmv code from
Symboleo specifications in SymboleoPC.

6. Umple [57] is a modeling language that was used
to specify the Symboleo ontology and statecharts.
Umple was selected because it enables the genera-
tion of code in many languages, including NuSMV
(similar to nuXmv) and Java for state machines
(e.g., to support verification and contract monitor-
ing), as well as Ecore.

7. Ecore [85] is a modeling language that is also used to
express the Symboleo ontology in a way that enables
applications within the Eclipse ecosystem.

2.4 The nuXmv Model Checker

The nuXmv model checker [18], used in Section 7.2,
is the evolution of the NuSMV model checker [22]. It
supports the specification and analysis of finite- and
infinite-state synchronous transition systems and pro-
vides state-of-the-art algorithms for the verification and
analysis of both LTL and CTL properties.

nuXmv supports the symbolic simulation of the for-
malized model, thus allowing the user to inspect it.
nuXmv not only allows to prove that a temporal prop-
erty holds, but it can also generate counterexamples for
properties that do not hold, witnessing the reason why
the property fails. This last feature applies for tempo-
ral properties, thus supporting the user in assessing the

correctness of the model or of the property itself. For
instance, these features were at the basis of the Formal-
Tropos work [39] in Requirements Engineering and of
the work in the requirement analysis for hardware spec-
ifications [23, 74]. Note that LTL and CTL are used for
the definition of desired properties to be model checked,
but are not part of the Symboleo language, nor are they
used in the definition of Symboleo’s semantics.

The nuXmv specification language provides for
modular hierarchical descriptions and for the definition
of reusable parametric components. The basic purpose
of the language is to describe, in propositional calcu-
lus, the transition relation of a finite Kripke structure.
A nuXmv program consists of: Declarations of state
variables (within the scope of VAR) that can be of fi-
nite (e.g., Boolean, enumeration, range) or infinite type
(e.g., integer, rational) and determine the state space
of the model; Init assignments and Next assignments
(both in the scope of ASSIGN) define respectively the
valid initial states and the transition relations; Decla-
rations, specified in the scope of DEFINE, introduce ab-
breviations of complex formulas to be evaluated in the
current state; and Temporal logic queries to be verified
for a given model (CTLSPEC, LTLSPEC).

Listing 1 shows a simple example where there are
three modules: Event, Timer, and main. The Event mod-
ule instantiates one instance of Timer, and in the main
module one instance of the module Event is instantiated
together with some LTL and CTL properties to be ver-
ified on the model. In this example, the first property
(in CTL) aims to ensure that there is the possibility for
an event to expire; the second one aims to ensure that
once an event expires, it remains expired; the third one
(in LTL) aims to ensure that once an event happens,
it remains “happened”, and the last one aims to verify
that if an event starts, then eventually it either happens
or expires, thus ensuring its liveness.

From a module, it is possible to access a variable
or a declaration of another module instantiated in the
module itself using the ‘dot’ notation (for instance,
event._expired in the main module refers to the declara-
tion _expired of the instance event of module Event). We
refer the reader to [88] for a more detailed description
of the nuXmv language and functionalities.

3 Symboleo: A Contract Specification Language

This section introduces the Symboleo language with a
meat sale example expressed in parameterized natural
language in Table 1 and as a formal specification in
Table 2. In Table 2, boldface used to indicate keywords
used in Symboleo’s syntax [79].

Specification and Analysis of Legal Contracts with Symboleo 7

Table 1 Sample clauses of a meat sale contract.

This agreement is entered into as of <effDate>, between <party1> as Seller with address <retAdd>, and <party2> as Buyer
with address <delAdd>.

1. Payment & Delivery
1.1 Seller shall sell an amount of <qnt> meat with <qlt> quality (“goods”) to the Buyer.
1.2 Title in the Goods shall not pass on to the Buyer until payment of the amount owed has been made in full.
1.3 The Seller shall deliver the Order in one delivery within <delDueDateDays> days to the Buyer at its warehouse.
1.4 The Buyer shall pay <amt> (“amount”) in <curr> (“currency”) to the Seller before <payDueDate>.
1.5 In the event of late payment of the amount owed, the Buyer shall pay a late fee equal to <intRate>% of the amount

owed, and the Seller may suspend performance of all of its obligations under the agreement until payment of amounts
owed has been received in full.

2. Assignment
2.1 The rights and obligations are not assignable by Buyer.

3. Termination
3.1 Any delay in delivery of the goods will not entitle the Buyer to terminate the Contract unless such delay exceeds 10

Days.
4. Confidentiality

4.1 Both Seller and Buyer must keep the contents of this contract confidential during the execution of the contract and
six months after its termination.

Producing a formal specification from natural lan-
guage text involves several key decisions. These should
be taken in consultation with contracting parties and
can determine the degree of generality, completeness,
and consistency of a contract specification. For the meat
sale contract, for example, the contract could apply to a
single sale with two specific parties serving as seller and
buyer, or to multiple sales of food assets involving differ-
ent parties. This decision determines the parameters of
the contract specification. Secondly, the specifier needs
to consider whether the informal specification is miss-
ing important implicit constraints and, if so, include
them in the formal specification. For example, should
every execution of the contract terminate in a finite
amount of time (say, 21 days after start date), or can it
run for an indefinite period because of missing tempo-
ral constraints? Are there sub-contracting constraints?
Answers to such questions concern liveness and safety
properties for contracts, in a way similar to those for
distributed systems [52]. It should be noted that the
translation from natural language to Symboleo is not
within the scope of this paper. Preliminary work to-
wards this end is reported in [83].

To address the above concerns, we propose the
specification shown in Table 2. The language for ex-
pressing triggers, constraints, antecedents, and conse-
quents is First Order Logic with quantification over
finite domains, using the primitive predicates shown
in Table 3 and other predicates defined in terms of
the primitive ones. Since Symboleo supports both tem-
poral interval and point expressions, some predicates
are adopted from Allen [4], namely occurs(s,T), while
initiates(e,s), terminates(e,s), happens(e,s) and hold-
sAt(s,t) are adopted from the event calculus [78]. More-
over, as a shorthand, we allow events to be used in place

of points in time expressions, and situations in place of
intervals. For instance, in ‘e within s’, event e repre-
sents the time point when e happens and situation s
represents the time interval when s occurs. Symboleo
builds on these primitives to offer additional convenient
shorthands such as happensWithin(e, s), happensBe-
fore(e, t), and others not explained here. happensBe-
fore(e, t) specifies that the event e happens before time
point t while happensWithin(e, s), used for consistency
with the previous notation, says that e happens within
situation s. The symbol _ indicates any eligible value.
Contract Specification. Consists of two sections:
(a) the domain section, which contains domain-specific
concepts and axioms and the specializations of Sym-
boleo’s primitive concepts; this section is intended to
formalize natural language definitions included in most
contracts; (b) the contract body, corresponding to the
terms and conditions stated in contracts. The body pre-
scribes what a contract is intended to achieve, but also
what happens in case a party violates its obligations.
Domain. Domain-related concepts are defined as spe-
cializations (isA) of contract ontology concepts. For in-
stance, Buyer and Seller are specializations of Role with
additional attributes;Meat is a specialization of Perish-
ableGood, which is a specialization of Asset; and Paid
and Delivered specialize Event with some additional at-
tributes.
Contract Signature. The second part of a contract
specification begins with its name and typed parame-
ters. Parameters consist of at least two roles and others
that determine properties of contractual elements. Dur-
ing contract formation, roles are assigned to parties. For
instance, meatSale (shown in Table 2) is a contract be-
tween roles buyer and seller, where seller promises to
deliver qnt quantity of meat with qlt quality to buyer ;

8 A. Parvizimosaed et al.

Table 2 Meat sales contract specification.

Domain meatSaleD

Seller isA Role with returnAddress: String;
Buyer isA Role with warehouse: String;
Currency isA Enumeration(‘CAD’, ‘USD’, ‘EUR’);
MeatQuality isA Enumeration(‘PRIME’, ‘AAA’, ‘AA’, ‘A’);
PerishableGood isA Asset with quantity: Number, quality: MeatQuality;
Meat isA PerishableGood;
Delivered isA Event with item: Meat, deliveryAddress: String, delDueD: Date;
Paid isA Event with amount: Number, currency: Currency, from: Role, to: Role, payDueD: Date;
PaidLate isA Event with amount: Number, currency: Currency, from: Role, to: Role;
Disclosed isA Event with contractID : String;

endDomain

Contract meatSale
(
buyer: Buyer, seller: Seller, qnt: Number, qlt: MeatQuality, amt: Number, curr: Currency,

payDueDate: Date, delAdd: String, effDate: Date, delDueDateDays: Number, intRate: Number
)

Declarations
goods : Meat with quantity := qnt, quality := qlt;
delivered : Delivered with item := goods, deliveryAddress := delAdd, delDueD := effDate + delDueDatedays;
paid : Paid with amount := amt, currency := curr, from := buyer, to := seller, payDueD := payDueDate;
paidLate : PaidLate with amount := (1 + intRate/100)×amt, currency := curr, from := buyer, to := seller;
disclosed : Disclosed with contract := self ;

Preconditions
occurs(isEqual(goods.ownership, seller), [_, self.start])

Postconditions
occurs(isEqual(goods.ownership, buyer), [_, self.end]) and not occurs(isEqual(goods.ownership, seller), [self.end, _])

Obligations
Odel : O(seller, buyer, true, happensBefore(delivered, delivered.delDueD));
Opay : O(buyer, seller, true, happensBefore(paid, paid.payDueD));
Olpay : violates(Opay.instance) → O(buyer, seller, true, happens(paidLate, _));

SurvivingObls
SOselDisclosure: O(seller, buyer, true, not happens(disclosed(self), t) and (t within activates(self) + 6 months));
SObuyDisclosure: O(buyer, seller, true, not happens(disclosed(self), t) and (t within activates(self) + 6 months));

Powers
PsusDelivery: violates(Opay.instance) →

P(seller, buyer, true, suspends(Odel.instance));
PresuDelivery: happensWithin(paidLate, suspension(Odel.instance)) →

P(buyer, seller, true, resumes(Odel.instance));
PtermContract: not(happensBefore(delivered, delivered.delDueDate+10 days)) →

P(buyer, seller, true, terminates(self));
Constraints
not(isEqual(buyer, seller));
forAll o / Obligation [CannotBeAssigned(o)];
forAll p / Power [CannotBeAssigned(p)];

endContract

Table 3 Primitive predicates of Symboleo.

Predicate Semantics
e within s situation s holds when event e

happens.
occurs(s, T) situation s holds during the

whole interval T, not just in any
of its subintervals.

initiates(e, s) event e brings about situation s.
terminates(e, s) event e terminates situation s.
happens(e, t) event e happens at time t.
holdsAt(s,t) situation s holds at time t.

and buyer promises to pay the amount owed amt with
currency curr before due date payDueDate. The buyer

and seller are assigned (e.g., EatMart and Great Ar-
gentinian Meat Company) upon contract instantiation.
Contract Body. Contracts also contain local variable
declarations; preconditions and postconditions; obliga-
tions and powers; as well as contract constraints that
define liveness and safety properties. Pre/postcondi-
tions have the usual semantics: a precondition must
hold for a valid execution to begin, while a postcon-
dition is supposed to hold upon successful execution.
Obligations. The main part of a contract consists of
obligations. An obligation is specified as Oid:O(debtor,
creditor, antecedent, consequent). Debtor and creditor
are roles, and antecedent and consequent are legal situ-

Specification and Analysis of Legal Contracts with Symboleo 9

Listing 1 A simple nuXmv example.

MODULE Timer (s ta r ted , _max_time_)
DEFINE

_time := t ime ;
VAR

t ime : −1 . . _max_time_ ;
ASSIGN

i n i t (t ime) := −1;
next (t ime) := case

t ime=−1 & s t a r t e d : 0 ;
t ime >−1 & s t a r t e d & t ime < _max_time_ : t ime + 1;
t ime = _max_time_ & s t a r t e d : _max_time_ ;
TRUE : t ime ;

esac ;

MODULE Event (s ta r ted , _max_time_)
DEFINE

_ i n a c t i v e := (s t a t e = i n a c t i v e) ;
_happened := (s ta t e = happen) ;
_expi red := (s t a te = exp i re) ;

VAR
t r i g g e r e d : boolean ;
t imer : Timer (s t a r t e d & ! _happened & ! _expired ,

_max_time_) ;
s t a t e : { i n a c t i v e , ac t i ve , happen , exp i re } ;

ASSIGN
i n i t (t r i g g e r e d) := FALSE ;
next (t r i g g e r e d) := case

s ta te = a c t i v e & s t a r t e d : {FALSE, TRUE } ;
TRUE : FALSE ;

esac ;

ASSIGN
i n i t (s t a t e) := i n a c t i v e ;
next (s t a t e) := case

s ta te = i n a c t i v e & s t a r t e d : a c t i v e ;
s t a t e = a c t i v e & s t a r t e d & t r i g g e r e d &

t imer . _time <_max_time_ : happen ;
s ta t e = a c t i v e & s t a r t e d & t imer . _t ime =

_max_time_ : exp i re ;
TRUE : s t a t e ;

esac ;

MODULE main
VAR

s t a r t e d : boolean ;
event : Event (s ta r ted , 10) ;

CTLSPEC EF event . _expi red
CTLSPEC AG(event . _expi red −> AG event . _expi red)
LTLSPEC G(event . _happened −> G event . _happened)
LTLSPEC G(s t a r t e d) −> F (event . _happened | event . _expi red)

ations (specified by propositions). Antecedent and con-
sequent propositions describe situations that need to
hold for obligations to be fulfilled. Obligations become
InEffect when their antecedents become true. Suspen-
sive Obligations require a trigger to be created. Triggers
are situations that are stated in terms of propositions
and are located on the left side of the ‘→’ symbol. If
there are no triggers mentioned in the specification, an
obligation will be instantiated when contract execution
begins, but will take effect only when its antecedent be-
comes true. In Table 2, three obligations are specified
for the example contract:

– Odel obliges seller to bring about, for the benefit of
buyer, the meat delivery by due date; it should be
noted that, since quantity and quality are attributes

of the meat, delivery has not occurred if constraints
on these attributes are not complied with.

– Opay obliges the buyer to bring about, for the benefit
of seller, payment by its due date.

– Olpay obliges the buyer to bring about, for the ben-
efit of seller, late payment. Olpay is triggered by the
violation of Opay. The amount of late payment is
specified in the Declarations section.

Surviving Obligations. They are obligations that
survive after the Termination of a contract. Sur-
viving obligations are usually prohibitions such
as non-disclosure clauses (e.g., SOselDisclosure and
SObuyDisclosure in Table 2). They too can have triggers.
Powers. A power is specified as Pid:P(creditor, debtor,
antecedent, consequent), where the creditor and debtor
are roles, the antecedent is a legal situation described as
a proposition, and the consequent is a proposition de-
scribing a legal situation that can be brought about by
the creditor. In Table 2, three powers are specified:
– PsusDelivery allows the seller to suspend delivery (i.e.,

Odel.instance) if obligation Opay has been violated.
– PresuDelivery allows the buyer to resume Odel with a

late payment (including interests).
– PtermContract allows the buyer to terminate the con-

tract, if meat delivery does not occur within ten
days after the delivery due date.

A power entitles the creditor to bring about the con-
sequent. For example, PsusDelivery entitles the seller to
perform the suspending action and bring about a sus-
pends (Odel.instance) situation. A power is instantiated
every time its trigger becomes true and becomes acti-
vate whenever its antecedent is true. If a party obtains
a power, it can change the states of obligations, powers
and contracts as stated in its consequent. For example,
PtermContract can bring about unsuccessful termination
of the contract if its antecedent becomes true.

To emphasize the difference between trigger and an-
tecedent, consider the example of an obligation Odel for
a variant of the Meat Sale Contract where the seller
must deliver every meat request expressed through a
purchase order, up to a total of 100K kilograms of meat.
Here the trigger is the arrival of a new purchase or-
der that results in another instantiation of Odel, while
the antecedent for each new instantiation is always the
predicate that the new total of meat purchased in this
contract remains less than 100K kilograms. This use of
action triggers and their distinction from action precon-
ditions was first proposed for formal requirements mod-
elling languages including RML [45] and KAOS [27]. It
is used very much in the same spirit here.

Odel : happens(ordered)→ O(seller, buyer, goods.quantity

< 100000, happensBefore(delivered, delivered.delDueD))

10 A. Parvizimosaed et al.

Constraints. Liveness constraints ensure that every
contract execution terminates in a bounded amount of
time, while safety constraints ensure that undesirable
things do not happen during any execution. The follow-
ing are safety constraints: CannotBeAssigned(o) disal-
lows assignment of obligation instance o during the exe-
cution of a contract, whereas not(isEqual(seller, buyer))
prohibits any party from being assigned to both roles
at the same time.

4 Syntax and Semantics

Syntax. The syntax of Symboleo is defined in terms of
an Xtext grammar, for which we have an editor proto-
type [80]. The Xtext-based grammar, given its length,
is not included here but is available online (https:
//bit.ly/Symboleo-Xtext) and is documented in Sec-
tion 4.2 of Sharifi’s thesis [79]. A cloud-based editing
environment is also under development.

Symboleo’s syntax contains keywords and sections
that cover the declaration of contracts, obligations,
powers, as well as their parameters, which enable pop-
ulating the ontology for given contracts. It also enables
modelers to extend the basic Symboleo ontology to
cover domain-specific concepts and attributes of a
contract (within the Domain scope), and to declare
local variables over these concepts, possibly with initial
values (within the Declarations scope).

Semantics. The semantics of Symboleo is expressed
in terms of 1) statecharts6 that describe the lifetime of
instances of contract, obligation, and power instances
(Fig. 3), as well as 2) axioms, expressed in an event
calculus-based variant of First Order Logic, that de-
scribes transition guards, i.e., when transitions are trig-
gered. We remark that the statecharts and the ax-
ioms provide a formal and intuitive framework, simple
enough to validate with lawyers. Moreover, they provide
a basis for an easy and verifiable encoding suitable for
formal verification (see Section 7). These axioms can-
not be expressed directly in nuXmv, since in nuXmv
(which is a finite state model checker with no support
for quantifiers, see Section 2.4) we can only represent
instances of Symboleo axioms consisting of finite sets of
objects corresponding to Symboleo entities.

A change of state for any contract, obligation, or
power instance is marked by an event. By recording
events, for example in a blockchain ledger, smart con-
tracts can monitor contract execution, ensure compli-

6 In these statecharts, we use <verb>ed for events
that have happened, e.g., transitions ‘Discharged’ and
‘Suspended’, and<verb> for states describing situations, e.g.,
‘Discharge’ and ‘Suspension’.

ance to the contract, and determine violations and vi-
olators.

In addition, the proposed statecharts capture de-
pendencies among the lifecycles of obligations, powers,
and contract. For example, when an active contract ter-
minates unsuccessfully, e.g., because one of the parties
exerts its power to terminate (cancel) it, all active obli-
gations and powers transition to their unsuccessful ter-
mination state.

After contract formation, parties are bound to the
contract but the contract only becomes active on its
effective date. During assignment [13], a contract may
enter the Unassign state when the assigner withdraws,
and remains in that state until an assignee is assigned.
A contract may also be suspended if one of the parties
exerts its suspension powers, or if a force majeure oc-
curs, e.g., a natural disaster. Upon suspension, all active
obligation and power instances associated with the sus-
pended contract are suspended as well. The suspended
contract waits for an event that resumes it, such as
a suspension deadline or an action performed by some
party. After resumption, all instances of suspended obli-
gations and powers return to their InEffect state. In a
similar manner, a power may suspend an obligation,
and a complementary power can resume a suspended
obligation. The state machine records the cause of sus-
pension in the sense that an obligation suspended by
a power is resumed only with a complementary power
rather than contract resumption.

Rescission cancels a contract and brings parties to
the positions in which they were before entering the
contract. In fact, any party receiving benefit under the
contract is liable to undo the benefit or compensate for
it. A party can rescind a contract due to a fundamen-
tal and substantial breach, a repudiation (e.g., meat
is rejected upon delivery), or vitiating factors such as
mistakes, misunderstandings, or duress.

A contract successfully terminates (SuccessfulTer-
mination) when all obligations, except surviving ones,
that have entered the active state, have terminated suc-
cessfully or some are violated and the violation 1) has
triggered compensating powers or 2) has triggered new
obligations that have all successfully terminated. In
all other cases, namely termination due to the exer-
tion of a power or contract expiration while in the
Active state, the contract and its active obligations
and powers terminate unsuccessfully (UnsuccessfulTer-
mination). In the case of a major breach (aka ’mate-
rial breach’ in Law), Contract Law usually allows the
affected party to terminate the contract even if such
power is not explicitly specified. Renegotiation and re-
newal are implicit powers for every contract that can
be activated when all contractual parties agree. These

https://bit.ly/Symboleo-Xtext
https://bit.ly/Symboleo-Xtext

Specification and Analysis of Legal Contracts with Symboleo 11

Fig. 3 Statecharts of the contract, obligation, and power concepts.

two features of legal contracts will be explored in future
work.

Suspensive obligations are created (instantiated)
when their triggers become true7, e.g., Olpay in Ta-
ble 2. However, a trigger transitions an unconditional
obligation (whose antecedent is always true) to the In-
Effect state directly. A conditional obligation is not ac-
tivated until its antecedent becomes true. In the case
of antecedent expiration, the obligation is discharged,
since it cannot be fulfilled after its expiration. For ex-
ample, if the antecedent of Odel is happensBefore(paid,
paid.payDueD) and the delivery fee is not paid before
the due date, the obligation expires. Discharged obliga-
tions are cancelled obligations rather than unsuccess-
fully terminated ones. When an obligation instance be-
comes InEffect, its debtor can fulfill it by bringing about
its consequent. The breach (transitioning to the viola-
tion state) of an obligation instance, e.g., because of
a missed deadline, may trigger a power that entitles
its creditor to suspend, terminate, or discharge one or
more InEffect obligation instances, or may trigger an-
other obligation8. In the case of suspension, the debtor

7 Non-suspensive obligations are instantiated when con-
tract execution is launched.

8 This is also known as a Contrary to Duty (CTD) Obliga-
tion [75].

is not responsible against the creditor to bring about
the obligation until it is resumed.

Powers are instantiated and activated in the same
way as obligations. In many cases, events such as viola-
tions of obligations trigger them to become InEffect. A
power might have a deadline for exertion, i.e., a deadline
in its antecedent. After the deadline, the power expires
thus entering its Unsuccessful Termination state.

The detailed representation of Symboleo semantics
complicates state machines and reduces their simplicity
because multiple conditions may govern the transition
among states. To avoid complexity, states and guards
are addressed with general names. For example, an obli-
gation transits to the suspension state either by a power
exertion or contract suspension. Since event calculus
can reason about the history of transitions and states,
complex axioms have been formulated with event cal-
culus logic [78] rather than state machines.

The formal semantics of contract, obligation, and
power instance lifecycles is defined through 28 axioms
that specify the conditions under which transitions take
place in their respective statecharts. Axioms formulate
the state machines with the concepts of situation, event,
and time. The states of contract and legal positions are
situations that are initiated by initiates(e, s) predicate,
held for a while, and terminated by an event e that trig-

12 A. Parvizimosaed et al.

gers the terminates(e, t) predicate. Moving from a state
X to a state Y with an event e is axiomatized as shown
in Eq. 1.

happens(e, t) ∧ (e within X)

→ initiates(e, Y) ∧ terminates(e,X)
(1)

However, Symboleo axioms may consider multiple
states for a transition. For example, an obligation tran-
sits to the Create state if its contract holds the InEffect
state.

Due to space limitations, we present here three of
these axioms in Eqs. 2-4, while the complete set of
axioms is available in [79]. The axioms reserve special
events (e.g., triggered, terminated, suspended, and
activated) to handle the consequent of powers. For
instance, whenever a power suspends a contract, an
internal event suspended(c) happens, which triggers
some other axioms such as Axiom 3.

Axiom 1 (Obligation creation): for all obligations
o of contract c, if o is triggered while c is in effect, then
o is created. Note: o.antecedent denotes the antecedent
of obligation o (see ontology in Fig. 2).

happens(triggered(o),_) ∧
(triggered(o) within InEffect(c)) ∧ ¬o.antecedent
→ initiates(triggered(o), create(o))

(2)

Axiom 2 (Obligation termination by a power):
for any obligation o and power p (denoted with
p.consequent) of contract c, if the consequent of p im-
plies that o is terminated and p is exerted while p is in
effect, then o is terminated unsuccessfully.

(e = terminated(o)) ∧ (e within Active(o))∧
(e within InEffect(p)) ∧ (e within InEffect(c)) ∧
(p.consequent→ happens(terminated(o), t))
→ initiates(e,UnsuccessfulTermination(o)) ∧
terminates(e,Active(o))∧
happens(terminated(o), t)

(3)

Note that Axiom 2 takes advantage of the expres-
siveness of Event Calculus, and that it would be
complex to specify it using guards, events, and effects
in statecharts.

Axiom 3 (Obligation suspension by contract sus-
pension): for any obligation o of contract c, if c is
suspended while o is in effect, then o is suspended.

(e = SuspendedByContract(c)) ∧ happens(e,_) ∧
(e within InEffect(o)) ∧ (e within InEffect(c))→

initiates(e, SuspensionByContract(o))∧
terminates(e, InEffect(o))

(4)

We have tested these axioms through a Prolog-based
prototype reasoning tool by checking the sample Meat
Sales contract of the previous section. The tool and the
test scenarios (with successful results) are also avail-
able [71].

5 Execution-Time Operations

During the execution of a contract, contracting parties
have the right to make changes to those responsible for
an obligation/power. These execution-time operations
include subcontracting, delegation, substitution, nova-
tion, and assignment [79]. However, these terms may
have different interpretations in different legal jurisdic-
tions. Accordingly, we have decided to only include in
the current version of Symboleo three execution-time
operations that seem stable across jurisdictions: assign-
ment, substitution, and subcontracting.

We define these operations in terms of sharing or
transferring rights, responsibilities, or performance of
parties. We accomplish this in the following subsections
by first defining relationships that indicate who is re-
sponsible for what and primitive operations for chang-
ing the status of any party, then we define in terms of
these relationships the three execution-time operations
supported by Symboleo.

5.1 Primitive Execution-Time Relationships

We extended the original Symboleo ontology [81] with
relationships defined between Party and Legal Position,
shown in Fig. 2. Note that “liable” here is synonymous
with “responsible”. Specifically, the relationships are:

– rightHolder(x, p): for an obligation/power in-
stance x, party p is rightHolder.

– liable(x, p): for an obligation/power instance x,
party p is liable.

– performer(x, p): for an obligation/power instance
x, party p is performer.

These terms are related to the Symboleo ontology in
Axioms 5-6 of the semantics of Symboleo, based on
the predicates of Table 3. During the instantiation of a
contract, when values are bound to their parameters,
these axioms hold:

Axiom 5 (Debtor of an obligation becomes its
liable and performer): given an obligation o and a
party p, there exists a time point t at which, if p is

Specification and Analysis of Legal Contracts with Symboleo 13

bound to the debtor role of o, p becomes liable and
performer of o.

happens(activated(o), t) ∧
holdsAt(bind(o.debtor, p), t)
→ initiates(activated(o), liable(o, p)) ∧

initiates(activated(o), performer(o, p))

(5)

Axiom 6 (Creditor of an obligation becomes its
rightHolder): given an obligation o and a party p,
there exists a time point t at which, if p is bound to
the creditor role of o, p becomes the rightHolder of o.

happens(activated(o), t) ∧
holdsAt(bind(o.creditor, p), t)
→ initiates(activated(o), rightHolder(o, p))

(6)

Symboleo also includes two other similar axioms
whereby the creditor of a power becomes its rightHolder
and performer, while the debtor of a power becomes li-
able [79] for it.

5.2 Primitive Execution-Time Operations

Next, we define a set of primitive execution-time op-
erations (Table 4) to express what can happen during
the execution of a contract instance. An execution-time
operation is initiated/terminated by an event with
a corresponding name (e.g., shareR is initiated/ter-
minated using event sharedR). The semantics of the
primitive sharing and transfer operations defined in
Table 4 are exemplified with shareR and transferR (a
party can share or transfer her rights under a contract
to another party). The semantics of the other four
primitive operations are defined with similar axioms
(see [79]).

Axiom 7 (Sharing rights): Given an active obliga-
tion/power instance x, a party p, and the fact that
sharedR(x, p) is the event that initiates the sharing of
x with p, at some time t the following holds:

happens(sharedR(x, p), t) ∧ holdsAt(active(x), t) →
initiates(sharedR(x, p), rightHolder(x, p))

(7)

Axiom 8 (Transferring rights): Given an active
obligation/power instance x, party instances pnew and
pold, and the fact that transferredR(x, pold, pnew) is the

Table 4 Primitive execution-time operations.

shareR(x, p) Party p becomes a rightHolder
for obligation/power instance
x.

shareL(x, p) Party p becomes liable for obli-
gation/power instance x.

shareP(x, p) Party p becomes a performer
for obligation/power instance
x.

transferR(x,pold,pnew) Party pnew becomes a
rightHolder for obliga-
tion/power instance x and
pold will no longer be a
rightHolder for x.

transferL(x,pold,pnew) Party pnew becomes liable for
obligation/power instance x
and pold will no longer be liable
for x.

transferP(x,pold,pnew) Party pnew becomes a per-
former for obligation/power in-
stance x and pold will no longer
be a performer for x.

event that initiates the transfer of rights, there exists a
time point t for which the following holds:

happens(transferredR(x, pold, pnew), t)

∧ holdsAt(active(x), t) ∧
∧ holdsAt(rightHolder(x, pold), t) →

initiates(transferredR(x, pold, pnew),

rightHolder(x, pnew))

∧ terminates(transferredR(x, pold, pnew),

rightHolder(x, pold))

(8)

These primitive operations can now be used to im-
plement various interpretations (e.g., from different ju-
risdictions) of contract execution-time operations. We
envision allowing users to define their own execution-
time operations using the primitive ones. The next sub-
section defines three such operations chosen for inclu-
sion in our current implementation of Symboleo.

5.3 Assignment, Substitution, and Subcontracting

We formally specify syntax (parametric templates) and
semantics (axioms) for these operations. In the follow-
ing axioms, O and P respectively represent the sets
of all obligation instances and all power instances in a
contract execution. Also, the dot (.) operator is used to
navigate our ontology, as in OCL.

5.3.1 Assignment (of Rights)

Signature: assignR({x1, ..., xn}, pold, pnew)

14 A. Parvizimosaed et al.

Semantics: A party can assign the rights that she is
entitled to under a contract to a third-party [53]. This
operation is defined in terms of transferR (Axiom 8).

Axiom 9: For any set of obligation/power instances
x = {x1, ..., xn} that party pold is the rightHolder of,
if pold assigns her rights for x to another party pnew,
then the rights for x are transferred from pold to pnew.
Here, assignedR(x,p) is the event that initiates the as-
signment, leading to many primitive transfers.

∀x ∈ P(O ∪ P), ∀xi ∈ x :

happens(assignedR(x, pold, pnew), t) ∧
holdsAt(rightHolder(xi, pold), t)→

happens(transferredR(xi, pold, pnew), t)

(9)

5.3.2 Party Substitution

Signature: substituteC (c, r, pold, pnew)

Semantics: A contractual party might decide to leave
a contract execution and have a third-party replace
her in the contract. A party pold who has a role r in
contract c can substitute herself with another party
pnew and transfer all of rights, responsibilities, and per-
formance of all the active obligations/powers x to pnew,
given the consent of all original parties and of pnew [53].

Axiom 10: Given the consent of pold, pnew, and other
parties of the contract c to substituteC (c, r, pold, pnew),
and given contract c, obligation/power x, and role r,
and the fact that substitutedC (c, r, pold, pnew) is the
event that occurs and initiates the substitution, then
there exists a time t for which this holds:

∀x ∈ c.legalPositions :

happens(consented(substitutedC(c, r, pold, pnew)), t)

∧ happens(substitutedC (c, r, pold, pnew), t)

∧ holdsAt(active(c), t)
∧ holdsAt(bind(r, pold), t) →

initiates(substitutedC (c, r, pold, pnew),

bind(r, pnew))

∧ terminates(substitutedC (c, r, pold, pnew),

bind(r, pold))

∧ happens(transferredR(x, pold, pnew), t)

∧ happens(transferredL(x, pold, pnew), t)

∧ happens(transferredP(x, pold, pnew), t)

(10)

5.3.3 Subcontracting

Subcontracting involves sharing performance of an
obligation with one or more parties through subcon-
tracts c1, ..., cn.

Signature: subcontract
(
o to {{c1, pa1}, ..., {cn,

pan}} with {constr1, ..., constrn}
)
.

Semantics: As indicated in Axiom 11, subcontracting
is a legal way of granting performance for an obligation
to one or more subcontractors, while retaining liability.
For instance, a seller may hire a carrier to transport
goods from a warehouse to port A, another one to
ship the goods from port A to port B, and a third
one to transport the goods from port B to its final
destination. In this case, successful termination of three
subcontracts fulfills the corresponding obligation of the
original contract. However, violation, suspension, and
unsuccessful termination of subcontracts do not alter
the state of the original contract’s obligations since the
contractor, as a liable party and primary performer,
can run alternative plans (e.g., replace subcontrac-
tors) and consequently fulfill its original obligation.
Contractors may stipulate some constraints to su-
pervise further subcontracts, e.g., to acquire a main
contractor’s consent to shift its burden to a third party.

Axiom 11: For an obligation instance o in O that is
subcontracted out under a set of contracts in C to a
set of parties in PA subject to a set of domain as-
sumptions expressed as additional propositional con-
straints ({ϕ1, ..., ϕn}), the performance of o is shared
with (sub)contractual parties.

∀o ∈ P(O), ∀cp ∈ P(C × PA) :
(happens(subcontracted(o, cp, {ϕ1, ..., ϕn}), t)
∧ ϕ1... ∧ ϕn) →

∀oi ∈ o, ∀(c, pa) ∈ cp :

happens(sharedP (oi, pa), t)

(11)

6 Application Example: Transactive Energy

Transactive energy (TE) is an emerging domain in
the power sector where electricity can be produced
and shared on demand by producers/consumers over
a smart grid. Many contracts (as short as a few min-
utes long) are created dynamically in a TE market, and
smart contracts are considered to be a key enabling
technology in that domain [82].

Symboleo has been evaluated with a real-life Califor-
nian transactive energy agreement [14]. As Table 5 de-
picts, TE is a long-term contract between a distributed
energy resource provider (DERP) that produces en-
ergy, and a California Independent System Operator
(CAISO) that runs a supply market for energy accord-
ing to the agreement. The DERP has the right to partic-
ipate in the energy market by submitting energy supply

Specification and Analysis of Legal Contracts with Symboleo 15

Table 5 Sample clauses of a transactive energy agreement.

This agreement is dated <effDate> and is entered into, by and between <party1> as Distributed Energy Resource Provider
(“DERP”) and California Independent System Operator Corporation (“CAISO”).

1. This Agreement shall be effective as of the later of the date it is executed by the Parties and shall remain in full force and
effect until terminated pursuant to section 2 of this Agreement.

2. Termination
2.1 The CAISO may terminate this Agreement by giving written notice of termination in the event that the DERP fails to

pay an invoice by the due date or to provide energy according to the Dispatch Instruction. In case of failure in payment,
the DERP should pay the invoice in 30 days after the CAISO gives the written notice in order for the termination to
get revoked, otherwise the termination comes true.

2.2 In the event that the DERP no longer wishes to submit Bids it may terminate this Agreement, on giving the CAISO
not less than ninety (90) days written notice.

3. Payment & Delivery
3.1 Payments for each Trading Day shall be made four (4) Business Days after issuance of the Invoice.
3.2 As soon as a Bid comes into effect, the DERP shall supply and deliver energy according to the terms in the Bid and

also in the Dispatch Instruction.
3.3 If the DERP fails to comply with its energy supply commitment, the CAISO shall be entitled to impose penalties on

the DERP. The penalty shall be calculated as 50% of the associated Bid Price.
4. Assignment: Either Party may assign or transfer any or all of its rights and/or obligations under this Agreement with

the other Party’s prior written consent.

bids. If CAISO accepts a bid during the market clearing
process, the DERP is obligated to inject energy respect-
ing dispatch instructions into the smart grid. The in-
structions mainly determine the quality of energy (e.g.,
minimum and maximum voltage and current), amount
of energy, and dispatch hour. Upon acceptance of a bid,
new payment and delivery obligations are created. The
unabridged version of the TE contract can be found
online [14].

As Table 6 shows, the Symboleo specification of the
TE contract encompasses the following obligations and
powers:

– OpayByISO obliges CAISO against DERP for invoice pay-
ment at most 4 days after the issue date.

– OsupplyEnergy enforces DERP to dispatch energy respect-
ing the instruction whenever a bid is accepted.

– OissueInvoice obliges DERP to pay a penalty whenever
CAISO fines the DERP.

– PterminateAgreement ends the TE contract once the DERP
violates a payment, is warned, and does not com-
pensate within 30 days.

– PterminateAgreementBySupplier terminates a contract 90 days
after a termination notification.

– PimposePenalty gives CAISO the right to charge the DERP
because of an energy supply violation.

The precondition ensures that the TE contract starts
at the effective date. The postcondition indicates that
all invoices are paid before contract termination. How-
ever, that postcondition is not always held since terms
and conditions of TE contracts never enforce caiso to
pay invoices before the exertion of PterminateAgreement and
PterminateAgreementBySupplier.

This transactive energy example goes beyond the
meat sales contract from Section 3 in several important

ways that demonstrate Symboleo’s flexibility in han-
dling complex contractual situations:
1. TE is a more dynamic contract in the sense that

powers and obligations are instantiated multiple
times due to triggers, reflecting multiple bids, en-
ergy supplies, and payments in a market-like envi-
ronment.

2. New legal positions are dynamically created by pow-
ers. For example, the use of power PimposePenalty creates
a new instance of the OissueInvoice obligation.

3. TE is a long-term contract that terminates if any of
the parties decides to terminate.

7 Analysis Tools

This section presents two contract analysis tools. The
first is a conformance checker that checks whether a
specification conforms to the expectations of contract-
ing parties, captured with scenarios. For the meat sale
contract, the buyer may expect that if the meat is de-
livered by the seller and the buyer pays the agreed-
upon price, the contract terminates successfully. This
tool checks that if delivery happens followed by pay-
ment, indeed the contract terminates successfully. The
second tool is a property checker that verifies whether
a property, such as “Contract executions always termi-
nate within 20 days”, holds. This tool can also return
counterexamples when a property does not hold, such
as a sequence of events that suspends a contract execu-
tion for an unbounded time period.

We remark that the original contract specification
(see for instance the one in Table 2) may not contain
information regarding when different events that gov-
ern the specification are expected to happen. However,

16 A. Parvizimosaed et al.

Table 6 Symboleo specification of the transactive energy (TE) contract.

Domain transactiveEnergyAgreementD

ISO isA Role;
DERP isA Role;
DispatchInstruction isA Asset with maxVoltage: Integer, minVoltage: Integer, maxAmpere: Integer, minAmpere: Integer;
Bid isA Asset with id: idCode, by: DERP, dispatchHour: Integer, energy: Integer, price: Integer,

instruction: DispatchInstruction;
BidAccepted isA Event with bid: Bid;
EnergySupplied isA Event with energy: Integer, dispatchHour: Integer, by: DERP, voltage: Integer, ampere: Integer;
Invoice isA Asset with id: idCode, date: Date, price: Integer;
InvoiceIssued isA Event with issuedInvoice: Invoice;
NoticeIssued isA Event with date: Date;
Started isA Event with date: Date;
Paid isA Event with invoice: Invoice, from: Role, to: Role;

endDomain

Contract transactiveEnergyAgreementC
(
caiso: ISO, derp: DERP, effectiveDate: Date

)
Declarations
bid: Bid;
bidAccepted: BidAccepted;
energySupplied: EnergySupplied;
terminationNoticeIssuedByDerp: NoticeIssued;
terminationNoticeIssuedByCaiso: NoticeIssued;
isoPaid: Paid;
supPaid: Paid;
creditInvoiceIssued: InvoiceIssued;
started: Started with date:= effectiveDate;

Preconditions
happens(started, started.date);

Postconditions
forAll issued / InvoiceIssued [happensBefore(isoPaid, self.end) and isEqual(isoPaid.invoice, issued.issuedInvoice)];

Obligations
OpayByISO : happens(creditInvoiceIssued, t) → O(caiso, derp, true, happensWithin(isoPaid, t + 4 days));
OsupplyEnergy : happens(bidAccepted, t) → O(derp, caiso, true, happens(energySupplied, bidAc-

cepted.bid.dispatchHour));
OissueInvoice : happens(exerted(PimposePenalty.instance), t) → O(derp, caiso, true, happens(supPaid, t+4));

SurvivingObls
Powers
PimposePenalty: violates(OsupplyEnergy.instance) → P(caiso, derp, true, creates(OissueInvoice));
PterminateAgreement: P(caiso, derp, violates(OissueInvoice.instance) and happensBe-

fore(terminationNoticeIssuedByCaiso, now.time-30), terminates(self));
PterminateAgreementBySupplier: P(derp, caiso, happensBefore(terminationNoticeIssuedByDerp, now.time-90), termi-

nates(self));
Constraints
not(isEqual(caiso, derp));

endContract

users of a contract often do have in mind reasonable
expectations about when they should happen. To this
extent, to support the analysis and to capture these rea-
sonable expectations, we provide these expectations as
input to the conformance and property checkers. This
approach also allows us to enforce these deadlines in the
Symboleo specification if not specified there to make the
specification more precise and complete.9

9 We remark that the presence/absence of such deadlines
has no impact on the termination of the analysis carried out
by the tools. SymboleoPC relies on nuXmv, which uses LTL
and CTL symbolic model checking that is sound and com-
plete [24] over finite state domains (note that time is not

7.1 Conformance Checker: SymboleoCC

Our conformance checker, called SymboleoCC, is a
design-time analysis tool intended that takes a Prolog-
based representation of a Symboleo specification as in-
put, together with a scenario consisting of a sequence
of events, and determines the final state of the execu-
tion, to be compared to the expected state for that sce-

part of the state space [24]). SymboleoCC relies on Prolog,
which uses a variant of the resolution algorithm that sacri-
fices termination to improve performance [60]; in principle,
checking for scenarios may not terminate, but we have not
encountered this situation so far.

Specification and Analysis of Legal Contracts with Symboleo 17

nario. These scenarios can hence be seen as test cases for
the contract specification. The tool extends an existing
Prolog-based reactive event calculus tool (jREC [65])
to support the Symboleo semantics and perform abduc-
tive reasoning on input scenarios. jREC supports basic
event calculus predicates and axioms.

As shown in Fig. 4, SymboleoCC captures the se-
mantics of primitive predicates (Primitive Axioms) and
of the Symboleo axioms of Section 4 (Symboleo Ax-
ioms); these axioms are defined by Horn clauses and
are independent of any particular contract. Clauses and
predicates that capture the terms and conditions of a
particular Symboleo contract specification (Contract-
specific Axioms) are however an external input. For ex-
ample, “If an Odel instance o is in the InEffect state and a
delivered event happens before the delivery’s due date,
then o is fulfilled” is a contract-specific axiom for the
MeatSale contract.

Fig. 4 Overview of SymboleoCC.

On the basis of these axioms, SymboleoCC rea-
sons with the input trace and an initial state to infer
the status of a contract execution and every associated
obligation and power instances, thereby simulating an
execution for the input trace. Reasoning is triggered
with the Prolog goal status(Occurrences) and reasoned
with clause (12). This clause finds a list containing all

situations S alongside their occurrence interval T1 to T2
that satisfy the clause’s goal occurs(S,[T1,T2]). findall is
a built-in Prolog predicate.

status(Occurrences) :-

findall([S, T1, T2],occurs(S, [T1, T2]), Occurrences)
(12)

Table 7 defines scenarios, together with their ex-
pected final states used, to check the conformance of the
MeatSale contract. These scenarios are simulated with
a sequence of events that happens at specific times, as
shown in Fig. 5. All scenarios involve meat sales be-
tween a seller in Argentina and a buyer in Canada.
These scenarios cover many possible states of obliga-
tions, powers, and contracts, especially ones involving
boundaries cases.

Table 7 Test scenarios for the MeatSale contract.

Test Scenario/Case Expected Final State
1. Seller delivers the meat under
appropriate condition, but Buyer
does not pay.

FUOdel, VOpay,
UTPsusDelivery

2. Buyer resumes the suspended
delivery obligation by paying a
fine.

VOpay, FUOlpay

3. Seller delivers the meat with
proper quality, and Buyer pays
before the due date.

FUOpay, FUOdel,
STMeatSale

4. Seller delivers the meat under
appropriate condition 5 days af-
ter the delivery due date.

VOdel

5. Seller doesn’t deliver the meat
within 10 days after the delivery
due date, and Buyer terminates
the contract.

VOdel, UTMeatSale

6. Seller delivers the meat and
Buyer pays before the due date,
but Buyer discloses contract in-
formation.

FUOpay, FUOdel,
VSOsellerDisclosure

In Table 7 and in Fig. 5, several abbreviations are
used to represent the states from Fig. 3: V=Violation,
F=Form, FU=Fulfillment, I=InEffect, A=Active,
UT=Unsuccessful Termination, S=Suspension, and
ST= Successful Termination of a contractual clause.
For example, the first test scenario is expected to fulfill
the delivery obligation (FUOdel) but should violate the
payment obligation (VOpay). In addition, since the Seller
has delivered the meat, they cannot use their right to
suspend delivery and so the corresponding power is
terminated unsuccessfully (UTPsusDelivery).

In Fig. 5, the vertical axis shows the states of the
contracts and their clauses (e.g., Odel, Opay, Olpay), and
the horizontal axis characterizes events over time (with
time units between brackets). As an example, test sce-
nario 4 points to deadline importance. Although the
Seller delivers the ordered meat, the delivery obliga-
tion is still violated in the sense that the conformance
checker recognizes event occurrence time and ignores

18 A. Parvizimosaed et al.

Fig. 5 Test results showing the states of contracts/clauses over events[time].

irrelevant or unexpected events. Our tool monitors run-
time responsibility, right, and performance relation-
ships of parties. The Prolog specifications of the Meat-
Sale and transactive energy contracts are available on
GitHub [25]. The outcome of the execution of these test
scenarios is compliant with expectations. Moreover, this
contributes to partially validate not only the contract
specifications, but also indirectly Symboleo’s axioms,
including subcontracting and substitution operations.

SymboleoCC can simulate a contract execution
for a given event trace and return the resulting con-
tract state, to be compared with what a stakeholder
expected. However, it cannot reason about all possible
executions to answer questions such as “Is there an exe-
cution where there is on-time payment and delivery but
the contract terminates unsuccessfully?” Such questions
can be answered by the Property Checker tool.

7.2 Property Checker: SymboleoPC

The property checker, called SymboleoPC, supports
the specification of logical properties representing live-
ness and safety constraints that a contract is supposed
to satisfy. These can be verified to hold, or counterex-
amples are returned. An overview of the architecture
and inputs/outputs of SymboleoPC is given in Fig. 6.
The SymboleoPC leverages the nuXmv model checker
engine [18] to perform analysis. To this end, an encoding
of Symboleo constructs in the nuXmv input language
has been developed. The encoding leverages a library of
trusted modules, which are verified and reusable nuXmv
modules that capture the semantics of basic Symboleo
constructs. In the following section, we outline the main
aspects of this encoding. Finally, to report results to
the user, we also developed a conversion back from the
output generated by nuXmv to Symboleo, leveraging
on the defined encoding.

Specification and Analysis of Legal Contracts with Symboleo 19

Fig. 6 Overview of SymboleoPC.

7.2.1 Converting Specifications to nuXmv Models

Symboleo’s ontology includes concepts such as contract,
obligation, power, party, and event whose instances be-
have in line with the deterministic statecharts given in
Fig. 3 and Fig. 7, in accordance with Symboleo’s se-
mantics. These reusable lifecycle behaviours can each
be encoded faithfully in a nuXmv module parametric on
the conditions and guards that label the specific stat-
echart transitions, and variables that encode states, as
well as declarations that define reusable predicates of
statecharts to facilitate encoding of concepts instances.
Each of these modules has been verified to ensure they
respect Symboleo axioms, and constitute the library of
trusted components to be used to build domain-specific
nuXmv encoding of a specific contract (e.g., the Meat-
Sale contract discussed earlier).

For instance, the obligation module is given
in Listing 2. Input parameters are the logical
statements that corresponds to the guards of the
different state transitions. Conditions cnt_in_effect ,
cnt_untermination, cnt_suspended, and cnt_resumed indi-
cate whether the contract is in effect, unsuccess-

fully terminated, suspended, or resumed, respectively.
Similarly, power_suspended and power_resumed indicate
whether a power suspends or resumes an obligation.

To encode the states of each statechart, we use the
state variables state of type enumerative, with domain
the states of the statechart (e.g., not_created to indicate
that the obligation has not yet been created, create to
indicate the obligation has been created but has not yet
been activated, and inEffect to indicate that the obliga-
tion is in effect).

Suspension of a contract and exertion of a power
suspending an obligation impact execution in comple-
mentary ways. Thus, contract resumption does not re-
turn an obligation to the inEffect state unless the obli-
gation has been suspended by the contract suspension.
Similarly, an obligation suspended by a power returns
to the inEffect state once a corresponding power resumes
the obligation. To encode this behaviour, we use an
auxiliary state machine to manage the source of sus-
pension, and we encode this with an additional state
variable sus_state that takes values not_suspended to in-
dicate that it has not been suspended, sus_by_contract
to indicate suspension by contract, and sus_by_power to
indicate suspension by power.

We use DEFINE declarations to encode primitive el-
ements (e.g., _suspended, which is true in a state if the
state machine is either suspended by the power or it
is not surviving and suspended by the contract, and
_active, which holds in a state where the state machine
is either in inEffect or in suspension).

As stated by Fig. 3, all the state machines react
on inputs and change their internal state according to
their axioms. ASSIGN statements then capture the ini-
tial value of the state variables to encode the initial
state of the statechart and to encode its behaviour
(transitions). For instance, in Listing 2, the state ini-
tially has the value not_created to indicate that initially
the obligation has not yet been created. next statements
then capture transitions. For instance, if the condi-
tion cnt_in_effect & state=inEffect & fulfilled holds, then
the next value of state is fulfillment to encode the tran-
sition from InEffect to Fulfillement in Fig. 3. The same
approach is used to encode the other transitions.

The domain specializations of contract, obligation,
and power’ state transitions rely on events that are gov-
erned with an internal timer (as described in the state-
chart in Fig. 7). Events are encoded in nuXmv as spec-
ified in the Listing 1, which was used to introduce the
nuXmv syntax. The events and their internal timers are
inactive until started requests activate events and run
timers. The timer independently keeps counting and
expires the parent event unless the event is triggered
before the expiration time, as discussed above.

20 A. Parvizimosaed et al.

Listing 2 Obligation module.

MODULE Ob l i ga t i on (su rv i v i ng , c n t _ i n _ e f f e c t ,
cn t_unterminat ion , f u l f i l l e d , t r i gge red , v i o l a ted ,
ac t i va ted , expired , power_suspended , cnt_suspended ,
terminated , power_resumed , cnt_resumed , discharged ,
antecedent)

DEFINE
_su rv i v i ng := s u r v i v i n g ;
_suspended := (power_suspended | (cnt_suspended &

! s u r v i v i n g)) ;
_ac t i ve := (s t a te = i n E f f e c t | s t a t e = suspension) ;

VAR
s ta te : { not_created , create , i n E f f e c t , suspension ,

discharge , f u l f i l l m e n t , v i o l a t i o n ,
unsTerminat ion } ;

sus_state : { not_suspended , sus_by_contract ,
sus_by_power } ;

ASSIGN
i n i t (sus_state) := not_suspended ;
next (sus_state) := case

sus_state=not_suspended & ! s u r v i v i n g &
cnt_suspended : sus_by_contract ;

sus_state=sus_by_contract & ! s u r v i v i n g &
cnt_resumed : not_suspended ;

sus_state=not_suspended & ! s u r v i v i n g &
power_suspended : sus_by_power ;

sus_state=sus_by_power & ! s u r v i v i n g &
power_resumed : not_suspended ;

TRUE : sus_state ;
esac ;

ASSIGN
i n i t (s t a t e) := not_created ;
next (s t a t e) := case

c n t _ i n _ e f f e c t & s ta te =not_created & t r i g g e r e d &
! antecedent : c reate ;

c n t _ i n _ e f f e c t & s ta te =not_created & t r i g g e r e d &
antecedent : i n E f f e c t ;

c n t _ i n _ e f f e c t & s ta te =create & antecedent
: i n E f f e c t ;

c n t _ i n _ e f f e c t & s ta te =create & (exp i red |
discharged) : d ischarge ;

c n t _ i n _ e f f e c t & s ta te = i n E f f e c t & f u l f i l l e d
: f u l f i l l m e n t ;

c n t _ i n _ e f f e c t & s ta te = i n E f f e c t & _suspended
: suspension ;

c n t _ i n _ e f f e c t & s ta te = i n E f f e c t & v i o l a t e d
: v i o l a t i o n ;

c n t _ i n _ e f f e c t & _ac t i ve & terminated
: unsTerminat ion ;

cn t_un te rmina t ion & ! s u r v i v i n g & _ac t i ve
: unsTerminat ion ;

sus_state=sus_by_contract & s ta te =suspension &
cnt_resumed : i n E f f e c t ;

sus_state=sus_by_power & s ta te =suspension &
power_resumed : i n E f f e c t ;

TRUE : s t a t e ;
esac ;

To encode this behaviour, we create a module Event
that takes as input parameters a condition started that
identifies the guard condition governing the transition
from inactive to active, and the _max_time that rep-
resents the maximum time the event is expected to
happen before expiration. The module Event creates
internally an instance of generic module Timer (also
specified in Listing 1) to encode a timer that starts
counting when condition started holds, and expires af-
ter _max_time from start. The variables (e.g., state en-
codes the states, triggered encodes the non-deterministic
happening of the event) and the reusable symbols (e.g.,
_happened) encode states and predicates. Assignments

encode the transitions; for example, if state=active &
started holds, then next value of triggered becomes non-
deterministically either TRUE or FALSE.

The statecharts for party, power, and contract were
converted to nuXmv modules using the same conver-
sion methodology. For lack of space, in Listing 3, we
only show their signatures. Their respective bodies have
been implemented and are available in [26]. Parameters
of these modules point to state transitions of Fig. 3.
Either a power or a contract suspends a power, via
the power_suspended and contract_suspended events, re-
spectively. The contract_in_effect statement indicates the
contract is in the inEffect state, whereas the triggered pa-
rameter of the contract module instantiates a contract.

Listing 3 Power, contract, and party signatures.

MODULE Power (c o n t r a c t _ i n _ e f f e c t , t r i gge red , ac t i va ted ,
expired , power_suspended , contract_suspended ,
terminated , exerted , pow_resumed , contract_resumed ,
antecedent)

MODULE Contract (t r i gge red , ac t i va ted , terminated , suspended ,
resumed , revoked_party , assigned_party ,
f u l f i l l e d _ a c t i v e _ o b l i g a t i o n)

MODULE Party (l e g a l P o s i t i o n , name, removeL , addL , removeR ,
addR , removeP , addP)

A party is rightHolder of, performer of, or liable for
a power or obligation, as discussed in Section 5. At the
beginning, the debtor is liable for and performer of a
legal position while the creditor is its rightHolder. Fur-
thermore, runtime operations can alter these three rela-
tionships, for example in a subcontracting context. As
Fig. 7 shows, the party module assigns and unassigns
the mentioned positions to/from a party using high
granularity operations, e.g., addL and removeL. For in-
stance, assignR(Obl, Pold, Pnew) removes the obligation’s
rightHolder relationship to the old party by setting the
removeR parameter of party Pold and adds it to the new
party by setting the addR parameter of party Pnew (see
the signature of the Party module in Listing 3).

To ensure these modules faithfully encode the re-
spective statecharts and axioms, we complemented the
specification with a set of CTL and LTL properties (see
for instance the properties in Listing 1).

These generic elements constitute a library of
trusted modules (Modules for Primitive Axioms in Fig. 6)
to use for the formalization of contracts in nuXmv.

Domain elements in a Symboleo specification are
translated into a module that creates instances of do-
main classes, and encodes and governs terms by pass-
ing appropriate logical statements to the instances of
generic trusted modules (taken from the Modules for
Primitive Axioms library). For instance, for the Meat-

Specification and Analysis of Legal Contracts with Symboleo 21

Fig. 7 Statecharts of the party and event concepts.

Sale contract, in Listing 4, we instantiate an internal
generic Contract (i.e., contr), three generic Obligations (i.e.,
Odel, Opay, OlatePay), and three Powers (i.e., PsusDel,
PresumDel, PterCnt) corresponding to the Symboleo con-
tract specification in Table 2. The values passed as
parameters to the Contract, Obligation, Power, and Party
instantiations in Listing 4 match the signatures pre-
sented in Listings 2 and 3. Then, we specialize the re-
spective control conditions to obey the MeatSale con-
tract. contr terminates unsuccessfully once the creditor
of PterCnt power triggers the terminated_cnt event, and
terminates successfully whenever no obligation is ac-
tive, which brings about the Csuc_terminated situation.
Obligations’ debtors and powers’ creditors can bring
about consequents via events within a finite time in-
terval. For example, the delivery obligation’s performer
can raise the paid event at most payd_due_days after con-
tract activation, otherwise the event is expired and ac-
cordingly Odel becomes violated. The debtors and cred-
itors of legal positions are instances of the party module
with customized input parameters, e.g., Odel_debtor is
liable for and performer of the delivery obligation.

Finally, to ensure that the buyer is different from the
seller, we impose an invariant constraint in the INVAR
section (buyer != seller). This will remove from the state
space all those states where buyer is the same as the
seller.

Note that the single inheritance hierarchies of do-
main elements (subclasses of the ontology classes or of
other classes of the domain, from which variables are
instantiated) in Symboleo specifications are flattened

Listing 4 MeatSale contract nuXmv module.

MODULE MeatSale_Contract (buyer , s e l l e r , pay_due_days , del_due_days , sus_del_due_days ,
resume_del_due_days , term_cnt_due_days , pay_late_due_days)

DEFINE
PsusDel_exerted := PsusDel . _ac t i ve & suspended_del ivery . _happened &

suspended_del ivery . per former=PsusDel_cred i to r . _name &
PsusDel_cred i to r . _ is_per former ;

PresumDel_exerted := PresumDel . _ac t i ve & resumed_del ivery . _happened &
resumed_del ivery . per former=PresDe l_c red i to r . _name &
PresDe l_c red i to r . _ is_per former ;

PterCnt_exer ted := PterCnt . _ac t i ve & terminated_cnt . _happened &
terminated_cnt . per former= P te rCn t_c red i t o r . _name &
Pte rCn t_c red i t o r . _ is_per former ;

Csuc_terminated := (con t r . s t a te = i n E f f e c t) & ! (Odel . _ac t i ve) & ! (Opay . _ac t i ve) &
! (OlatePay . _ac t i ve) ;

Opay_violated := paid . _expi red | (paid . _happened & ! (paid . per former =
Opay_debtor . _name & Opay_debtor . _ is_per former)) ;

O p a y _ f u l f i l l e d := (paid . _happened & paid . per former = Opay_debtor . _name &
Opay_debtor . _ is_per former) ;

Ode l_v io la ted := de l i ve red . _expi red | (de l i ve red . _happened &
! (de l i ve red . per former = Odel_debtor . _name & Odel_debtor . _ is_per former)) ;

O l a t e P a y _ f u l f i l l e d := (paidLate . _happened & paidLate . per former = Olpay_debtor . _name
& Olpay_debtor . _ is_per former) ;

VAR
de l i ve red : Event (Odel . s t a te = i n E f f e c t & ! (suspended_del ivery . _happened

& ! resumed_del ivery . _happened) , del_due_days) ;
paid : Event (Opay . s ta t e = i n E f f e c t , pay_due_days) ;
paidLate : Event (Opay . s ta t e = v i o l a t i o n , pay_late_due_days) ;
suspended_del ivery : Event (PsusDel . s t a te = i n E f f e c t , sus_del_due_days) ;
resumed_del ivery : Event (PresumDel . s t a t e = i n E f f e c t , resume_del_due_days) ;
te rminated_cnt : Event (PterCnt . s t a t e = i n E f f e c t , term_cnt_due_days) ;

con t r : Cont ract (TRUE, TRUE, PterCnt_exerted , FALSE, FALSE, FALSE, FALSE,
Csuc_terminated) ;

Odel : Ob l i ga t i on (FALSE, con t r . _ob ls_ac t iva ted , PterCnt_exerted ,
(de l i ve red . _happened & de l i ve red . per former = Odel_debtor . _name &
Odel_debtor . _ is_per former) , TRUE, Odel_v io la ted , FALSE, FALSE,
PsusDel_exerted , FALSE, FALSE, PresumDel_exerted , FALSE, FALSE, TRUE) ;

Opay : Ob l i ga t i on (FALSE, con t r . _ob ls_ac t iva ted , PterCnt_exerted ,
O p a y _ f u l f i l l e d , TRUE, Opay_violated , FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, TRUE) ;

OlatePay : Ob l i ga t i on (FALSE, con t r . _ob ls_ac t iva ted , PterCnt_exerted ,
O l a t e P a y _ f u l f i l l e d , Opay_violated , paidLate . _expired , FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE) ;

PsusDel : Power (con t r . _ob ls_ac t iva ted , Opay_violated , FALSE, FALSE, FALSE,
FALSE, FALSE, PsusDel_exerted , FALSE, FALSE, TRUE) ;

PresumDel : Power (con t r . _ob ls_ac t iva ted , O l a t e P a y _ f u l f i l l e d , FALSE, FALSE,
FALSE, FALSE, FALSE, PresumDel_exerted , FALSE, FALSE, TRUE) ;

PterCnt : Power (con t r . _ob ls_ac t iva ted , Odel_v io la ted , FALSE, FALSE, FALSE,
FALSE, FALSE, PterCnt_exerted , FALSE, FALSE, TRUE) ;

Odel_debtor : Par ty (" Odel " , s e l l e r , FALSE, TRUE, FALSE, FALSE, FALSE, TRUE) ;
Opay_debtor : Par ty ("Opay" , buyer , FALSE, TRUE, FALSE, FALSE, FALSE, TRUE) ;
Olpay_debtor : Par ty (" OlatePay " , buyer , FALSE, TRUE, FALSE, FALSE, FALSE, TRUE) ;
PsusDel_cred i to r : Par ty (" PsusDel " , s e l l e r , FALSE, FALSE, FALSE, TRUE, FALSE,

FALSE) ;
P resDe l_c red i to r : Par ty (" PresumDel " , buyer , FALSE, FALSE, FALSE, TRUE, FALSE,

FALSE) ;
P te rCn t_c red i t o r : Par ty (" PterCnt " , buyer , FALSE, FALSE, FALSE, TRUE, FALSE,

FALSE) ;
INVAR −− We enforce an i n v a r i a n t c o n s t r a i n t t h a t buyer i s d i f f e r e n t from s e l l e r

buyer != s e l l e r ;

when converted to nuXmv. This means that the union
of the attributes of the current class and of its ances-
tors is computed (and name clashes reported) before
corresponding nuXmv elements are generated. Conse-
quently, formal properties in LTL and CTL do not need
to consider inheritance. As is commonly done in model
checking [22, 23], we also discretize and bound large
or infinite domain types to a very limited number of
possible elements (or a small interval) in the nuXmv
representation, which helps minimize the state explo-
sion problem while still providing sufficient confidence
in the verification results.

7.2.2 Liveness and Safety Properties

The tool verifies desirable and undesirable conditions
(e.g., invalidation conditions, parties’ intentions cover-
age, contract unlimited lifecycle, and unlimited liabil-
ity) using LTL and CTL temporal logic properties (see

22 A. Parvizimosaed et al.

background in Section 2.4) where the atomic proposi-
tions are Symboleo’s state predicates (e.g. activated(o),
InEffect(c)). LTL and CTL modalities allow to express
and formalize properties about the evolution of legal
situations over time. However, the quality of the ver-
ification results directly depend on the correctness of
the specification and the properties. To ensure the cor-
rectness of the specified generic modules (i.e., those for
event, timer, party, obligation, power, and contract dis-
cussed in Section 7.2.1), we specified for each of them a
set of highly granular properties, and we verified each
of them using the nuXmv tool itself. The result is then
a library of generic modules that constitute a correct
basis for the verification of less granular and contract-
dependent properties. Furthermore, to facilitate the for-
malization of parties’ informal intents into temporal
properties suitable for verification, we leveraged stan-
dard temporal logic patterns [31, 66].

We formalized a set of properties, given in Table 8,
to verify the MeatSale contract. These properties, with-
out loss of generality, and for simplicity of the presenta-
tion, are presented with the natural language and with
the nuXmv syntax that results from the application of
the pattern and the corresponding translation of the
Symboleo’s terms into the corresponding nuXmv terms.
We are working on extending the Symboleo specifica-
tion language to directly support the specification of
properties in LTL and CTL. Property 1 is a desirable
liveness property in LTL that imitates the existence
pattern to ensure termination of the MeatSale contract.
Property 2 is an LTL safety property that reflects the
intention of the buyer of being finitely liable. Safety
property 3 captures the intention of the seller of getting
paid before delivery. The general occurrence property 4,
in CTL, ensures that each legal position is useful (i.e.,
it can be active in some future). Property 5 uses the ex-
clusion pattern (i.e., the negation of a desirable safety
property) to generate a counterexample called witness.
The desirable property 6 checks whether a suspended
delivery obligation is resumed.

The model checker can investigate conflicts among
legal positions. Although the content of a contract
may indicate conflicting positions, conflicts might never
happen at execution time due to the triggers and
antecedents of powers (as obligation manipulators)
and obligations. Assume legal position N1 conflicts
with position N2. In this context, the LTL property
G(active(N1) ↔ ¬active(N2)) states that N1 and N2
are never simultaneously active, and can be used to es-
tablish that two legal positions are conflicting.

The failures of properties 1 and 3 indicate that the
MeatSale contract is possibly voidable and should be
improved. Counterexamples generated by our tools can

help stakeholders explore the source of such issues and
modify the contract accordingly. For instance, property
3 fails due to unrelated delivery and payment obliga-
tions. The contract can be refined by adding constraints
to rule out this undesired behaviour, e.g., by using ful-
fillment of Opay as the antecedent of Odel.

SymboleoPC subsumes the reasoning capabilities
of SymboleoCC using LTL properties that check final
status of legal positions after sequential occurrence of
specific events. However, it should be noted that Sym-
boleoCC is more efficient as it relies on a Prolog infer-
ence engine. Corresponding to test cases in Table 7, an
LTL property is defined. For instance, property 6 proves
that if paidLate event happens while the contract is in
suspension state then obligations Opay and Olpay is fi-
nally violated and fulfilled respectively in accordance
with Test Case 2.

The performance results for the verification of the
properties in Table 8 are reported in Table 9. These
results have been obtained on a Linux laptop (AMD
Ryzen 5 PRO 3500U CPU with 16GB RAM). The in-
formation needed to reproduce these results is available
online (at [26]). Although the performances are encour-
aging so far on realistic but small contracts, further re-
search is needed to properly assess scalability to larger
collections of contracts and properties.

8 Related Work

This section first surveys twelve related formal contract
languages, assessed against ten relevant evaluation cri-
teria. The results of the table are then discussed relative
to Symboleo to position it relative to the competition.
Related work on smart contract languages is also briefly
presented, with an emphasis on the potential for code
generation from Symboleo specifications. A few obser-
vations from a legal perspective are also shared.

8.1 Formal Contract Languages

Many researchers have been trying to define formal
models and automation possibilities for various aspects
of contract drafting, execution, monitoring, and man-
agement. There has been more work on the modelling of
legal positions in general than on the formal modelling
of contracts. Among them, some, including very recent
ones, have attempted to capture legal concepts pro-
posed by Hohfeld in their modelling with some amend-
ments [47]. Logicians have also addressed this issue
and have attempted to model contracts with variants
of Non-standard Logics [63] such as Standard Deon-
tic Logic [37, 43, 44] and Defeasible Logic [58]. Others

Specification and Analysis of Legal Contracts with Symboleo 23

Table 8 Safety and liveness properties.

Number Type Pattern
1 desirable-liveness existence
Description
MeatSale contract eventually terminates.
Property
LTLSPEC NAME LTL1 := F(sales_cnt.contract.state = sTermination | sales_cnt.contract.state = unsTermination)

Result: Failed
Explanation: If payment is violated and seller suspends delivery by power while late payment is expired, then payment
cannot be resumed. Thereafter, payment is always suspended and then the contract stays active.

Number Type Pattern
2 undesirable-safety absence
Description
In case of late payment, buyer cannot be penalized more than once.
Property
LTLSPEC NAME LTL2 := G(sales_cnt.paidLate._happened & sales_cnt.paidLate.performer = sales_cnt.Olpay_debtor._name &
sales_cnt.Olpay_debtor._is_performer −> G !(sales_cnt.paidLate._inactive))

Result: Succeeded

Number Type Pattern
3 desirable-safety precedence
Description
Delivery of goods always happens after payment.
Property
LTLSPEC NAME LTL3 := !(sales_cnt.delivered._happened & sales_cnt.delivered.performer = sales_cnt.Odel_debtor._name &
sales_cnt.Odel_debtor._is_performer) U (sales_cnt.paid._happened & sales_cnt.paid.performer = sales_cnt.Opay_debtor._name &
sales_cnt.Odel_debtor._is_performer)

Result: Failed
Explanation: The delivery obligation is independent of the payment obligation.

Number Type Pattern
4 desirable-safety occurrence
Description
MeatSale is free of useless obligations or powers: all obligations and powers can be activated.
Properties
CTLSPEC NAME CTL4_1 := EF(sales_cnt.PsusDel._active) CTLSPEC NAME CTL4_2 := EF(sales_cnt.PresumDel._active)
CTLSPEC NAME CTL4_3 := EF(sales_cnt.PterCnt._active) CTLSPEC NAME CTL4_4 := EF(sales_cnt.Odel._active)
CTLSPEC NAME CTL4_5 := EF(sales_cnt.Opay._active) CTLSPEC NAME CTL4_6 := EF(sales_cnt.OlatePay._active)

Result: Succeeded

Number Type Pattern
5 desirable-safety exclusion
Description
It is possible to receive an order and terminate the contract without payment.
Property
CTLSPEC NAME CTL5 := ! EF ((sales_cnt.Csuc_terminated | sales_cnt.contract.state=unsTermination) & sales_cnt.Odel.state = fulfillment & !
(sales_cnt.Opay.state = fulfillment | sales_cnt.OlatePay.state = fulfillment))

Result: Succeeded
Explanation: The goal is achieved if seller delivers meat and buyer does not pay the original price and fine. Thus, the
contract is terminated because no obligation is active.
Remark: Here we negate the property to ask the model checker to generate a witness for the non-negated property (to
get a witness for EFϕ, we model check ¬EFϕ, assuming EFϕ holds).

Number Type Pattern
6 desirable-liveness occurrence
Description
Buyer resumes the suspended delivery obligation by paying a fine.
Property
LTLSPEC NAME LTL6 := G(sales_cnt.Odel.state = suspension & (paidLate._happened & paidLate.performer = Olpay_debtor._name &
Olpay_debtor._is_performer) −> F(sales_cnt.OlatePay.state = fulfillment & sales_cnt.Opay.state = violation))

Result: Succeeded

24 A. Parvizimosaed et al.

Table 9 Verification time for properties of Table 8.

MeatSale
Property Time(s) Status
LTL1 0.74 Fails
LTL2 0.35 Holds
LTL3 0.25 Fails
CTL4_1 0.18 Holds
CTL4_2 0.03 Holds
CTL4_3 0.13 Holds
CTL4_4 0.02 Holds
CTL4_5 0.01 Holds
CTL4_6 0.04 Holds
CTL5 0.34 Holds *

LTL6 0.36 Holds
*A witness has been generated.

have used the Event Calculus [38, 49] or Linear Tempo-
ral Logic [16] to express obligations, permissions, and
powers [51].

The approaches based on pure logic have faced dif-
ficulties in modelling Contrary to Duty (CTD) obliga-
tions [17], where an obligation (which, according to its
definition, should not be violated) is actually violated
and another obligation meant to remedy that violation
comes into effect. The resulting logic can be complex
and has been the subject of controversies [17]. CTD
handling is important in contract specification, moni-
toring, and execution, and is done by defining powers
arising from obligation violation in Symboleo. Addi-
tionally, these approaches have not conceptualized con-
tracts as entities on their own. This makes it difficult to
treat formally subcontracting and contract templates.

A process view of contracts was proposed by
Daskalopulu [28]. In this work, contracts have states,
with events causing state transitions. All possible con-
tract executions can then be described by state tran-
sition diagrams. This process view improves the nor-
mative monitoring of contracts, but this application of
the view invokes a problem with monitoring real con-
tracts, since contracts specified in natural language are
not as restrictive as these models are. For example, the
execution paths (how events should be brought about)
are not specified in the text of contracts, and apply-
ing these models imposes unnecessary restrictions. A
more declarative approach, yet still event-based, would
improve upon a process/imperative approach.

In the following, we briefly describe some closely-
related work on contract formalization, with comments
contrasting those approaches with ours:

– Formal Contract Language (FCL), by Farmer
and Hu [37], is an event-driven and declarative for-
mal language for contracts inspired by deontic logic.
FCL enables contract templating via parameteriza-
tion, allows for contract reparations, and provides

contract monitoring capabilities. However, it does
not support runtime changes through subcontract-
ing and other operations.

– Unifying Model of Legal Smart Contract
(UMLSC), by Ladleif and Weske [55], models con-
tracts as Petri nets. This work provides a procedural
view of contracts and also does not support runtime
changes.

– Time-Aware Commitments Modelling and
Monitoring Framework (TAC), by Chesani et
al. [20], uses the Event Calculus as its logical
bedrock and defines time-aware social commitments
based on it. Although this work provides a state-
based semantics for commitment concepts, it ad-
dresses social commitments between agents involved
in multi-agent systems, which is rather different
from the view taken in the legal domain.

– Business Contract Language (BCL), by Gov-
ernatori and Milosevic [43, 44], present an event-
driven language, built upon an improved defeasible
deontic logic, that adopts a policy-view of contracts.
Policies have different modalities such as obligation,
permission, prohibition, and violation. In compar-
ison to Symboleo, this proposal does not support
the notion of legal power nor does it allow for the
termination and suspension of contracts.

– Defeasible Contract Machines (DCMs), by
Letia and Groza [58], is based on a Normative Defea-
sible Logic that contains the notion of temporalised
normative position. A unique feature of this work
is that, aside from operations such as create, dis-
charge, and cancel, it addresses some runtime oper-
ations such as delegate, assign, and release (but not
subcontract).

– RuleML and OASIS LegalRuleML, by Athan
et al. [8, 9, 41]. RuleML is an XML-based lan-
guage that “permits high-precision web rule inter-
change” and follows a defeasible deontic logic that
supports obligations, prohibitions, and permissions,
as well as contract reparations. LegalRuleML ex-
tends RuleML not only to enable modelling of con-
stitutive and prescriptive rules, but also to be in-
dependent of any specific legal ontology. However,
it does not explicitly address normative monitor-
ing and runtime changes (subcontracting, delega-
tion, etc.).

– MODELLER, by Daskalopulu [28, 29], uses Petri
Nets to model contracts. This language mainly fo-
cuses on negotiation and formation of engineering
contracts and was developed for the gas industry.
MODELLER uses a Hohfeldian view of legal rela-
tionships, but its notion of subcontract is limited to
those expressed at design time, not dynamically at

Specification and Analysis of Legal Contracts with Symboleo 25

runtime (which is the more likely case in contract
law practice).

– A Logic Model of Contracts (LMC), by
Lee [56], also models contracts as Petri nets, but
with concepts related to deontic logic and others for
time points, time intervals, and relative time. Again,
only design-time subcontracting is supported.

– Contract Language CL, by Prisacariu, Pace, and
Schneider [70, 76], uses a modified version of deon-
tic logic as its legal underpinning and its semantics
is defined using propositional µ-calculus extended
with concurrent actions. Although there is support
for verification using NuSMV, CL does not support
powers, subcontracting, or time constraints.

– PENELOPE, by Goedertier and Vanthienen [40],
is a language that targets business process compli-
ance and has concepts for obligations, permissions,
conditional commitments, and time. PENELOPE
departs from deontic logic as it does not support the
notions of prohibition or waived obligation. More-
over, PENELOPE considers neither the notion of
legal power explicitly, nor runtime notions such as
subcontracting or assignment.

– SCIFF, by Alberti et al. [2], is a declarative busi-
ness contract language based on abductive logic
programming and involves deontic operators. The
g-SCIFF proof procedure can be used for static
(design-time) verification of contract properties,
with the generation of counterexamples.

– eFlint, by van Binsbergen et al. [89], is a domain-
specific language for formalizing norms based on Ho-
hfeld’s legal conceptions and transition systems. A
syntax for norms and scenarios is presented. eFlint
supports the automated assessment of compliant se-
quence of actions. The current implementation also
allows for modellers to explore the model as it can
run with a Read-Eval-Print Loop (REPL) loaded
with a specification and a script producing an ini-
tial state. Declarations, statements and queries can
be added to REPL to observe immediate results.

There is also literature on the topic of modelling
contracts by using process algebras for which some no-
table references are [10, 15, 84]. The types of process
algebras used are related to CCS, π-calculus, CSP and
similar formalisms, using concepts of bisimulation, be-
haviour trees, and execution traces. Semantics is de-
scribed in the form of inference rules. Several of these
papers address the problem of analyzing web service
contracts and their composition, or choreography. The
emphasis of this work is on analysis, rather than on
establishing an interface between legal processes and
automation, as in the case in our work. Accordingly, us-
ability and readability are deemphasized. Usually, the

examples proposed are small and do not resemble legal
contracts; rather, they are specified as combinations of
obligations, prohibitions, and permissions among par-
ties.

Table 10 introduces criteria and features that are
significant for legal contract specification, analysis, and
monitoring. The criteria are categorized according to
the underlying ontology, the language itself, and anal-
ysis capabilities.

– Ontology:
– Time Support (C1): one important distinguish-

ing aspect of contract specification languages is
their support for time. Not considering time ren-
ders monitoring the normative state of a con-
tract difficult. There are also different ways of
formalizing time, as in discrete time points or
continuous time intervals.

– Legal Concepts (C2): Contract languages have
to cover various types of legal concepts, which
are sometimes based on different ontologies.
There are instances that different languages use
different labels for the same concept (e.g., com-
mitment, promise, obligation, and duty). Many
models do not propose a set of legal primitives
from scratch but rather use an existing legal
framework such as deontic logic (which is based
on obligations, prohibitions, and permissions) or
UFO-L (which is based on Alexy’s framework)
or a Hohfeldian taxonomy of legal positions.

– Observables (C3): modelling a real-world phe-
nomenon that interacts with its environment
requires an interface to observe the state of
the environment, which can be achieved via
different means. Some specifications understand
the real-world in terms of events, while others
receive data values such as temperatures to
determine the state of the environment.

– Language:
– Programming Paradigm (C4): languages can

generally be categorized as imperative lan-
guages, which are procedural (business processes
often fall into that category), or declarative lan-
guages that are normative.

– Contract Reparations (C5): contracts can have
obligations come into effect in the case of a viola-
tion of another obligation. In deontic logic, these
obligations are called Contrary-to-Duty (CTD)
obligations [17].

– Contract Parameterization (C6): parameteriza-
tion of contracts allows for the development of
contract templates. A contract is instantiated

26 A. Parvizimosaed et al.

Table 10 Comparison criteria for formal contract models and languages.

ID Criterion Alternatives
C1 Time Support Point (t), Interval (T), Both (B), None (N)
C2 Legal Concepts Based on UFO-L ontology (UFO-L), Hohfeld’s Categorization (H), De-

ontic Logic (Deon); Commitment (Co); Obligation (O); Permission (Pe)
C3 Observables Event (E), Value (V)
C4 Programming Paradigm Imperative (I), Declarative (D)
C5 Contract Reparations Supported (X), Not Supported (7)
C6 Contract Parameterization Parametrized (X), Not Parametrized (7)
C7 Compliance Monitoring Supported (X), Not Supported (7)
C8 Subcontracting Supported (X), Not Supported (7)
C9 Executable Analysis Supported (X), Not Supported (7)
C10 Automated Verification Implemented(X), Not Implemented(7)

when a set of valid values are bound to the pa-
rameters of the contract template.

– Compliance Monitoring (C7): contract specifica-
tions could be developed for various reasons such
as negotiations, performance (compliance) mon-
itoring, or arbitration. This paper’s work targets
compliance monitoring.

– Subcontracting (C8): one of the most interest-
ing facets of contracts is their dynamic (runtime)
flexibility, e.g., parts of the obligations could be
transferred to another party under a subcontract
while a contract is active.

– Analysis:
– Executable Analysis (C9): this criterion mea-

sures whether a formal specification language
has any implemented reasoning engine or re-
mains just theoretical at this time. This crite-
rion targets tools providing interactive execu-
tion, testing, or simulation.

– Automated Verification (C10): one of the main
reasons for developing a formal specification is
to automate analysis of various aspects such as
checking the model for different properties and
discovering concrete scenarios with desired/un-
desired outcomes. This criterion goes beyond C9
and targets types of verification that include the-
orem proving and model checking.

The twelve related models and languages reviewed
in this section are compared with respect to the criteria
put forward in Table 10. The results of the compari-
son are summarized in Table 11. The last line concerns
Symboleo itself, as a comparison point.

Based on the results from Table 11, the following
conclusions are observed about languages other than
Symboleo:

– C1: All formal models (except Prisacariu et al.’s [70,
76]) include the concept of time in their model. The
approaches in [2, 9, 56] cover both time points and
intervals, which is useful in expressing activities that
have a duration for their execution (e.g., activity α

should be fulfilled within 3 days, instead of on a
specific date).

– C2: More than half of the models have used (a ver-
sion of) deontic logic for their underlying legal prim-
itives.

– C3: All formal models are event-based. Most of
them do not observe values directly at runtime,
which limits their usefulness in a monitoring con-
text.

– C4: As required by the normative nature of legal
contracts, most of the formal models are expressed
in a declarative manner.

– C5,C6: Almost all formal models address the no-
tion of contract reparations and contract parame-
terization.

– C7: Less than half of the models are developed
for the purpose of contract compliance monitoring.
Other goals for modelling are contract drafting, ne-
gotiation, and administration.

– C8: None of the reviewed formal models (except
maybe [58], to a very limited extent) address the
notion of runtime changes such as subcontracting,
assignment, etc. A number of models had the no-
tion of subcontract, but all of them were limited to
design-time subcontracting.

– C9: About half of the models have implementations
of executable analysis tools.

– C10: Only three of the approaches have developed
automated verification techniques (such as theorem
proving and model checking) for their formal mod-
els [2, 29, 70].

From the previous two observations, we conclude
that many attempts at creating formal models of con-
tracts have not addressed one of the relevant criteria,
e.g., providing automated reasoning and analysis ca-
pability. We note that while having a formalism is an
important first step, implementation of reasoners and
automated analysis tools should not be forgotten.

This comparison also shows the need for better sup-
port for runtime subcontracting and compliance moni-

Specification and Analysis of Legal Contracts with Symboleo 27

Table 11 Comparison of formal contract languages.

Language C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
FCL [37] t Deon E D X X X 7 7 7

UMLSC [55] t UFO-L E, V I X X — — — —
TAC [20] t Co E D X X X 7 X 7

BCL [43, 44] t Deon E D X X 7 7 7 7
DCMs [58] t Co E D X X X 7 7 7

RuleML [9, 41] B Deon E D X X X 7 7 7
MODELLER [28, 29] t H E I X X 7 7 X X

LMC [56] B Deon E D X X 7 7 X 7
CL [70, 76] N Deon E D X X X 7 X X

PENELOPE [40] t O, Pe E D X X 7 7 X 7
SCIFF [2] B Deon E D X X X 7 X X
eFlint [89] t H E D 7 X X 7 X 7

Symboleo B UFO-L E, V D X X X X X X

toring, ideally with an event-based declarative language
that supports contract reparation and parameteriza-
tion, time points and intervals, and semantics based
on a recognized core legal ontology.

8.2 Assessment of Symboleo

The gaps identified in the related work on formal con-
tract languages and models were important drivers be-
hind the design of the Symboleo language. The last line
of Table 11 summarizes the assessment of Symboleo
against the criteria from Table 10. Some of the ben-
efits of Symboleo over other formal contract languages
include:

– Explicit obligation and power modalities, which en-
able specifying the creation, suspension, resuming,
and cancellation of obligations during contract exe-
cution.

– An event-based semantics linked to a state-based
definition of contract, obligation, and power in-
stances.

– Explicit support of time points and time intervals.
– Dynamic operations for supporting subcontract-

ing, assignment, substitution, and many other
jurisdiction-specific interpretations of similar con-
tractual concepts.

– A formal semantics enabling the testing, verifica-
tion, and monitoring of contract specifications, with
tool support already available for checking test sce-
narios and for model-checking liveness and safety
properties, with counterexample generation in case
of violations.

At this time, Symboleo offers a better coverage of
proposed criteria for supporting formal contract analy-
sis and execution monitoring than the state-of-the-art
in the literature.

8.3 Smart Contract Languages

Keeping in mind that one of our objectives is to gener-
ate smart contract code from Symboleo specifications,
we review in this subsection smart contract program-
ming languages and contrast the dominant ones with
Symboleo to determine which one offers the smallest
conceptual gap.

Many languages have been developed for distributed
ledger systems and for writing smart contract code.
A list of over 60 smart contract languages is provided
by [90]. Although this list of languages is not exhaus-
tive, it provides an excellent coverage of the main ones.
Many of these languages are platform-dependent and all
of them are implementation-oriented. Moreover, while
all of them offer a subset of the concepts of the Sym-
boleo ontology, they do not completely capture the con-
cepts involved in legal contracts.

Three of these languages stand out because of their
popularity or relevance as target languages for im-
plementing monitoring environment (across platforms
such as Ethereum and Hyperledger) for Symboleo spec-
ifications

Solidity [36] is a statically-typed language with
object-oriented features (very similar to Java), namely
inheritance and user-defined data structures. Solidity
is the most popular smart contract language currently
available, and targets the Ethereum ledger platform.
Solidity does not include native concepts for obliga-
tions, powers, contracts, or events, which limits its ap-
plicability in our context. There are verification tools
available for Solidity [6, 7, 73], but they are limited in
scope due to the absence of many important contractual
concepts in the language.

DAML [30] is an open-source language for speci-
fying smart contracts. DAML has primarily focused on
developing financial contracts on blockchain but has ex-
panded its scope in modelling more aspects of contracts.
DAML supports concepts for contracts and events, and

28 A. Parvizimosaed et al.

can be used to support powers to some extent in a com-
pliance monitoring context. It does not, however, sup-
port formal analysis.

Ergo [1], is a strongly-typed functional language
designed to capture computational aspects of legal con-
tracts and clauses. The compiler of Ergo is written in
Coq [21] and ensures that there are no type-errors dur-
ing code execution. Ergo has the notions of contract,
contract state, event, enforcement (somewhat similar
to preconditions), and obligation. Powers are not sup-
ported as a construct but there is some potential to
support them indirectly. Ergo is suitable for normative
monitoring but does not yet support any formal verifi-
cation approach.

There are hence important conceptual gaps between
the current smart contract programming languages and
what is required to support formal verification and com-
pliance monitoring. We envision a partial translation
from Symboleo specifications to Ergo code, given the
conceptual proximity between the two languages, as
well as Ergo’s support of multiple distributed ledger
platforms, explicit modelling of obligations, and abil-
ity to emit business events that affect the normative
states of a contract. The Accord Project, which devel-
ops Ergo, has also announced that they are working
with the British Standards Institution towards a stan-
dard on smart legal contracts specifications [87].

Some smart contract languages support different
forms of formal specification and verification, with dif-
ferent limitations, as recently surveyed by Tolmach et
al. [91]. Notably, several papers [5, 67, 68, 70] use
nuXmv for the functional verification of implementa-
tions of smart contracts in languages such as Ethereum
Smart Contracts with the aim to check deadlock-
freedom, liveness, and safety properties expressed in
CTL or LTL. The approach we propose here is to first
specify legal contracts in a high-level language (Sym-
boleo), and then analyze this high-level specification
through an encoding in nuXmv to ensure the contract
has no flaws and is free of conditions that could in-
validate it. Once the legal contract has been proven
correct, it can be translated to an implementation lan-
guages (e.g., Ergo), possibly with additional verification
at that level if needed.

8.4 Richer Logical Properties Beyond CTL

Formalizing properties of social commitment using
richer variants of CTL is an approach that has been
studied in the multi-agent domain. Kholy et al. [32] ex-
tend CTL to formalize conditional commitments. Men-
shawy et al. [34] propose CTLC, yet another exten-
sion of CTL, and formalize the semantics of social

commitments and their fulfillment and violation. Both
approaches perform verification of the proposed log-
ics, leveraging on respective extensions of the MCMAS
model checker [61]. Furthermore, Menshawy et al. [34]
propose CTLC+, which decomposes the problem logic
to ARCTL (a combination of CTL and action logic)
and GCTL* (a generalized version of CTL with action
formula). These logics are verified respectively by ex-
tensions of NuSMV and CWB-NC [33].

These proposals are relevant to our work, but move
along different directions compared to Symboleo as they
are addressing problems of multi-agent systems, rather
than contracts. For our purposes, CTL has been found
to be more than adequate in expressing several types of
common contract properties. Moreover, extensions to
CTL endanger the scalability of model checking algo-
rithms.

8.5 A Legal Perspective

Understandably, the idea of formal specification and au-
tomatic monitoring of contracts has been controversial
in the legal literature. We discuss here two papers that
address perceived shortcomings of smart contracts.

Levy [59] argues that many legal contracts are not
formalizable, and points out through interesting ex-
amples that many real-life contracts involve “unen-
forceable terms... purposefully under-specified terms, ...
the willful non-enforcement of enforceable terms”. We
agree with this observation, but note that there are
also many business situations where contractual parties
need to agree on and carry out precisely specified and
enforceable terms, especially in the areas of business-
to-business transactions and e-commerce. E-commerce
platforms, such as E-Bay, Amazon, etc., have this need.
However, we do not claim that Symboleo is suitable for
formalizing all types of contracts.

Mik [64] lists several misconceptions concerning
smart contracts. One is that smart contracts would
eliminate the need for lawyers and courts. We certainly
do not envision such an outcome. Lawyers have a crit-
ical role to play in making design decisions for smart
contracts. Also, after contract execution, lawyers and
courts will deal with any ensuing litigation. However,
smart contracts are intended to do what lawyers or con-
tracting parties do today manually: monitor the execu-
tion of contracts, flag violations and enforce compensa-
tions. Moreover, smart contracts do not exclude human
flexibility. It is up to designers of a smart contract to de-
cide what should be executed automatically and what
should be left to the judgment of human parties. For
the meat sale contract, determining whether the meat
sold is of the required quality may be decided by an

Specification and Analysis of Legal Contracts with Symboleo 29

inspector. As well, if the meat must be transported in
a temperature-controlled environment, the smart con-
tract will monitor conditions and may be designed to
take an automatic decision or to present data to the
buyer who will apply their own criteria to determine
whether delivery should be accepted.

9 Limitations and Future Work

Limitations of this work include the following:

– Practical usefulness: Symboleo is for now a research
project at the stage of prototype implementation
and proof of concept; we have however attracted the
attention of potentially interested commercial users,
with whom practical application projects are being
planned.

– Limited validation: so far, we have produced, along
with some non-authors, less than two dozen sample
contract specifications from different domains. Now
that there are tools available for building and edit-
ing specifications, we hope to expand this sampling
and, as a result, the language, its ontology, and stat-
echart models may need to be extended.

– Scalability : Although realistic contract examples
were used to demonstrate feasibility of formal anal-
ysis, and the computation times reported hold rea-
sons for optimism, we have not studied how well
Symboleo scales with the size of a contract to be
specified, nor how well our analysis tools cope as
contracts and properties grow in size and complex-
ity.

– Automation: At this time, the conversion from
natural-language contracts to Symboleo specifica-
tions and from these specifications to the input lan-
guages of our testing and verification tools is done
manually.

The limitations we have mentioned are all areas for
further research. A number of short-term and longer-
term tasks for future work include the following:

– Translation of natural language contract text to
Symboleo specifications. Today’s legal contracts are
written in natural language. For large organizations,
converting thousands of contracts to Symboleo spec-
ifications would require considerable manual efforts.
The use of Natural Language Processing could dras-
tically lower this effort. We envision that the trans-
lation will be semi-automatic, as specifications are
useless if they do not accurately capture the mean-
ing of the contracts they specify.

– Supporting analysis with further automation. We
have initiated work towards the automated trans-
lation of Symboleo specifications to nuXmv for our

SymboleoCC tool, but this task needs to be com-
pleted.

– Smart contract code generation. One of the main
drawbacks of formal specifications is they are not
executable. The automated or tool-supported con-
version from Symboleo to smart contract languages
such as Ergo and DAML will add value to the in-
vestment in formal specifications and help ensure
conformity and consistency between smart contract
code and its specification. We also have a prelim-
inary prototype of an automated conversion from
Symboleo to Hyperledger Fabric smart contracts (in
JavaScript), integrated to our Symboleo editor10.

– Further validation. Although Symboleo’s develop-
ment is based on existing legal literature, including
contract examples from different domains, the effi-
cacy and viability of the concepts need to be fur-
ther validated with a larger and more diverse set
of case studies from different domains (finance, sup-
ply chain, property rental, energy, etc.). Validation
could also involve more systematic coverage of dif-
ferent domains and contract configurations.

– Privacy and security. Contract execution monitor-
ing involves private and sensitive data and there are
important restrictions on how such data can be han-
dled in different jurisdictions. Accordingly, we pro-
pose to study privacy and security requirements for
contract executions, including relevant laws and reg-
ulations, and how to operationalize them in smart
contract code.

– Modularity. Contracts are often written for given
jurisdictions, with their own laws and regulations.
Some contracts are in effect within markets that in-
cludes specialized sets of market rules, regulations
and standards. Clauses and parts of domains are
also often reused across contracts. We are work-
ing towards improved modularity features to enable
higher levels of scalability and reuse for contract
specifications. The development of domain-specific
libraries of Symboleo functions and their associated
axioms would also help improve reuse across do-
mains.

– Usability improvements. The usability of Symboleo
for non-technical audiences (e.g., lawyers and con-
tractual parties) needs to be improved, possibly
through syntactic sugar, visual representations and
natural language templates of contractual clauses
for which equivalent Symboleo representations are
already available. We also plan to propose a high-
level language for specifying contract properties,

10 https://github.com/Smart-Contract-Modelling-uOttawa/
Symboleo-IDE

https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-IDE
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-IDE

30 A. Parvizimosaed et al.

and SymboleoPC responses, including the presen-
tation of counterexamples.

– Technology integration. One of the most important
elements of smart contracts is their ability to af-
fect the physical world through actuators and ob-
serve the world in detail via sensors. Many stud-
ies have been done on the integration of Internet
of Things (IoT) and Distributed Ledger Technology
(DLT) platforms. The design decisions made during
the development of smart contracts affect all of their
cyber as well as their physical aspects. For instance,
the decision to observe a certain property at a cer-
tain rate would lead to requirements for the sensor
type, its accuracy, and the amount of data through-
put to the smart contract database (which could be
on-chain or off-chain), or even when/where/how the
data is processed, and when/how the ledger is up-
dated.

– Tool support and integration. Finally, we also envi-
sion to integrate within a unique analysis tool all
the above functionalities, leveraging on the experi-
ence (both at the architectural and at user level)
of the two already developed tools (e.g., intuitive
visualization diagrams of generated scenarios of the
Prolog-based tool, with the property coverage of the
nuXmv-based tool).

10 Conclusions

Automation is increasing in every area of human activ-
ity, and the legal field is no exception. This paper has
presented Symboleo, a formal specification language for
legal contracts. The strengths of Symboleo with re-
spect to competing proposals were detailed in Section 8.
Overall, with its extensible ontology and state models,
Symboleo has the ambition of becoming a practically
useful language in many areas of contract law. Sym-
boleo will enable practitioners to draft consistent con-
tracts that can be checked formally, and hopefully im-
prove the quality of the contract law practice, including
subcontracting and privacy issues.

One area where Symboleo can have short-range ap-
plication is the rapidly developing area of e-commerce
platforms. At present, contracts available in such plat-
forms are very simple: essentially, immediate payment
with promise of delivery, the possibility of return for
reimbursement, and monitoring of the whole process.
Principles such as the ones proposed in this paper en-
able these platforms to evolve towards offering more
possibilities, including multi-platform contractual envi-
ronments,such as supply chains.

In the medium range, Symboleo has the potential of
having an impact on legal practice by allowing lawyers

and notaries, in collaborations with modellers, to ana-
lyze contracts as they are being formed. For example,
tools such as SymboleoCC and SymboleoPC can
help ensure that a contract being designed is consis-
tent with stakeholder requirements expressed as tests
or properties. This is especially important in contexts
where contracts result from the selection of reusable
clause templates (as is often the case) where instan-
tiations of obligations and powers might lead to un-
expected interactions. As well, Symboleo’s ontology
will provide researchers with a standardized vocabulary
that can be used to label parts of natural language con-
tractual documents. Once labelled contracts are avail-
able, they can be used as input to natural language
processing tools that will extract formal specification
elements, and to machine learning algorithms for clas-
sification.

Ultimately, we hope that the contributions of this
work will offer formality and algorithmic analysis as ve-
hicles that can enhance and facilitate research method-
ology in legal theory.

Acknowledgements The authors thank P. Bacquero, V.
Callipel, R. El Hamdani, F. Gélinas, E. Jonchères, D. Re-
strepo Amariles, G. Sileno, T. van Binsbergen, and T. van
Engers (lawyers, researchers, and professors from the Au-
tonomy Through Cyberjustice Technologies project) for their
feedback on Symboleo and guidance on subcontracting. The
authors are also thankful to A. Rahimi Kian for providing
guidance on transactive energy contracts, to C. Griffo and
G. Guizzardi for useful discussions about UFO-L, and to the
members of our CSM Lab for their contributions to Symboleo.
We are also grateful to the anonymous reviewers for their con-
structive comments. This paper was improved substantially
thanks to their feedback.

References

1. Accord Project: Ergo. https://accordproject.
org/projects/ergo/ (2020)

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma,
E., Mello, P., Montali, M., Torroni, P.: Express-
ing and verifying business contracts with abductive
logic programming. International Journal of Elec-
tronic Commerce 12(4), 9–38 (2008)

3. Allard, M.P.: The retroactive effect of conditional
obligations in tax law. Canadian Tax Journal
49(6), 1726–1839 (2001)

4. Allen, J.F.: Towards a general theory of action and
time. Artif. Intell. 23(2), 123–154 (1984)

5. Alqahtani, S.M., He, X., Gamble, R.F., Papa, M.:
Formal Verification of Functional Requirements for
Smart Contract Compositions in Supply Chain
Management Systems. In: 53rd Hawaii Interna-
tional Conference on System Sciences, HICSS 2020,

https://accordproject.org/projects/ergo/
https://accordproject.org/projects/ergo/

Specification and Analysis of Legal Contracts with Symboleo 31

pp. 1–10. ScholarSpace (2020). DOI 10.24251/
HICSS.2020.650

6. Alt, L.: Ethereum formal verification. https://
bit.ly/37dSc87 (2020)

7. Alt, L., Reitwiessner, C.: SMT-based verification of
solidity smart contracts. In: T. Margaria, B. Steffen
(eds.) Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice, pp.
376–388. Springer, Cham (2018)

8. Athan, T., Boley, H., Governatori, G., Palmi-
rani, M., Paschke, A., Wyner, A.: OASIS Legal-
RuleML. In: Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and
Law, ICAIL’13, pp. 3–12. ACM (2013). DOI
10.1145/2514601.2514603

9. Athan, T., Governatori, G., Palmirani, M.,
Paschke, A., Wyner, A.: LegalRuleML: Design prin-
ciples and foundations. In: Reasoning Web In-
ternational Summer School, pp. 151–188. Springer
(2015). DOI 10.1007/978-3-319-21768-0_6

10. Azzopardi, S., Pace, G.J., Schapachnik, F., Schnei-
der, G.: Contract automata. Artif. Intell.
Law 24(3), 203–243 (2016). DOI 10.1007/
s10506-016-9185-2

11. Bettini, L.: Implementing Domain-Specific Lan-
guages with Xtext and Xtend - Second Edition.
Packt Publishing (2016)

12. Bettini, L.: Implementing domain-specific lan-
guages with Xtext and Xtend, Second edition.
Packt Publishing Ltd (2016)

13. Bix, B.H.: Contract law: rules, theory, and context.
Cambridge University Press (2012)

14. California Independent System Operator Corpo-
ration: Appendix b.21 distributed energy resource
provider agreement (2016). URL https://bit.ly/
2TF79rD

15. Cambronero, M.E., Llana, L., Pace, G.J.: A cal-
culus supporting contract reasoning and monitor-
ing. IEEE Access 5, 6735–6745 (2017). DOI
10.1109/ACCESS.2017.2696577

16. Cardoso, H.L., Oliveira, E.: Directed deadline obli-
gations in agent-based business contracts. In: Co-
ordination, Organizations, Institutions and Norms
in Agent Systems V, pp. 225–240. Springer (2010)

17. Carmo, J., Jones, A.J.I.: Deontic logic and
contrary-to-duties. In: D.M. Gabbay, F. Guenthner
(eds.) Handbook of Philosophical Logic, vol. 8, pp.
265–343. Springer Netherlands, Dordrecht (2002).
DOI 10.1007/978-94-010-0387-2_4

18. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A.,
Mariotti, A., Micheli, A., Mover, S., Roveri, M.,
Tonetta, S.: The nuXmv symbolic model checker.
In: A. Biere, R. Bloem (eds.) Computer Aided Ver-

ification, pp. 334–342. Springer, Cham (2014). DOI
10.1007/978-3-319-08867-9_22

19. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A.,
Mariotti, A., Micheli, A., Mover, S., Roveri, M.,
Tonetta, S.: The nuXmv symbolic model checker.
In: CAV 2014, LNCS, vol. 8559, pp. 334–342 (2014)

20. Chesani, F., Mello, P., Montali, M., Torroni, P.:
Representing and monitoring social commitments
using the event calculus. Autonomous Agents and
Multi-Agent Systems 27(1), 85–130 (2013)

21. Chlipala, A.: Certified programming with depen-
dent types: a pragmatic introduction to the Coq
proof assistant. MIT Press (2013)

22. Cimatti, A., Clarke, E., Giunchiglia, E.,
Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An opensource
tool for symbolic model checking. In: Computer
Aided Verification, pp. 359–364. Springer Berlin
Heidelberg (2002). DOI 10.1007/3-540-45657-0_29

23. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Val-
idation of requirements for hybrid systems: A for-
mal approach. ACM Trans. Softw. Eng. Methodol.
21(4), 22:1–22:34 (2012). DOI 10.1145/2377656.
2377659

24. Clarke, E.M., Grumberg, O., Kroening, D., Peled,
D.A., Veith, H.: Model checking, 2nd Edition. MIT
Press (2018)

25. CSM Lab: Symboleo Conformance Checker
(2020). URL https://github.com/
Smart-Contract-Modelling-uOttawa/
Symboleo-Compliance-Checker. Accessed
26-October-2020

26. CSM Lab and University of Trento: Sym-
boleo Property Checker: A nuXmv-based property
checker for Symboleo specifications (2020). https:
//bit.ly/3lVbao0

27. Dardenne, A., Van Lamsweerde, A., Fickas, S.:
Goal-directed requirements acquisition. Science of
Computer Programming 20(1-2), 3–50 (1993)

28. Daskalopulu, A.: Modelling legal contracts as pro-
cesses. In: Database and Expert Systems Applica-
tions, 2000. 11th International Workshop on, pp.
1074–1079. IEEE (2000)

29. Daskalopulu, A.K.: Logic-based tools for the anal-
ysis and representation of legal contracts. Ph.D.
thesis, Citeseer (1999)

30. Digital Asset Holdings: DAML. https://daml.
com/ (2020)

31. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Pat-
terns in property specifications for finite-state ver-
ification. In: Proceedings of the 21st international
conference on Software engineering, pp. 411–420
(1999)

https://bit.ly/37dSc87
https://bit.ly/37dSc87
https://bit.ly/2TF79rD
https://bit.ly/2TF79rD
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-Compliance-Checker
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-Compliance-Checker
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-Compliance-Checker
https://bit.ly/3lVbao0
https://bit.ly/3lVbao0
https://daml.com/
https://daml.com/

32 A. Parvizimosaed et al.

32. El Kholy, W., El-Menshawy, M., Bentahar, J., Qu,
H., Dssouli, R.: Formal specification and automatic
verification of conditional commitments. IEEE In-
telligent Systems 30(2), 36–44 (2015)

33. El Menshawy, M., Bentahar, J., El Kholy, W.,
Dssouli, R.: Reducing model checking commit-
ments for agent communication to model check-
ing ARCTL and GCTL. Autonomous agents and
multi-agent systems 27(3), 375–418 (2013)

34. El Menshawy, M., Bentahar, J., Qu, H., Dssouli,
R.: On the verification of social commitments and
time. In: The 10th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume
2, pp. 483–490 (2011)

35. Emerson, E.A., Clarke, E.M.: Using branching time
temporal logic to synthesize synchronization skele-
tons. Sci. Comput. Program. 2(3), 241–266 (1982).
DOI 10.1016/0167-6423(83)90017-5

36. Ethereum Foundation: Solidity. https:
//solidity.readthedocs.io/ (2020)

37. Farmer, W.M., Hu, Q.: FCL: A formal language for
writing contracts. In: Quality Software Through
Reuse and Integration, pp. 190–208. Springer
(2016)

38. Farrell, A.D., Sergot, M.J., Sallé, M., Bartolini, C.,
Trastour, D., Christodoulou, A.: Performance mon-
itoring of service-level agreements for utility com-
puting using the event calculus. In: Electronic Con-
tracting, 2004. Proceedings. First IEEE Interna-
tional Workshop on, pp. 17–24. IEEE (2004)

39. Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M.,
Traverso, P.: Specifying and analyzing early re-
quirements in tropos. Requir. Eng. 9(2), 132–150
(2004). DOI 10.1007/s00766-004-0191-7

40. Goedertier, S., Vanthienen, J.: Designing compli-
ant business processes with obligations and per-
missions. In: International Conference on Business
Process Management, pp. 5–14. Springer (2006)

41. Governatori, G.: Representing business contracts in
RuleML. International Journal of Cooperative In-
formation Systems 14(02n03), 181–216 (2005)

42. Governatori, G., Idelberger, F., Milosevic, Z.,
Riveret, R., Sartor, G., Xu, X.: On legal contracts,
imperative and declarative smart contracts, and
blockchain systems. Artificial Intelligence and Law
26(4), 377–409 (2018)

43. Governatori, G., Milosevic, Z.: Dealing with con-
tract violations: formalism and domain specific lan-
guage. In: EDOC Enterprise Computing Confer-
ence, 2005 Ninth IEEE International, pp. 46–57.
IEEE (2005)

44. Governatori, G., Milosevic, Z.: A formal analysis of
a business contract language. International Journal

of Cooperative Information Systems 15(04), 659–
685 (2006)

45. Greenspan, S.J., Mylopoulos, J., Borgida, A.: Cap-
turing more world knowledge in the requirements
specification. In: Proceedings of the 6th Inter-
national Conference on Software Engineering, pp.
225–234 (1982)

46. Griffo, C., Almeida, J.P.A., Guizzardi, G.: Towards
a legal core ontology based on Alexy’s theory of
fundamental rights. In: Multilingual Workshop on
Artificial Intelligence and Law (ICAIL) (2015)

47. Griffo, C., Almeida, J.P.A., Guizzardi, G., Nardi,
J.C.: From an ontology of service contracts to con-
tract modeling in enterprise architecture. In: 2017
IEEE 21st International Enterprise Distributed
Object Computing Conference (EDOC), pp. 40–49.
IEEE (2017)

48. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guiz-
zardi, R.S.: Towards ontological foundations for
conceptual modeling: the unified foundational on-
tology (UFO) story. Applied ontology 10(3-4), 259–
271 (2015)

49. Hashmi, M., Governatori, G., Wynn, M.T.: Mod-
eling obligations with event-calculus. In: Interna-
tional Workshop on Rules and Rule Markup Lan-
guages for the Semantic Web, LNCS, vol. 8620, pp.
296–310. Springer (2014)

50. Hohfeld, W.N.: Some fundamental legal concep-
tions as applied in judicial reasoning. Yale Lj 23,
16 (1913)

51. Jones, A.J., Sergot, M.: A formal characterisation
of institutionalised power. Logic Journal of the
IGPL 4(3), 427–443 (1996)

52. Kindler, E.: Safety and liveness properties: A sur-
vey. Bulletin of the European Association for The-
oretical Computer Science 53(268-272), 30 (1994)

53. Kirby, J.: Assignments and transfers of contractual
duties: Integrating theory and practice. Victoria U.
Wellington L. Rev. 31, 317 (2000)

54. Kowalski, R.A., Sergot, M.J.: A logic-based calcu-
lus of events. In: J.W. Schmidt, C. Thanos (eds.)
Foundations of Knowledge Base Management: Con-
tributions from Logic, Databases, and Artificial In-
telligence, Book resulting from the Xania Workshop
1985, Topics in Information Systems, pp. 23–55.
Springer (1985)

55. Ladleif, J., Weske, M.: A unifying model of legal
smart contracts. In: Conceptual Modeling, pp. 323–
337. Springer, Cham (2019)

56. Lee, R.M.: A logic model for electronic contracting.
Decision support systems 4(1), 27–44 (1988)

57. Lethbridge, T.C., Forward, A., Badreddin, O.,
Brestovansky, D., Garzon, M., Aljamaan, H., Eid,

https://solidity.readthedocs.io/
https://solidity.readthedocs.io/

Specification and Analysis of Legal Contracts with Symboleo 33

S., Husseini Orabi, A., Husseini Orabi, M., Ab-
delzad, V., Adesina, O., Alghamdi, A., Algablan,
A., Zakariapour, A.: Umple: Model-driven develop-
ment for open source and education. Science of
Computer Programming 208, 102665 (2021). DOI
10.1016/j.scico.2021.102665

58. Letia, I.A., Groza, A.: Running contracts with de-
feasible commitment. In: International Conference
on Industrial, Engineering and Other Applications
of Applied Intelligent Systems, LNCS, vol. 4031,
pp. 91–100. Springer (2006)

59. Levy, K.E.: Book-smart, not street-smart:
blockchain-based smart contracts and the social
workings of law. Engaging Science, Technology,
and Society 3, 1–15 (2017)

60. Lloyd, J.W.: Foundations of Logic Programming,
2nd Edition. Springer (1987). DOI 10.1007/
978-3-642-83189-8

61. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an
open-source model checker for the verification of
multi-agent systems. Int. J. Softw. Tools Tech-
nol. Transf. 19(1), 9–30 (2017). DOI 10.1007/
s10009-015-0378-x

62. Manna, Z., Pnueli, A.: The temporal logic of
reactive and concurrent systems - specification.
Springer (1992). DOI 10.1007/978-1-4612-0931-7

63. Meyer, J.J.C.: Deontic logic: A concise overview.
In: Deontic Logic in Computer Science: Normative
System Specification, pp. 3–16. Wiley (1993)

64. Mik, E.: Smart contracts: terminology, technical
limitations and real world complexity. Law, Inno-
vation and Technology 9(2), 269–300 (2017)

65. Montali, M.: jREC. https://www.inf.unibz.it/
~montali/tools.html (2016)

66. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas,
A.T., De Jong, H.: Temporal logic patterns for
querying dynamic models of cellular interaction
networks. Bioinformatics 24(16), i227–i233 (2008)

67. Nehai, Z., Piriou, P., Daumas, F.F.: Model-
Checking of Smart Contracts. In: IEEE Interna-
tional Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and So-
cial Computing (CPSCom) and IEEE Smart Data
(SmartData), pp. 980–987. IEEE (2018). DOI
10.1109/Cybermatics_2018.2018.00185

68. Nelaturu, K., Mavridou, A., Veneris, A.G., Laszka,
A.: Verified Development and Deployment of Multi-
ple Interacting Smart Contracts with VeriSolid. In:
IEEE International Conference on Blockchain and
Cryptocurrency, ICBC 2020, pp. 1–9. IEEE (2020).
DOI 10.1109/ICBC48266.2020.9169428

69. OMG: Unified modeling language (omg uml),
version 2.5.1. https://www.omg.org/spec/UML/
(2017)

70. Pace, G.J., Prisacariu, C., Schneider, G.: Model
Checking Contracts - A Case Study. In: Auto-
mated Technology for Verification and Analysis,
5th International Symposium, ATVA, LNCS, vol.
4762, pp. 82–97. Springer (2007). DOI 10.1007/
978-3-540-75596-8_8

71. Parvizimosaed, A., Sharifi, S.: Symboleo Compli-
ance Checker, v0.2 (2020). DOI 10.5281/zenodo.
3840727

72. Parvizimosaed, A., Sharifi, S., Amyot, D., Lo-
grippo, L., Mylopoulos, J.: Subcontracting, assign-
ment, and substitution for legal contracts in sym-
boleo. In: Conceptual Modeling (ER 2020), pp.
271–285. Springer International Publishing, Cham
(2020). DOI 10.1007/978-3-030-62522-1_20

73. Permenev, A., Dimitrov, D., Tsankov, P.,
Drachsler-Cohen, D., Vechev, M.: Verx: Safety
verification of smart contracts. In: 2020 IEEE
Symposium on Security and Privacy, SP, pp. 18–20
(2020)

74. Pill, I., Semprini, S., Cavada, R., Roveri, M.,
Bloem, R., Cimatti, A.: Formal analysis of hard-
ware requirements. In: 43rd Design Automa-
tion Conference (DAC), pp. 821–826. ACM (2006).
DOI 10.1145/1146909.1147119

75. Prakken, H., Sergot, M.: Contrary-to-duty obliga-
tions. Studia Logica 57(1), 91–115 (1996)

76. Prisacariu, C., Schneider, G.: A formal language
for electronic contracts. In: International Confer-
ence on Formal Methods for Open Object-Based
Distributed Systems, pp. 174–189. Springer (2007)

77. Reyna, A., Martín, C., Chen, J., Soler, E., Díaz,
M.: On blockchain and its integration with IoT.
challenges and opportunities. Future Generation
Computer Systems 88, 173–190 (2018). DOI
10.1016/j.future.2018.05.046

78. Shanahan, M.: The event calculus explained. In:
Artificial intelligence today, pp. 409–430. Springer
(1999)

79. Sharifi, S.: Smart contracts: From formal specifi-
cation to blockchain code. Master’s thesis, Uni-
versity of Ottawa, Canada (2020). URL http:
//dx.doi.org/10.20381/ruor-25092

80. Sharifi, S., Parvizimosaed, A.: Symboleo Text Edi-
tor, v0.1 (2020). DOI 10.5281/zenodo.3840773

81. Sharifi, S., Parvizimosaed, A., Amyot, D., Lo-
grippo, L., Mylopoulos, J.: Symboleo: A specifica-
tion language for smart contracts. In: 28th IEEE
International Requirements Engineering Confer-
ence (RE’20), pp. 384–389. IEEE CS (2020). DOI

https://www.inf.unibz.it/~montali/tools.html
https://www.inf.unibz.it/~montali/tools.html
https://www.omg.org/spec/UML/
http://dx.doi.org/10.20381/ruor-25092
http://dx.doi.org/10.20381/ruor-25092

34 A. Parvizimosaed et al.

10.1109/RE48521.2020.00049
82. Siano, P., De Marco, G., Rolán, A., Loia, V.: A sur-

vey and evaluation of the potentials of distributed
ledger technology for peer-to-peer transactive en-
ergy exchanges in local energy markets. IEEE
Systems Journal 13(3), 3454–3466 (2019). DOI
10.1109/JSYST.2019.2903172

83. Soavi, M., Zeni, N., Mylopoulos, J., Mich, L.:
Contratto–a method for transforming legal con-
tracts into formal specifications. In: 16th Interna-
tional Conference on Research Challenges in Infor-
mation Science (RCIS’22). Springer (2022)

84. Souri, A., Rahmani, A.M., Jafari Navimipour, N.:
Formal verification approaches in the web service
composition: a comprehensive analysis of the cur-
rent challenges for future research. International
Journal of Communication Systems 31(17), e3808
(2018). DOI 10.1002/dac.3808

85. Steinberg, D., Budinsky, F., Merks, E., Paternos-
tro, M.: EMF: Eclipse Modeling Framework. Pear-
son Education (2008)

86. Szabo, N.: Formalizing and securing relationships
on public networks. First Monday 2(9) (1997)

87. The British Standards Institution: PAS 333, smart
legal contracts - specification (2020). URL https:
//accordproject.org/news/bsi/. Online; ac-
cessed 26-October-2020

88. The nuXmv team: The nuXmv symbolic model
checker (2020). URL https://nuxmv.fbk.eu

89. Thomas Van Binsbergen, L., Liu, L.C., Van Does-
burg, R., Van Engers, T.: eFLINT: a Domain-
Specific Language for Executable Norm Specifi-
cations. In: 19th ACM SIGPLAN International
Conference on Generative Programming: Concepts
and Experiences (GPCE ’20). ACM (2020). DOI
10.1145/3425898.3426958

90. Tikhomirov, S.: Smart Contract Lan-
guages. https://github.com/s-tikhomirov/
smart-contract-languages (2020). [Online;
accessed 23-April-2020]

91. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A sur-
vey of smart contract formal specification and ver-
ification (2020). URL https://arxiv.org/abs/
2008.02712

92. Wikipedia contributors: Asset — Wikipedia, the
free encyclopedia. https://bit.ly/35TjZrn
(2019). [Online; accessed 21-October-2019]

https://accordproject.org/news/bsi/
https://accordproject.org/news/bsi/
https://nuxmv.fbk.eu
https://github.com/s-tikhomirov/smart-contract-languages
https://github.com/s-tikhomirov/smart-contract-languages
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://bit.ly/35TjZrn

	Introduction
	Research Baseline
	Symboleo: A Contract Specification Language
	Syntax and Semantics
	Execution-Time Operations
	Application Example: Transactive Energy
	Analysis Tools
	Related Work
	Limitations and Future Work
	Conclusions

