

First submitted March 2020, accepted by the Journal of Information Security and Applications (Elsevier) Jan. 2021.

Multi-level models for data security
 in networks and in the Internet of things

Luigi Logrippo
Université du Québec en Outaouais, University of Ottawa

luigi@uqo.ca

Abstract. Data flow control for security is a mature research area in computer security, and its established re-
sults can be adapted to the newer area of data security in the Internet of things or the Cloud. This paper takes
a fundamental approach to the problem. It shows that, under reflexivity and transitivity assumptions, any net-
work of communicating entities can be seen as a partial order of equivalence classes of entities, which is a
simplification and generalization of current theory based on the lattice concept, where lattices are generated
by labelling. Networks of communicating entities can be created in many ways, including routing, access control
policies (possibly involving labeling), etc. Their intrinsic partial orders are necessary and sufficient for data
security, and in any such network entities will have greater or lower secrecy or integrity according to their
position in the partial order. It is shown how labeling systems, capable of expressing many types of security
requirements, can be constructed to assign entities to their appropriate positions in network partial orders.
Established paradigms in data security, such as conflicts, conglomeration, aggregation, are introduced in exam-
ples. Then it is shown how entities can be added, removed or relocated in partial orders, as a result of events
such as user or administrative action. A label-based method is described to maintain security requirements
through such transformations. Efficient algorithms exist to implement these concepts, they are applications of
transitive closure algorithms and strongly connected component algorithms.

Keywords: Data flow control; data security; data secrecy; data confidentiality; data integrity; multi-layer
systems; mandatory access control; security labeling systems; Chinese-wall; Brewer-Nash; data aggregation;
data conglomeration, data provenance, Internet of things.

1. Introduction
Data networks are defined in this paper as networks of entities that can model subjects, us-
ers, processes, or ‘things’ in the Internet of things (IoT), or, more in general, any entities that
can hold data, send or receive them through data channels, which can be any means by which
data can be transferred. A reflexive, transitive CanFlow (CF) relation models the fact that
data can reach certain entities in a network from certain others through channels, directly
or indirectly.

Various data security questions can be asked on the basis of these definitions, namely,
given an entity x and a network N:

• the secrecy question asks what entities of N the data of x can reach (secrecy is also
called confidentiality in the literature);

• the integrity question asks what data of entities of N can reach x.

Closely related questions are:
• how to classify entities in networks by levels of secrecy and integrity
• how to control the flow of data in networks, so that given secrecy or integrity policies

or requirements, concerning the reach of data or the secrecy levels, are respected.

We consider also network state changes or transformations, which result from the intro-
duction of new entities, removal of entities, or relocation of entities, possibly resulting from
administrative, policy or user decisions that change the CF relation. Such transformations
are shown to lead from partial orders to partial orders, and thus the same principles continue
to apply through them.

2

Following the view that "the fundamental nature of a privacy violation is an improper in-
formation flow”(Landwehr [34]), secrecy policies can address at least some privacy require-
ments.

Today’s prevailing theory on data flow security was established by Denning in 1976 [17]
and is based on the principle that the CF relation must form a lattice of security levels in
order to be able to define and satisfy secrecy and integrity requirements. We show in this
paper that a simpler and more general theory can be based on the more general concept of
partial order. Any network can be seen as a partial order of equivalence classes of entities,
where data secrecy increases as we go up in the partial order, and data integrity increases as
we go down. On this basis, solutions can be found for the questions above.

Further, we show that efficient algorithms exist, to find answers to the security and integ-
rity questions, as well as to implement related policies.

Our method considers both networks defined as entities communicating through chan-
nels, and networks defined by associating security labels to entities. We show that the two
methods are essentially equivalent.

Although ours is a theoretical model, we show by examples that it can be considered for
practical applications and we propose it for further development in areas where the lattice
model has been considered to be too restrictive, including the new area of data security in
the IoT.

After the literature review in Sect. 2, Sect. 3 presents our basic mathematical concept, the
partial order of equivalence classes of entities. Our Property 1, showing the relation between
the said partial order and the data flow direction, holds in any reflexive, transitive network
(Sect. 4). We then show how basic secrecy and integrity requirements can be defined in
terms of data flows and partial orders (Sect. 5); a method is given to design networks that
satisfy such requirements. When entity labeling is brought in in our model (Sect. 6), we will
see that secrecy and integrity requirements, together with related requirements such as con-
flicts, conglomerates, aggregates, can be represented by using composite labels that deter-
mine the position of entities in partial orders. Several examples are introduced here, together
with the concept of ‘canonical labeling’ which is related to an elementary notion of ‘prove-
nance’. One of the purposes of this section is to confirm by using examples that our new the-
ory is consistent with, but also more general than, established theory, and can deal with clas-
sical data security problems. Sect. 7 presents our theory of network transformations. After
the basic definitions and result in Sect. 7.1, we will see in Sect. 7.2 how data can flow through
entities in transformations. Sect.7.3 presents a label-based, IoT inspired example, showing
that security requirements can be maintained through transformations by allowing only cer-
tain labels. The algorithms that can be used to support this theory are reviewed in Sect. 8.
Sect. 9 is a discussion of implications and impacts.

2. Previous work
The literature in this subject is extensive, in the order of hundreds of significant papers. It
appeared starting in the 1970s, and especially in the 1980s and 90s. Much of it is now text-
book material (Bishop [13 Chapter 5]). This literature cannot be cited here properly, and so
we limit ourselves to reviewing the papers that have most directly influenced our work. At
that time, the main method for data flow security in organizations was Mandatory access
control (MAC) (Sandhu [51]) implemented by Multi-level access control methods (MLS)
based on subject and object labeling. These methods were found to be applicable also to

3

operating systems and, to some extent, to programming languages. However MLS methods
were considered to be too restrictive and their usefulness was considered to be limited to
high-security applications, such as the military, and so interest in them waned. We show in
our papers [36,37] that the applicability of MLS, if defined in terms of partial orders, is gen-
eral and we use the early literature as the basis of our work. More recently, interest in this
topic has been revived because of the issue of data flow security in the Cloud and, most re-
cently, in the Internet of things (IoT). Several basic concepts are shared among these topics,
see Singh et al. [55], Botta et al. [14].

 Bell and La Padula [8] developed a fairly complex theory of data flow security based on
partial orders of subjects and objects, system states, and state transitions caused by rules
triggered by data access requests. Denning [17] simplified and generalized this and other
early models by proposing a theory based on lattices of security classes (or labels) assigned
to processes and objects, and on restricting data flows according to the order relations in the
lattices. Our work belongs to her line of thought, except that we show that the concept of
partial order is sufficient to develop a data flow security theory, independent of labeling.

Foley is the author who has most extensively written on data flow policies. Some of his
papers on the subject are references [20 to 25], with [20,21] being two research reports
summarizing his early research. These papers include much useful theory, examples and dis-
cussion that have inspired our work. Using the lattice model with labelling, Foley considered
both intransitive data flow relations, noted ↝, and transitive ones, noted ↦. Foley also con-
sidered many types of specialized data security requirements, a few of which will be consid-
ered here, especially in Sect. 6.

Sandhu [51,50] presented the applicability of the lattice-based model with labelling for
information flow security, considering secrecy, integrity and conflict requirements. He
demonstrated the use of his model for defining the related data flow security policies. In this
paper, we generalize his concepts by showing that they can be expressed in terms of partial
orders rather than lattices.

This body of work remains to be revisited in the context of the IoT and the Cloud.
Coming to our times, although the literature on security in the IoT and the Cloud has been

abundant, few papers address the specific problems of data security, i.e. secrecy and integrity
in those contexts. Several authors propose the use of variants of Role-based access control
(RBAC)(Ferraiolo et al. [19]) or Attribute-based access control (ABAC) (Hu et al. [30]). These
methods address access control and not data flow control directly, and for this reason we do
not review this literature. Data flow security is the main objective of this paper, because for
real data security it is necessary to control where data can end up eventually (Denning [17]).

An interactive tool for model-based security engineering, including, among many other
functionalities, the capability of doing data flow analysis, was reported by Amthor et al. [5].
This tool makes it possible to analyze real Unix-like access control systems. It does the tran-
sitive closure of reading and writing authorizations. It does have the concept of equivalence
classes of entities and applies graph reduction methods. It implements efficient graph algo-
rithms searching for paths according to specific analysis needs. We improve on this work
with our theoretical foundation on partial order theory and with the use of strongly con-
nected components algorithms, in addition to considering network state changes.

Bacon and her team [6,45,46,55] correctly insist on the importance of data flow control in
the Cloud and the IoT. They present a IFC (information flow control) architecture and a tool,
CamFlow (Cambridge flow control architecture), that implements it, including support for

4

application management and auditing, through operating-system and middleware support.
Their work is based on labeling methods to represent both secrecy and integrity require-
ments and includes methods for label upgrades and downgrades. The concepts presented
here are consistent with their results but constitute a more general theory of data flow secu-
rity that they could use.

Khobragade et al. [33] present a method for data flow security in the IoT based on the
lattice model, and concepts of readers and writers. Related research by the same group is a
paper by Narendra Kumar and Shyamasundar [42], where a method is developed to generate
security labels in terms of the desired information flow policies. Our method is consistent
with theirs, but simpler and more general, in fact their examples are easily resolved in our
formalism.

Al-Haj and Aziz [4] propose a data-base method for configuring Software Defined Net-
works (SDN) with data flow paths that comply with given secrecy and integrity policies. We
conjecture that a similar method can be used to implement the method proposed here.

This paper should be read with some background knowledge of previous work by the au-
thor and collaborators. Briefly, paper [36] uses elementary graph theory to show that partial
orders and multi-level models are necessary and sufficient models for designing data flow
control systems in networks that can be represented by directed graphs. Paper [56] shows,
by theory and simulation, that efficient algorithms exist to obtain partial order models for
given access control matrices or Role-based access control (RBAC) [19] permission lists; as
a consequence, simple Label-based access control models can be obtained for any network
with access control rules to data that can be specified (or translated into) access control ma-
trices. These two papers use the concepts of subjects and objects and the CanRead and
CanWrite relations [35]. Paper [37] unifies the concepts of subjects and objects into the con-
cept of entity, and the CanRead and CanWrite relations into the CanFlow relation. It shows,
by using two examples, how the partial order this last relation implies can be used in order
to design multi-layer secure networks in the IoT.

This paper includes a synthesis of the work cited in the previous paragraph and adds sev-
eral results and examples, mostly in Sect. 5, 6 and 7.

3. Preorders, partial orders and Schröder’s theorem
A preorder (also known as quasi-order) is a transitive, reflexive relation. A partial order is a
transitive, reflexive, antisymmetric relation. An equivalence is a transitive, reflexive, sym-
metric relation. Binary relations are represented here as digraphs, using bidirectional ar-
rows where relations are symmetric. Partial orders are represented as directed acyclic
graphs (DAGs) although by definition these should be antireflexive, as well as antisymmetric.
To reduce cluttering, usually graphs will be shown transitively reduced and without self-
loops.

A crucial role will be played in this work by a basic result well known in order theory,
relation theory and graph theory. Since this result is attributed to Ernst Schröder by Birkhoff
[12 footnote to Th. 3], we call it Schröder’s theorem. We give here an informal account of its
proofs, in the two theories that will be used in this paper.

In order or relation theory, given a preorder relation ≲ over a set, consider the set of
equivalence classes generated by the symmetries in ≲. These equivalence classes are in a
partial order relation (since the symmetries have been encapsulated in equivalence classes).

5

Further, let us denote this partial order relation with the symbol ⊑, and let [x] be the equiv-
alence class of set elements equivalent to x under ≲ : we have x≲y iff [x]⊑ [y] (Birkhoff [13
Th. 3], Fraïssé [26 Sect. 2.2]).

Similarly, in digraph theory, if ≲ is represented by the edges of a digraph, then consider
the maximally strongly connected subgraphs of this digraph (the components) and condense
each of them in a single node. The resulting condensed digraph is acyclic. There is a directed
path between nodes in two components in the original digraph iff there is a directed path
between the two components in the condensed digraph (Harary et al. [29 Chapt.3], Bang-
Jensen, Gutin [7 Sect. 1.5]). Components correspond to equivalence classes and paths in the
compressed digraph represent the relation ⊑.

There are algorithms which, given a partial order or digraph, can calculate the partial or-
der ⊑ or the corresponding condensed digraph, see Sect. 8. These are called strongly con-
nected components algorithms. Since the set of equivalence classes in a preorder is uniquely
defined, the result of these algorithms is uniquely defined.

We write [x]≡[y] if [x] ⊑ [y] and [y] ⊑ [x]. We write [x] ⊏ [y] if [x] ⊑ [y] but [y] ⊑ [x] is
false. Comparing set elements in partial orders, we use the term level, where
level(x)<level(y) iff [x] ⊏ [y]. When partial orders are represented by digraphs, then
level(x)<level(y) iff there is a directed path from node [x] to node [y] in the condensed
graph. We say that [x] is maximal in a partial order (a sink) if for all [y], [x]⊑[y] implies [x]
≡ [y] and is minimal (a source) if for all [y], [y]⊑[x] implies [x] ≡ [y] . Following the estab-
lished terminology for MLS models (Bishop [13 Sect. 5.2.1]) we write that equivalence class
[y] dominates equivalence class [x] iff [x] ⊑ [y] and in this case we also say that entity y
dominates entity x.

The notion of lattice is not used in our theory, but is often mentioned here for comparison
purposes. A lattice is a partial order where for every two elements x and y there are:

• A unique element z (the join) such that x⊑z and y⊑z
• A unique element u (the meet) such that u⊑x and u⊑y
A review of the literature on lattice models for data security shows that, although the ex-

amples given are lattices, the existence of unique joins and meets is seldom used in the rea-
soning.

There will be some mention of efficient algorithms in this paper. This term will be taken
in its usual meaning in complexity theory: algorithms that run in linear or polynomial time
are considered to be efficient, see Aho, Ullman [3 Introduction].

4. Networks, preorders and partial orders
Definition 1: A network N is a finite set of entities with a binary relation Channel.

Thus a network can be fully defined by a Boolean matrix. Variables for entities will be
written with the letters x, y, z…, constants (used in the examples) by names with upper-case
initials. In the first part of this paper, networks are considered to be fixed at a given state
(Bishop [13 Sect. 2.1]).

The primitive concept of entity is generic and can be used, according to modeling needs,
to model any entity capable of containing and transmitting data, by way of sending them,
writing them, or being read, and for which access or data flow can be controlled at its level
of granularity: subjects, objects, users, roles, hardware or software components such as da-
tabases or sensors, or also folders, files or data sets that can contain data of certain types.

6

The primitive relation Channel(x,y) intuitively expresses the fact that, in the network un-
der consideration, there is a relation from entity x to entity y, expressing the possibility that
data can be directly transmitted from x to y , because of the existence of data transfer author-
izations or of communication links, e.g.:

1. Read and write authorizations that can be expressed in Access control matrices
(Bishop [13 Chapter 2]) or capability lists (Stambouli and Logrippo [56]) or RBAC per-
mission lists (Ferraiolo et al. [19 Sect. 3.2.2], Osborn [43]) can be represented as Chan-
nel relations. If, in a given state, entity (subject) x can read or directly receive data
from entity (object) y, then Channel(y,x) can be taken to be true in the network repre-
senting that state, while Channel(x,y) can be taken to be true if x can write on, or di-
rectly send data to y.

2. In particular, in access control systems of the Multi-level security family (MLS) based
on labelling, the sets of entities (normally subjects and objects) are mapped into par-
tially ordered sets of labels. For a given mapping, access control authorizations, thus
Channel relations, between entities exist according to the ordering of labels. Conven-
tionally, the direction of channels is towards the top of the partial order. There are
channels from entities at a secrecy level to entities at the same or higher level, but not
in the opposite direction. Similarly, in integrity models (Biba [11]) there are channels
from entities at a certain level of integrity to entities at an equal or lower level of in-
tegrity, however we shall show that only one direction needs to be considered, see
Sandhu [51].

3. Distributed networks have routing relations that can be defined as Channel relations
in our sense. Software defined networks (SDN) (Bera et al. [9], Al-Haj, Aziz [4]) pro-
vide an ideal method for implementing the theory presented in this paper, because the
routing is controlled by centralized software.

4. Encryption can be interpreted as creating channels between entities. For example, it
could be said that Channel(x,y) is true iff y can decrypt what it receives from x.

5. Covert channels (Bishop [13 Sect. 18.1], Jaskolka [32]) can also be represented as
Channel relations, if it is desired to examine the effects of their possible existence on
data secrecy and integrity in a network.

6. Communication in social networks: for example, a user can have a folder of photos
defined as an entity with channels towards certain friends.

7. Communication possibilities involving entities representing human users can be mod-
eled by Channel relations.

Variations and combinations are known of these methods, and the literature is vast.
We assume that, for any given method in any given network state, the Channel relation is

well defined. In our network digraphs, this relation is represented by directed arrows, and
bidirectional arrows represent symmetrical relations, see Fig. 1(a).

Definition 2: The CanFlow relation for a network, written CF(x,y), is the reflexive and
transitive closure of the Channel relation.

 Thus CF can be fully defined by a Boolean matrix. CF(x,y) means that data can flow from
entity x to entity y. In principle, the Channel and CF relations could be identical, however in
practice the first could be more easily determined from the data communication relations
mentioned in the points above. Also, at the network design stage, channels may have to be
physically implemented, thus may have costs and so their number may have to be kept low;

7

so a single CF relation may be implemented by several Channels, taking advantage of transi-
tivity.

If data can flow in both directions between any two entities in a set of entities, then all the
entities in the set can be considered to be equivalent, in the sense that they can contain the
same data.

Definition 3: We say that entities x and y are data equivalent if CF(x,y) and CF(y,x).

We continue to use the notation of Sect. 3. By its reflexivity and transitivity, CF is a preor-
der relation, as the mentioned relation ≲ , and partitions the set of entities into equivalence
classes by the data equivalence relation. By Schröder’s theorem there is a partial order rela-
tion between these equivalence classes. Formally:

Property 1: CF(x,y) iff [x]⊑[y]
Proof. Directly by Schröder’s theorem and Defs. 2 and 3.

In this sense, in any network data can flow (CF relation) upwards only, starting from the
lowest-level entities that can hold them to the highest-level entities, or from sources to sinks.

Our graphical representation of equivalence classes will be by double-sided rectangles,
and arrows between them will represent the ⊑ relation, see Fig.1(b).

(a) (b)

Figure 1 (Ex.1): (a) A network of entities and (b) its partial order of equivalence classes

Example 1. Fig. 1(a) could be read as a IoT network, perhaps implemented by a combina-
tion of the methods mentioned above, with two classes of sensors: Sensor A and sensors
B,C,D. The first works alone, but the last three work together, perhaps to complement each
other’s data. The nodes above might represent various types of processing nodes, data bases
or whatever. We see here several structural concerns, some of which could be:

• Initially, the data from A and B,C,D should be kept separate;
• I is supposed to work only on B,C,D’s data while E,F,G,H use data from all sensors;
• J,K are the final users of the data gathered.

The partial order or condensed digraph of Fig. 1(b) can be obtained from the network of
Fig. 1(a) by executing a strongly connected component algorithm.

To go from a partial order such as (b) to a Channel relation or a graph such as (a) different
methods can be used, such as:

Partial order implementation Method 1:
1) According to Property 1, define a CF relation between entities x and y such that

[x]⊑[y].
2) This CF relation can be directly used as a Channel relation; it can also be transitively

reduced to obtain a reduced Channel relation.
Partial order implementation Method 2:

8

1) For each equivalence class in a partial order, create channels between its entities in
any way that establishes a CF relation between all pairs of them: this results in a set of
strongly connected digraphs.

2) For each pair of equivalence classes such as [x] ⊏ [y], create the additional channels
that are sufficient in order to establish a CF relation between at least one entity in [x]
and one entity in [y] .

Method 1 is short and elegant, but may lead to channel configurations that are impossible
to implement, given the physical network characteristics (e.g. in the physical network there
might be a direct channel from F to J, as shown in the figure, but it might be impossible to
create one between F and K). So in practice, it may be necessary to take into consideration
pre-existing channels, cost and efficiency constraints etc. and this will be possible with
method 2. Once the construction is complete, especially if it is done manually, it can be vali-
dated by using a strongly connected component algorithm to obtain the partial order of the
constructed digraph and to check that it is isomorphic to the initially given partial order di-
graph.

Canonical label-based networks, defined in Sect. 6, are also implementations of partial or-
ders with label-based access control rules. This implementation method relies on the fact
that the ⊑ relation can be represented in terms of labels.

5. Secrecy (confidentiality), integrity and design from requirements
Data security is often defined as having (at least) the two aspects of secrecy and integrity ,
see Sandhu [50]. The relation CF can be used to express a concept of secrecy, taking CF(x,y)
to mean that x is a secret of x and y, or that x is visible to x and y (equivalently, y can know x
or y is in the area of x in the terminology of Logrippo and Stambouli [36, 56]). Similarly, CF
can be used to express a basic concept of integrity. If CF(x,y) we can say that the integrity of
y can be affected by data from x. Data integrity in security has had several, but related, defi-
nitions (Sandhu and Jajodia [52]). Our definition corresponds to what Sandhu [53] calls in-
formation flow integrity (or data flow integrity in our terminology), for which the main his-
torical reference is Biba [11].

Definition 4: Secrecy and integrity of entities. We say that x is less secret but has more
integrity than y if [x] ⊏ [y], and we say that x is more secret and has less integrity than y if
[y] ⊏ [x].

On this basis, for any network, it is possible to determine:
• What are the most secret and least secret entities: the most secret are those in the

maximal equivalence classes or levels in the partial order (the sinks), because data
cannot escape from them; the least secret are those in the minimal equivalence classes
or levels (the sources), because their data can flow to levels above them.

• What are the entities with the highest and lowest integrity: the highest integrity be-
longs to the entities in the sources, since no extraneous data can flow into them; the
lowest are in the sinks, for the converse reason.

So, by our definitions, the levels of secrecy and integrity are inversely correlated.
By following these principles, some related problems can be solved:
• Given a number of datasets with secrecy and integrity requirements, it is possible to

design a network where these are satisfied if the datasets can be placed in a partial
order that satisfies the requirements. Using this partial order, a suitable network can

9

be constructed, possibly with one entity per data set. An example, based on slightly
different definitions, is in Logrippo [36].

• If a network already exists and the partial order is given, then it must be checked
whether the entities and channels in the network can implement the required partial
order, or a larger one. If so, the datasets can be placed in the appropriate entities.

For secrecy, this means necessarily placing data in entities that are dominated only by
entities that are authorized to get them. For integrity, this means necessarily placing data in
entities that dominate only entities that are authorized to receive them. For example, if only
two levels are available, then the lower should contain the data that must have higher integ-
rity and lower secrecy, and the upper the data that must have lower integrity and higher
secrecy.

Example 2. The network of Fig.1 can be seen as a solution for the following security re-
quirements:

• Secrecy: A’ s data should only be visible to E,F,G,H and J,K; B,C,D ’s data should be visi-
ble to all except A; I’s data should only be visible to J,K, and the same holds for the data
from E,F,G,H; J,K ‘s data should be top-secret.

• Integrity: A’ s data, as well as data from B,C,D should be top-integrity (as appropriate
for data coming from sensors); A’ s data can affect only the integrity of E,F,G,H or J,K,
etc.; J,K will by consequence have bottom integrity.

Fig. 2 shows secrecy and integrity diagrams for this network. They can be read as super-
posed to the digraphs of Figs. 1(a) or (b). All these diagrams contain the same information,
however the secrecy diagram shows more clearly where the data originate, while the integ-
rity diagram shows more clearly where they can go. For complex networks, it will be useful
to create them.

Other examples can be found in Logrippo, Stambouli [36,37].

Figure 2 (Ex.2): Secrecy and integrity diagrams for the network of Fig. 1.

6. Label-based access control and requirements
In this section, we illustrate the equivalence between definitions of networks based on chan-
nels or on labels. We also show how some concepts well-known in the literature on label-
based access control can be expressed in terms of partial orders. At first, this might seem
trivial, because lattices are partial orders. However by basing the definitions on partial order
of labels instead of lattices of labels the theory is simplified and generalized. None of the
examples below are lattice-based.

A

E,F,G,H

B,C,D

I
J,K

Secrecy diagram

A

E,F,G,H,
A,B,C,D

B,C,D

I,B,C,D

ALL

Integrity diagram

10

The use of labels is a time-honored method for assigning entities to security levels. It well
predates the Bell-La Padula model [8], since the latter was devised to formalize practices
well established in the military and other high-security enterprises such as banks and gov-
ernment. This method is still used, informally and formally, for access control in organiza-
tions. Network requirements or policies define partially ordered sets of labels and the map-
ping from the set of entities to the set of labels, thus the allowed data flows. Labels are tuples
whose elements come from partially ordered domains. Domains can be any partially ordered
sets. In our examples, according to established data flow security theory (Bishop [13 Sect.
5.2.1], Gollmann [27] Sect. 5.8.4), we consider two types of domains:

• Elementary domains, such as secrecy or integrity levels, with partial order relations
understood in security theory

• Category sets, for which the partial order relation is set inclusion.
By the following ‘canonical’ construction and in Sect. 6 we will see that the former can be

reduced to the latter. For now, we define a partial order between labels which is the coordi-
nate wise partial order of the product of the partial orders of the domains.

Definition 5: A label is a tuple of elements, each taken from a partially ordered set. A set
of labels is uniform if all tuples are of the same cardinality and corresponding elements in
the tuples are taken from the same domains. A network is said to be label-based if for all
entities x in the network, the function Lab(x) is defined in the same uniform set of labels.

We assume that in every label-based network and for any two x, y, Lab(x)≤Lab(y) is de-
cidable, which surely must be the case in practice.

The set of labels, being the product of partial orders, is also a partial order, which induces
a partial order on the set of entities. In order to create a relation between the theory based
on channels and the theory based on labels, we adopt the following axiom, which is well-
established in data flow security theory, see Sects. 3 and 41:

Axiom: In label-based networks,Channel(x,y) iff Lab(x)≤Lab(y)

Since the≤ relation is transitively closed, the Channel and CF relations coincide here,
hence CF(x,y) iff Lab(x)≤Lab(y), and [x]⊑[y] iff Lab(x)≤Lab(y), [x]≡[y] iff Lab(x)=Lab(y).
If labels are simple category sets, Lab(x)≤Lab(y) iff Lab(x)⊆Lab(y), and so CF(x,y) iff
Lab(x)⊆Lab(y).

An entity x will be written with its label as x:<a1,…,an,{y1,…,yn}> where a1,…an come from
elementary domains and {y1,…,yn} is a category set (we will only need one such set in our
examples); empty elements will not be shown. Graphically, partially ordered label sets will
be represented as DAGs with hexagonal nodes. Edges represent the ≤ relation between la-
bels, and also the ⊑ relation between equivalence classes of entities with those labels.

Categories can be used to show the provenance of the data that can end up in entities. To
do this, every source entity is labeled with the set of the names of the entities in its equiva-
lence class, e.g. x: <{x,y,z}>. Then every entity to which x can flow will contain the names of

1 In Bishop [13 Sect. 5.2.1] it is said that “S can read O if and only if lo≤ ls and S has discretionary write access

to O”, where lo and ls are the labels of O and S and discretionary access is defined by an access control matrix. A
converse rule applies to the can write relation. We have shown in [56] that access control matrices can be
expressed as labels, and so both parts of the condition can be represented together by combining labels.

11

x,y,z in its label, see following examples. Note that we use here a very basic concept of prov-
enance; for more complete views, that could be used to refine this concept, see Moreau [40],
Park et al. [44], Pasquier et al. [47].

For any network (whether label-based or not), it is possible to construct a label-based
network that has the same partial order of equivalence classes, and where labels are sets of
entity names, showing the provenance of the data in each entity, as follows:

Definition 6: A canonical label-based network is a label-based network where each label
is a set of entity names in the network. For an entity x, y ∊ Lab(x) iff [y]⊑[x].

Such label-based networks are said to be ‘canonical’ because they exist and are unique for
any network (because of the uniqueness of the partial order of entities in any network).
Their labels can be computed efficiently using strongly connected component algorithms,
see Sect. 8.

Note that this construction proves that in any network, each entity’s incoming and out-
going flows can be defined by using labels that are simple sets. This result will be confirmed
by other examples at the end of this section.

Note also that, since any label-based network can be defined in terms of channels (by the
Axiom) and since there is a similar correspondence between capability lists or access control
lists and label-based networks [56], we have established the equivalence of these different
ways of defining networks.

In a canonical label-based network, one can see easily the secrecy and integrity of each
entity, since the most secret entities are those whose names are not found in other entities,
and the entities that have the most integrity are the ones that have only the names of the
entities in their equivalence class in their labels.

Example 3. The canonical label-based network for the network of Fig. 1 is given in Fig. 3.
The notation B,C,D: <{B,C,D}> in a double-sided rectangle means that entities B,C,D are in
the same data equivalence class and for each the label is the set {B,C,D}. Note the correspond-
ence of this diagram with the integrity diagram of Fig. 2.

Figure 3 (Ex.3): Canonical label-based network for the network of Fig. 1

The following examples show how requirements specifying conflicts, conglomeration, ag-

gregations, numerical constraints, and combinations of integrity, security and data catego-
ries, can be represented with different types of labeling. These are types of requirements
that have been studied in the literature on data flow security and have practical applications;
hence it is important to show that they can be expressed in our theory.

Example 4: Conflicts. If two data categories are in conflict, then no entity is allowed to
contain data from both of them (Sandhu [50],Foley [20,24]). In other words, if data catego-
ries x,y are in conflict, then the sets of entities for which x or y are a secret must be disjoint.

B,C,D: <{B,C,D}>A:<{A}>

E,F,G,H:
<{E,F,G,H,A,B,C,D}>

I:<{I,B,C,D}>

J,K:
<{J,K,E,F,G,

H,A,B,C,D, I}>

12

This can be expressed using labels with sets showing categories: then no label can be allowed
to contain the subset {x,y} or, in a practical example of two banks in conflict, {Bank1,Bank2}.
This could be said to be a ‘static Brewer-Nash or Chinese-wall policy’, whereas the real Chi-
nese-wall policy is of a dynamic type, having been devised in order to prevent reaching such
labels as a result of network transformations, this will be demonstrated in Ex. 11. As a vari-
ation, it can be specified that there is no conflict in the presence of other categories, e.g.
{Bank1,Bank2,CentralBank} could be allowed. One practical situation for this is the case
where the Central Bank has to investigate possible collusion between the two banks, then
some employees of the Central Bank may have to be assigned this label.

Example 5: Conglomeration. We have conglomerates when several combinations of data
categories should be considered to be bound together, in the sense that if one of them is part
of a flow, then the others must be included also. This was considered in Foley [22,24]. In our
model, conglomerates can be taken care of by the opposite mechanism as conflicts, i.e. by the
requirement that whenever an entity name appears in a label, then all its conglomerates
should also appear. For example, if entities Company1 and Company2 are the two parts of a
conglomerate, then each of them could be labeled <{Com1,Com2}> and this pair should ap-
pear together in all labels. Another type of conglomeration is the asymmetrical one where
Company1 can appear alone, while Company2 must appear in combination with Company1,
then Company1 could be labeled <{Com1}> while Company2 could be labeled
<{Com1,Com2}>. Flow is allowed from the first to the second, but not vice-versa. This can
be useful if Company2 controls Company1, see Ex. 11.

Example 6: Aggregation. With aggregation it is possible to specify that certain combina-
tions of data categories have higher secrecy classification than others; usually this is a con-
sequence of the fact that certain inferences are possible with those combinations (Sandhu,
Jajodia [52],Foley [22,24],Meadows [39], Cuppens [16]). The following example shows how
aggregations can be specified with labels. Consider a network with five levels of secrecy:
Public (P), Unclassified (U), Confidential (C), Secret (S), TopSecret (T), with P<U<C<S<T.
There are three data categories, X, Y, Z. Taken by itself, each data category is at secrecy level
P. However {X,Y} is U, {Y,Z} is C, {X,Z} is S and {X,Y,Z} is T. The label set and partial order
corresponding to these classifications are shown in Fig. 4.

Figure 4 (Ex.6): Partially ordered label set for aggregation example

P,{X}

U,{X,Y}

P,{Y} P,{Z}

C,{Y,Z}

S,{X,Z}

T,{X,Y,Z}

13

Example 7: Cardinality requirements. Typical is a requirement that no entity should have
in its label more than n different categories (Foley [22]). This can be immediately imple-
mented.

Example 8: Labels with both secrecy and integrity levels. For secrecy we use two classifi-
cations: Public, Secret, abbreviated P and S with P<S. For integrity, we have three classifica-
tions: I1, I2, I3. I1 is the highest integrity level while I2 and I3 are lower but are mutually
incomparable. Flow is allowed from high to low integrity level, thus we have: I1<I2 and I1<
I3. The set of labels for this example is the product of these two partial orders. Fig. 5 shows
all possible labels for these policies. So each entity in the network will have a label indicating
its secrecy and integrity level and the partial order shown in the figure describes the data
flow relationships between the entities. A network’s policies could use only some of the six
labels.

Figure 5 (Ex.8): Partially ordered label set for combined secrecy and integrity example

Example 9: Labels with secrecy, integrity and categories. We consider here a combination
of secrecy and integrity requirements with requirements on data categories. Fig. 6 shows six
entities with their labels. We consider three secrecy levels ordered Public<Classified<Secret
and two integrity levels ordered Certified<Generic. We also have three data categories, Fi-
nancial, Medical, Other (we use some obvious abbreviations henceforth). Labels can contain
subsets of this set, according to the allowed content of the corresponding entities. The set of
all possible labels has 48 elements, and we will not show it. We only show the equivalence
classes of the entities in the table with their data flows. The equivalence classes have only
one element, with the exception of the equivalence class of the two elements E1 and E6, both
mapping on the label <Pub,Gen,{Fin}>. For example, we see that data of category Oth are
visible only to (are a secret of) entities E3 and E5. However E3 can only get Pub or Cert data
of Oth category, while E5 can get Pub or Clas data, also Cert or Gen data of Oth category. Since
the set {Med,Oth} does not appear, these two categories could be in conflict.

Figure 6 (Ex.9): Labels and data flows for secrecy, integrity and categories

Much more sophisticated options are possible, because of the many possibilities of label

purposes and combinations. Going back to Ex. 4, forBank1 two entities could be created, one

I1,P

I2,PI3,P I1,S

I2,SI3,S

Entity Secrecy Level Integrity Level Data categories

E1 Pub Gen Fin

E2 Sec Cert Fin, Med

E3 Pub Cert Oth

E4 Clas Cert Fin

E5 Clas Gen Fin, Oth

E6 Pub Gen Fin

E2:
<Sec,Cert,{Fin,Med}>

E5:
<Clas, Gen, {Fin,Oth}>

E1,E6:
<Pub,Gen, {Fin}>

E4:
<Clas,Cert,{Fin}>

E3:
<Pub,Cert,{Oth}>

14

with Bank1’s secret data, not to be shared with anyone, and one with Bank1’s public data, to
be shared with all other entities, including Bank2. A more complicated scheme would be to
split a bank in three entities: one secret, one confidential for data to share with allied com-
panies, and one public. The confidential level could be split further in several sub-levels, one
for each collaborating company, and so on. Each of these possibilities yields a partial order
of labels. Labeling can be complex, allowing to express complex policies.

The product of different partial orders used above can be uniformed to only one partially
ordered set by using only the concept of category. In Ex. 9 one can replace ‘secrecy levels’ by
‘secrecy categories’, with {Pub}⊂{Pub,Clas}⊂{Pub,Clas,Sec}. For integrity, we have
{Cert}⊂{Cert,Gen}. This is justified because Classified entities can also contain Public data
and so on, and similarly for integrity. Then we have a product of three partial orders that are
all sets of data categories with inclusion. These can be merged into one single partial order
of sets of categories with inclusion. For example, the label for E2 becomes
<{Pub,Clas,Sec,Cert,Fin,Med}>. These new labels yield the same partial order as the one in
Fig. 6.

As a second example for the reader to check, take the example of Fig. 5 with the following
substitutions: {P} for P, {P,S} for S, {I1} for I1, {I1,I2} for I2, {I1,I3} for I3. The resulting partial
order is isomorphic with the one of Fig. 5.

The construction of canonical label-based networks and the construction above are dif-
ferent, but they agree on the fact that, for the data security model presented here, labels con-
sisting of simple category sets are sufficient. Then data flow control rules or access control
rules can be reduced to simple inclusion relations between category sets. This fact is a sim-
plification of established theory, as described in (Bishop [13 Chap. 5], Gollmann [27 Sect.
5.8.4]).

Note that, in the examples above, the use of the lattice model would require adding un-
necessary and even unwanted entities and labels to serve as meets and joins, such as labels
containing conflicting data categories (Ex. 4, where a label containing {Bank1,Bank2} would
be necessary) or incomparable ones (Ex. 8, where a label containing {I2,I3} would be neces-
sary).

Label-based requirements can be enforced through network transformations by ensuring
that only allowed labels are reachable, we will see this in Sect. 7.3.

7. State changes or transformations in networks
7.1 Addition, removal, relocation of entities

In this section, we show that in our theory it is possible to describe fairly naturally state
changes, i.e. state transitions or transformations (Bishop [13 Sect. 2.3 and 5.2.3]). These are
changes in the Channel relation, that can occur in networks for a variety of events, such as
user or administrative action (i.e. for changing labels or levels of integrity or security), or
changes of environmental variables including time- or location- dependent ones, according
to policies. There is abundant literature showing that state changes can lead to security
breaches, not only in Discretionary access control models, but also in MLS. A controversy on
the Bell-La Padula model led to the definition of ‘tranquility principle’ [13 Sect. 5.3]. In gen-
eral terms, we only say that, for any network, rigorous policies and auditing must exist, es-
tablishing mechanisms and prerequisites for safe transformations. Data purging, an im-
portant mechanism, will be mentioned in Sects. 7.2 and 7.3.

15

We consider an unbounded set of network states N0, N1 … Each Ni is a network with its
entities xi, yi ,…, Channeli or Labi relation or function, and the derived CFi and ⊑i relations. So
entities keep their names through state changes but their indexes represent the current
state. Three transformations are considered, as follows:

Definition 7: Network transformations.
We say that
1) x is created in Ni+1 if there is no [xi] but there is [x i+1]
2) x is removed in Ni+1 if there is an [xi] but no [xi+1]
3) x is relocated in Ni+1 with respect to Ni if there are [xi] ,[xi+1] ,[yi], [yi+1] such that the

relation between [xi] and [yi] is different as the relation between [xi+1] and [yi+1].

In Ex. 10 we will see relocations caused by changes of the Channel relation, while in Ex.
11 we will see the creation of entities with known labels and label changes, leading to relo-
cations. By extension of Property 1, within each network we can only have ‘upward’ data
flows in the network’s partial order:

Property 2: For all i, CFi(xi,yi) iff [xi] ⊑i [yi].
Proof: The proof of Property 1 holds for each Ni.

So, since the result of each transformation is a network, each transformation yields a par-
tial order of equivalence classes of entities, with different Channel, CF and ⊑ relations.

Note that if lattices instead of partial orders are used to model networks and transfor-
mations, the transformation of a lattice will not necessarily yield a lattice, and then the lattice
structure will have to be recovered in some way. For example, suppose that we have a net-
work with only two entities, x and y, with CF(x,y), and suppose that we create z such that
CF(x,z) but without any flow between y and z. Nothing else needs to be done in our method,
since both the initial and the resulting networks are partial orders. From the point of view of
lattice theory, however, the initial network was a lattice but the resulting network isn’t, so
something must be done. In this case, the simplest way to recover the lattice structure is to
create a fictitious entity u such that CF(y,u) and CF(z,u). In general, however, the method is
not straightforward, if lattice size is a consideration (Bertet et al. [10]). Such fictitious enti-
ties and their related flows are unnecessary in practice and have no reason to exist in our
model.

Because of the global nature of partial order relations, creations and removals of entities
may cause relocations of other entities. Relocations can also be caused by the creation or
removal of channels, since removing channels or flows towards (from) an entity may move
it down (up) in the partial order, increasing (decreasing) its integrity but decreasing (in-
creasing) its secrecy, and vice-versa for adding channels or flows. Relocation of one entity
causes relocation of others. All this may deserve to be studied within partial order theory,
but the above observations are sufficient for this paper.

Example 10. We go back to Fig. 1, and we take it as our N0. In Fig. 7(c) we have removed
all outgoing flows from A and thus we have increased its secrecy to the maximum; however
by adding incoming flows to it, its integrity has been decreased to the minimum. The con-
verse has been done for I. So two entities were relocated. Fig. 7(d) presents a possible im-
plementation of this partial order. It was obtained by the partial order implementation
method 2 of Sect. 4, reusing most channels in the initial configurations and adding some. The

16

channel from D to K has become optional because of transitivity. This is our Ni for i>0. (Un-
fortunately this example is not consistent with the interpretation we have given of Fig. 1(a)
earlier, but we use it to reduce the number of figures.)

(c)

(d)

Figure 7 (Ex. 10): Network transformations through partial orders

Note that the figures can be read in the opposite direction, to illustrate transformations
from Fig. 7(d) to 1(a).

7.2 Data flows over transformations
We assume that each entity can ‘remember’ data from a state to the next, thus causing inter-
state flows. Note that we need not be concerned about entities that have been created, nor
about entities that have been removed: the former have no memory of previous data flows
and the latter cannot pass it on.

We denote the interstate flow relation as CFS. We take this to be a transitive relation, but
anti-reflexive and anti-symmetric.

In particular, data can flow between two entities in adjacent states
• if they can flow between the entities in the first state (the destination entity will then

remember the data in the next state),
• or if they can flow to an intermediate entity in the first state, from which they can flow

to the other one in the next state.
Intuitively, the flow can be direct for an entity by memory, or indirect through other enti-

ties that can carry data from a state to the next. Fig. 8 illustrates the two possibilities, one in
continuous lines and the other in dashed lines. Thinner lines represent ‘memory through
states’ (relation CFS) and thicker lines represent flows within states (relation CF).

Figure 8 (Def. 8): Interstate data flow

These intuitions are captured by the following:

Definition 8: CFS(xi,yi+1) =def CFi(xi,yi) or for some z (CFi(xi,zi) and CFi+1(zi+1,yi+1)), or equiv-
alently: CFS(xi,yi+1) =def [xi] ⊑i [yi] or for some z ([xi]⊑i [zi] and [zi+1] ⊑i+1 [yi+1])

A,J,K

E,F,G,H

B,C,D

I

A

B C D

E

F

GH

J K

I

xi

yi

zi zi+1

yi+1

State i State i+1

17

Definition 8 holds not only for distinct x,y,z but also for all combinations of: x=y or x=z or
y=z.

Transformations are risky for security because entities may be relocated by transfor-
mations, and the data they contain may be exposed by new data flows in following states. E.g.
[xi] ⊑i [yi] could be true but [xi+1] ⊑i+1 [yi+1] false. Security policies may require that, if a
transformation creates the possibility of certain new data flows for an entity, then the de-
sired security properties should be preserved by using known mechanisms called data purg-
ing, sanitizing or declassification. This is a complex problem, among others in practice it is
not sufficient to remove data with certain labels, since entities may have the capability of
processing the data received, so that these are no longer easily traceable to their source,
unless full-fledged provenance labeling is used (Moreau [40], Park et al. [44]). A survey on
this problem is in Sabelfeld, Sands [49], an early discussion on it with theory and examples
can be found in Foley [24], Pasquier et al. [46] discuss it in Cloud and IoT contexts, while
Myers and Liskov [41] provide interesting examples. With reference to the example of Figs.
1 and 7, we see that the flow from entities B,C,D, to entity I is true before and false after the
transformation. So the data that may have flown to I from these entities might have to be
purged from I. We say ‘might’ because in some situations this might not be required, e.g. if
we suppose that I will henceforth only flow to B,C,D. In some cases, the policy might be to
simply require that a record be kept of data that might have been brought in from entities
that are no longer accessible, possibly in order to identify future conflicts, see Ex. 11. Also,
there is no danger if the data in I have been declassified. As another example, in RBAC adding
read permissions from an object may cause it to move down in the partial order, however
there are no requirements regarding purging or sanitizing.

We consider only purging in this paper, see Sect. 7.3. It can be supposed that purging is
done instantly in state transitions.

7.3 State transformations in label-based systems
State changes or transformations in label-based systems with the lattice model have been
considered by many authors, starting with Sandhu [50],Foley[22,23,25], Bishop[13 Sect.5.2].
For consideration of the Cloud context, see Pasquier et al. [45]. For the transformation in
Figs. 1 and 7, if a canonical label-based system is used, the names of entities B,C,D disappear
from the label of I ; on the other hand, the label of A goes to contain the names of all entities.

Our theory is consistent with established theory, which considers that new flows are re-
lated to changes in entity’s labels, see the ‘high and low water mark’ policies (Weissman[58],
Biba[11], Foley [23,24], Sandhu [51]). We have seen that in label-based networks, the CF
relations are determined by the partial orders of label sets. If CFi(xi,yi) is false but CFi+1(x

i+1,y i+1) must be true, then Lab(xi) ≤ Lab(yi) is false and Lab(xi+1) ≤ Lab(y i+1) must be made
true. If labels are simple category sets, then Lab(xi) ⊆ Lab(yi) is false and Lab(x i+1) ⊆ Lab(y

i+1) must be made true. The reverse reasoning holds for removing flows. As mentioned, purg-
ing policies may require that an entity be purged of the data of the removed categories. This
is particularly clear with canonical labeling. However note that label changes do not neces-
sarily change the partial order, if so they won’t cause flow changes or entity relocations.

Policies or requirements may dictate that, as data flows change, certain network proper-
ties must be kept invariant. In our method there is a single mechanism to do this, as long as
the properties can be expressed in terms on reachable labels: First, an appropriate set of
labels is defined, and then the transformations can only use labels in this set. In Sect. 6 we

18

have seen how different label sets can be defined to enforce certain requirements. If the re-
quirements must hold over state changes, the label changes must use only labels in those
sets. If labels are used to indicate data provenance, the partial order defines the minimum
and maximum levels of secrecy and integrity allowed for data of each provenance, and which
combinations of data provenances are allowed or required. In succeeding states, labels will
show the provenance of the data that can have flown into the entities.

Figure 9 (Ex.11): Partially ordered set of allowed labels

(a)

(b)

(c)

(d)

Figure 10 (Ex.11): Transformation Scenario

In particular, Chinese-wall (Brewer-Nash) conflict policies can be implemented by forbid-

ding labels allowing flows from conflicting entities into any entity. This is not the usual defi-
nition of these policies, but it addresses the same concerns, see Ex. 4 and Ex. 11. Essentially,

{}

{S}{C2} {C1}

{B1,S} {C2,S}

{B1,C2,S} {B1,S,C1} {S,C1,B2}

{S,C1} {S,B2}

Bank1:<{B1,S}> Bank2:<{B2,S}>

Server:<{S}>

Bank1:<{B1,S,C1}> Bank2:<{B2,S,C1}>

Server: <{S,C1}>

Comp1: <{C1}>

Bank1:
<{B1,S,C2}>

Bank2:
<{B2,S,C1}>

Server:
<{S,C1}>

Comp1:<{C1}>

Comp2:
<{C2}>

Bank1,
Server:

<{B1,S,C2}>

Bank2:
<{B2,S,C1}>

Comp1:<{C1}>Comp2:<{C2}>

19

our model is consistent with the models of Sandhu [50] and Sharifi, Tripunitara [54], alt-
hough we do not distinguish here between subjects and objects.

Example 11. We will see how two types of security requirements can be expressed simul-
taneously by using our method: conflicts and conglomerates, see Sect. 6. In this example, la-
bels are simple category sets, indicating data provenance, partially ordered by the set inclu-
sion relation.

We have two banks, two companies and a data server. The following security require-
ments (policies) must be observed:

1) Separation of data (conflict) must be observed between the two banks, the two com-
panies, and Bank2 with Company2. With some obvious abbreviations, these require-
ments are expressed by forbidding labels containing the following subsets: {B1,B2},
{C1,C2}, {B2,C2}.

2) In addition, both banks need data from the server, thus whenever one of B1 or B2 ap-
pears in a label, this must be in combination (conglomerate) with S.

The resulting partial order of allowed labels is shown in Fig. 9. Note that if the lattice
model was used, some labels contradicting the requirements would have to be included, and
then it would have to be said that they cannot be used.

The purging policy will be as follows: if and when CF(x,y) becomes false, then one of the
following has to be done:

• purging from y data that might have flown from x and removing the name of x from
the label of y

• or not purging and leaving the name of x in the label of y. In this second case, the
resulting labels will not be canonical.

A possible sequence of transformations for this network is as follows, see Fig. 10 (men-
tioning only some significant steps).

(a) We take this as the starting state: we have a Server with data flows towards two banks
in conflict of interests.

(b) Company1 comes in (is created) and a data flow is created from it to Server and ex-
tending to the two banks. To do this, C1 is added to the labels of Server and the two
banks.

(c) Company2 comes in and is in conflict of interest with Company1 and Bank2, but not
with Bank1. It is decided that Company2 should work with Bank1. To do this while
avoiding creating a label containing the forbidden combination {C1,C2}, C1 is removed
from the label of Bank1, the flow from Company1 to Bank1 is lost, and Company1 data
are purged from Bank1. Since Server keeps C1 in the label, the flow from it to Bank1
is also lost, but Bank1 keeps S in its label and does not purge Server data. Then C2 is
added to the label of Bank1, giving <{B1,S,C2}>. This opens a data flow from Com-
pany2 to Bank1. We still have the flow from Company1 to Bank2 through Server. Note
that S has been kept in Bank1’ s label to remember that Bank1 might still have previ-
ously acquired Server data, which it might continue to need. This can be useful e.g. if
in the future Bank1 requests to access data sets in conflict with Server, or, if Server
returns to its initial state by purging data acquired in the meantime, it will again be
able to flow to Bank1 without the need of authorizations.

(d) It is now decided to give Server in exclusive use to Bank1. To avoid the forbidden label
combination {C1,C2}, C1 is removed from the label of Server , and Company1 data are

20

purged from Server. {B1,C2} is then added to the label of Server. This makes Bank1
and Server equivalent, they are now connected by a bidirectional flow and Company2
data can flow to them.

If desired, now the two remaining unidirectional flows can be made bidirectional, by ap-
propriate label changes. This would transform the system into two equivalence classes of
entities, one containing Bank1, the Server and Company2 with label <{B1,S,C2}> and the
other containing Bank2 and Company1, with label <{B2,S,C1}>. This having been done, all
entities will be at their highest possible levels but other states can be reached by moving
entities down the partial order, or by creating or removing entities.

Since the label transformations in this example have followed the partial order of Fig. 9,
in upwards or downwards directions, the mentioned system’s data security requirements
have been respected in all network states.

We have assumed that all requirements and label sets are known in advance. In a real
system, however, these may change. For example, at state (a) it is possible that the label set
be limited to <{}>,<{S}>,<{B1,S}>,<{B2,S}>. At successive states, new categories may
come in, possibly with new requirements. With the inclusion of category C1, for which there
are no requirements with respect to previously included categories, the set of labels is in-
creased with the following possibilities: <{C1}>, <{S,C1}>, <{B1,S,C1}>, <{B2,S,C2}>. The
inclusion of category C2 with its conflict requirements leads to the labels in Fig. 9. New re-
quirements may create exceptions with respect to previous ones, e.g. we have mentioned in
Ex. 4 that the combination {B1,B2} may be allowed in the presence of some new category,
such as the CentralBank. This subject requires further study.

As we have seen in Sect. 6, many types of security requirements or policies can be ex-
pressed by using labels, and so this method is powerful, although to be practical it needs a
useful administration model, which should be developed in terms of state transitions.

8. Algorithms and complexity
This section outlines some existing algorithms that can be used to support our method, and
provides some rough estimates of the time that can be required for state changes, which
would be down time for the whole network. We consider the ideal case where the network
administrator maintains the Channeli, CFi and ⊑i matrices for the current state i (the first is
indispensable, but the other two are useful to avoid recomputing them).

The useful algorithms, mentioned so far, are the following (in the complexity expressions
below, n is the number of entities, m is the number of channels and O the order of complex-
ity; only time complexity has been considered).

a) Transitive closure algorithm of a digraph, whose complexity is approximatively O(n3)
(Aho, Ullman [2]).

b) Transitive reduction algorithm, which has the same time complexity, in fact it turns
out to be essentially the same algorithm as a) (Aho, Ullman [2]).

c) Strongly connected component algorithms, such as the one of Tarjan [57]. These algo-
rithms also yield the partial order of the components that they find. Their complexity
is O(n+m).

d) Digraph isomorphism algorithms. Research claims ‘quasi-polynomial’ efficiency with
various O-formulae where log(n) is in the exponent. A recent survey on this topic is in
Grohe, Schweitzer [28].

These algorithms can be used respectively for:

21

a) Obtaining the CF relation from a Channel relation or Lab function.
b) Reducing a CF relation to yield a reduced number of channels.
c) Finding the equivalence classes and their partial order (⊑ relation) from a CF rela-

tion.
d) Determining whether two partial order graphs are isomorphic. In our method, an ap-

plication of this algorithm is for checking whether an implementation is correct with
respect to a given partial order digraph, see Implementation methods at the end of
Sect. 4.

Research continues in graph and partial order algorithms and better complexity bounds
are being found. This summary discussion has the only goal of showing that, except for d),
the computations needed can be done with efficient algorithms not exceeding polynomial, in
fact cubic, complexity. So for operations a) to c), we can retain O(n3) as the worst-case order
of complexity.

For each state change, the straightforward, unoptimized method is:
1) Compute the new CF relation.
2) Compute the new equivalence classes of entities, algorithm c).
3) Use one of the implementation methods of Sect. 4 to define the new Channel relation;

we have seen that this may involve using algorithms b) and d).
The real computation time spent for the whole state change process is difficult to estimate,

among others it is not possible to evaluate the time spent for step 3), where several solutions
can be considered. But if implementation method 1) is used, and CF is simply reduced tran-
sitively, then we can take O(n3) to be the order of complexity of the whole process. So for a
network of 105 entities, the order of complexity of the algorithms to be executed at each state
change is O(1015). If the routing is centralized, these are all internal calculations in one com-
puter, the administrator’s. Simulation runs for a closely related problem were given by Stam-
bouli, Logrippo in [56]. We refer to this paper for details, and we mention here only that for
10,000 nodes or entities the calculation time was 97 seconds, raising to about 1,75 hours for
100,000 entities (however as mentioned exponential growth is excluded). Consider that net-
works will be often partitioned by application areas, and more efficient methods will cer-
tainly be found. Also, it may be possible to adapt for use in this area the extremely efficient
graph processing programs that have been developed for use in the natural sciences and en-
gineering.

We have mentioned that beyond this, one can devise implementation methods for opti-
mizing according to some criteria the Channel relation. New physical channels may have to
be opened or some existing ones may have to be closed. Some of the needed channels may
be already available, perhaps by transitivity, others may have to be created with varying
costs. Channels can be more or less efficient with respect to Quality of service requirements.
So implementations will involve the consideration of various requirements, costs and
weights. However in general, networks do not need to be reduced or optimized, on the con-
trary often redundancy is considered to be beneficial.

In practice, centralized methods may be unfeasible and then it will be necessary to devise
decentralized and ‘on the fly’ methods. These are unlikely to produce optimized networks by
any criteria, however, as just mentioned, this is rarely important.

22

9. Discussion
The basic reference for the problem of data flow control for security is still considered to be
the lattice model of Denning [17] with its presentation by Sandhu [51], and variations pro-
posed by others. This model considers networks of entities that are labeled by security clas-
ses (or levels) which must form lattices. By using a partial order model, our paper extends
and generalizes the lattice model, namely:

1. We have noted that rarely networks are defined as lattices with labeling, in fact sev-
eral other methods of defining networks are listed at the beginning of Sect. 4.

2. We have shown in Sect. 4 that any non-trivial network defines a partial order of equiv-
alence classes of entities having different levels of secrecy and integrity.

3. We have shown in Sect. 6 and [56] that with the partial order model any capability list
or access control matrix or Channel relation can be translated into a label-based (ca-
nonical) network and vice-versa, establishing the essential equivalence of all these
network definition methods; whereas if labels must form lattices there are access con-
trol matrices that cannot be translated into label-based networks.

4. Our model does not need the defining property of lattices, which is the existence of
unique joins and meets.

5. We have noted that transforming non-lattice networks into lattices requires the inclu-
sion of arbitrary meets, joins and channels that can contradict requirements (end of
Sect. 6); this transformation can be non-trivial (Bertet et al. [10]) and is unnecessary
in our model.

6. We have also seen (Sect. 7.1) that, for the same reason, network transformations can
be more easily defined on the basis of a partial order model, than on the basis of a
lattice model.

The concept of levels of security has long been associated with Mandatory Access Control
security models and considered to be too restrictive, and therefore of limited application: it
is a fact that the support of these models in terms of commercial products is limited. On the
contrary, levels of security exist in any network if the ‘lattice’ hypothesis is relaxed. This ob-
servation enables a more unified theory of access control and data flow control than it has
been possible so far.

We have seen (Sect. 5) that for the placement of data, it is necessary to determine the level
structure of the network, which can be done efficiently with strongly connected component
algorithms, and place data accordingly. We have mentioned that network transformations
may require policies to purge or declassify data.

Let us take a critical look at the two assumptions of reflexivity and transitivity, which are
also adopted in most formulation of lattice-based theory. Reflexivity seems to be an easy as-
sumption, as normally entities have access to their own data and if there is data flow parti-
tioning within an entity, then the entity can be conceptually split. Transitivity is an assump-
tion that is adopted by much research on data flow control. This assumption can be defended
on two grounds. First, it is a pessimistic assumption that can lead to over-protected net-
works, often a useful property in security. Second, non-transitivity may be modeled in tran-
sitive networks by splitting some entities in two or more, some with outgoing edges and
some without, and dividing the data accordingly. Non-transitive networks have been moti-
vated and studied in several papers, among others in the mentioned work by Foley (refer-
ences [20,21,24]) and also in Rushby [48]. Non-transitive flow assumptions are important in

23

security, because in some cases it is necessary to assume that some data will not be passed
on. This question is related to the question of transitivity of trust in social and other networks
(Huang et al. [31], Adelmayer[1]).

Multi-layer security theory has been often concerned with hidden channels. As mentioned
in Sect. 4, these can be seen as augmenting the Channel relation and so modifying a perceived
partial order, which is a vulnerability of all access control and data flow control systems.
Hidden channels outgoing the top-level entities, or ingoing the bottom-level ones are the
most dangerous for secrecy or integrity respectively. Our framework does not correct these
vulnerabilities but can model them and enables to see their effects. This seems to be a useful
starting point for research on threat analysis.

In many organizations, data flow issues are dealt with by specializing data bases and rig-
idly regulating channels. For example, there may be separate data bases for financial data,
for personnel data, and so on, with access control policies often following the RBAC model.
In the method we propose, it should be possible to define global networks to express all such
structures, where flows can be directly opened or closed by administrative decisions, for
specific categories of data. In Ex. 11 we have also seen that constraints on labels can ensure
that only allowed data flows are created. When the set of labels can be changed, other possi-
bilities arise, e.g. in other work (Boulares et al. [15]), we have shown that it may be useful to
dynamically create security levels corresponding to entity data contents, depending on the
evolution of data flows.

The practical usefulness of our method can be questioned in cases where the Channel re-
lation can change rapidly over time (Matousek et al. [38]) or where it is difficult to calculate,
as can happen for example in telecommunications networks or ABAC. However at each state,
short lived as it might be, there will be a partial order of equivalence classes with corre-
sponding data flow relations. Hence it is necessary to determine what data flow relations
must be kept invariant and plan transformations accordingly (Foley et al. [25]). For example,
entities designated to contain the most secret data should remain at the top layer, while en-
tities representing data gathering devices such as sensors should be kept at the lowest layer.
This can be done by requirements on the allowed labels for some entities, e.g. it can be stip-
ulated that entities of type ‘sensor’ can only have labels containing the names of the entities
in their equivalence classes. Such requirements can be enforced through state changes.

In each partial order, data can flow upwards only, from their initial position towards the
top. So for practical applications it will be necessary to have several coexisting partial orders
at each network state. Logrippo and Stambouli [37] present an e-commerce example where
two partial orders must coexist: one to carry orders from clients to providers, and a second
one to carry billing data in the opposite direction. As well, in many organizations and in the
military, field data flow from the field to the command, and directives flow from the com-
mand to the field. This can be achieved by extending our approach: data will have to be clas-
sified and labeled by type, and each type will have its own Channel relation. Further, it will
be necessary to introduce the concept of trusted entity, which has a long history in data se-
curity (Bell, La Padula [8], Myers, Liskov [41]). Such entities can belong to several partial
orders and can be trusted to keep separate the data of the different data types that can flow
through them.

The problems of data security in organizational network and the IoT are very complex,
since such systems have many needs, aspects and interactions, as well as specific architec-
tures and data flows, often varying from application to application. The theory presented

24

here, whose applicability to the IoT is mentioned in Ex. 1 and 11, is far from addressing all
these complexities. Even within the realm of its potential usefulness, this work will have to
be complemented by implementation methods for real-life networks, demonstrated on prac-
tical case studies, etc. However we have made the point that a theory based on partial orders
can be feasible and more generally applicable as a conceptual framework than the still widely
mentioned theory based on lattices.

Note that we have only dealt with data flow, and not with information flow in this paper.
The latter can occur as the combined effect of data flows and inferences (Denning [18],
Gollmann [27 Sect. 3.3]) and can create hidden channels. Inferences allow to create infor-
mation, which then can be transferred as data, and may make it possible to transfer data that
should not be transferred according to access control or data flow control policies (for ex-
ample, a date of birth that should be a secret can perhaps be inferred from non-secret data
and then broadcast). Mechanisms to control inferences are quite different from those used
for data flow control, and they are the subject of a different literature. However it can be
safely said that no inferences are possible on data that are not available, and in this sense
data flow control is a more specific mechanism than information flow control.

10. Conclusions
We have shown in this paper that, although most research on data flow security adopts the
lattice model, a partial order model is more general and simpler. Going back to the research
questions proposed in Sect. 1, we have seen that in our theory the secrecy and integrity ques-
tions can be answered by computing the ⊑ relation. In Sect. 5, we have shown that we are
able to classify entities by levels of secrecy and integrity. In the same section, we have seen
how secrecy and integrity policies can be satisfied by appropriately placing entities in partial
orders. In Sect. 7.3 we have shown that certain security requirements or policies can be
maintained through state transitions by imposing the rule that only certain labels are al-
lowed.

The examples of Section 6 have revisited, from this new point of view, several well-known
concepts in data security theory and practice: conflicts (Brewer - Nash or Chinese wall), con-
glomeration, aggregation, composite labeling systems, etc. We have confirmed a result al-
ready presented in Stambouli, Logrippo [56] showing that, with our definitions, arbitrary
access control lists can be translated into labeled systems where labels are simple sets of
categories, and vice-versa; then data flow control rules or access control rules reduce to sim-
ple inclusion relations between such sets. Network transformations were defined as intro-
duction or deletion of entities, or other changes in data flows, normally due to administrative
or user action, or policies. We have also shown by examples (chiefly 1and 11) that our net-
works can be interpreted as Internet of things networks, an area where data secrecy, integ-
rity and privacy are very important but few applicable principles are known.

Some questions for future research were mentioned in the paper. On the theoretical level,
there is the question of reinterpreting established security concepts, for example the theory
of RBAC administration can be reformulated in terms of state changes. On the practical level,
there is the question of the implementation of our method. We have seen that efficient algo-
rithms exist, which opens the door to software tools to support the related design and ad-
ministration activities.

25

Acknowledgment. This research was funded in part by a grant of the Natural Sciences and
Engineering Research Council of Canada. The author is grateful to his PhD student, Ab-
delouadoud Stambouli, for useful discussions, and to his colleague Jurek Czyzowicz, always
ready to answer questions on partial orders and algorithms. The feedback from the referees
led to several improvements.

References
1. F.M.Adelmayer, M. Walterbusch, P. Biermanski, F. Teuteberg. Trust transitivity and trust

propagation in cloud computing ecosystems. Proc. 26th European Conf. on Inform. Sys-
tems (ECIS2018).

2. A.V. Aho, M.R. Garey, J.D. Ullman. The transitive reduction of a directed graph. SIAM J.
Comput. 1(2), 1972, 131-137.

3. A.V. Aho, J.E. Hopcroft, J.D. Ullman. The design and analysis of computer algorithms. Ad-
dison-Wesley, 1974.

4. A. Al-Haj, B. Aziz. Enforcing multi-level security policies in data-base defined networks
using row-level security. Proc. Intern. Conf. on Networked Systems (NetSys2019), 1-6.

5. P. Amthor, W. E. Kühnhauser, A.Pölck. WorSE: A workbench for model-based security en-
gineering. Computers and Security, 24 (2014) 40-55.

6. J. Bacon, D. Evans, D.M.Eyers, M. Migliavacca, P.Pietzuch, B.Shand. Enforcing end-to-end
application security in the Cloud. Proc. Middleware 2010, LNCS 6452, 293–312

7. J.Bang-Jensen, G.Z.Gutin. Digraphs – Theory, algorithms and applications. Springer, 2nd
Edition, 2009.

8. D.E. Bell, L.J. La Padula. Secure computer systems: unified exposition and Multics inter-
pretation. MTR-2997, Mitre Corp., Bedford, Mass., 1976.

9. S. Bera, S. Misra, A.V. Vasilakos. Software-defined networking for Internet of things: A
survey. IEEE Internet of Things Journal 4(6), 2017, 1994-2008.

10. K. Bertet, M. Morvan, L. Nourine. Lazy Completion of a Partial Order to the Smallest Lat-
tice. Proc. Intern. KRUSE Symposium: Knowledge Retrieval, Use and Storage for Effi-
ciency, 1997, 72–81.

11. K.J. Biba, Integrity considerations for secure computer systems. TR-3153. Mitre Corp.
Bedford, Mass., 1977.

12. G. Birkhoff. Lattice Theory, American Mathematical Society, 1967.
13. M. Bishop. Computer security, Art and science. 2nd edition. Addison-Wesley, 2019.
14. A. Botta, W. de Donato, V. Persico, A. Pescapé. On the integration of Cloud computing and

Internet of things. Proc. Intern. conf. on Future Internet of things and Cloud (FiCloud
2014), IEEE Comp. Soc., 23-30.

15. S.Boulares, K.Adi, L.Logrippo. Information flow-based security levels assessment for ac-
cess control systems. Proc. 6th Intern. MCETECH Conf. on eTechnologies, 2015. Springer
LNBIP 209, 105-121.

16. F. Cuppens. A modal logic framework to solve aggregation problems. In: Database Secu-
rity V: Status and Prospects, North-Holland,1992, 315-332.

17. D.E. Denning. A lattice model of secure information flow. Comm. ACM 19(5), 1976, 236-
243.

18. D.E. Denning, P.J. Denning. Data Security. Computer Surveys, 11(3), 1979, 227-249.
19. D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli. Role-based access control. 2nd Ed. Artech

House, 2007.

26

20. S.N. Foley. Lattices for security policies. Royal Signals and Radar Establishment, Malvern,
Report No. 90005, 1990.

21. S.N. Foley. Unifying information flow policies. Royal Signals and Radar Establishment,
Malvern, Report No. 90020, 1990.

22. S.N. Foley. A taxonomy for information flow policies and models. Proc. 1991 Symp. on
Res. in security and privacy. IEEE, 98-108.

23. S.N. Foley. Separation of duties using High water mark. Proc. Comput. Security Founda-
tions Worksh., IEEE, 1991.

24. S.N. Foley. Aggregation and separation as noninterference properties. Journal of Com-
puter Security, 1(2),159–188, 1992.

25. S.N Foley, L. Gong, X. Qian. A security model of dynamic labeling providing a tiered ap-
proach to verification. Proc. 1996 IEEE Symp. On Security and Privacy, 142-153.

26. R. Fraïssé. Theory of relations. North-Holland, 1986.
27. D. Gollmann. Computer Security. 3rd Ed., Wiley, 2011.
28. M. Grohe, P. Schweitzer. The graph isomorphism problem. Comm. ACM 63(11), 2020,

128-134.
29. F. Harary, R.Z. Norman, D. Cartwright. Structural models: an introduction to the theory of

directed graphs. Wiley, 1965.
30. V.C. Hu, D.F. Ferraiolo, R. Chandramouli, D.R. Kuhn. Attribute-Based Access Control. Ar-

tech House, 2018.
31. J. Huang, M.S. Fox, S, Mark. An ontology of trust: formal semantics and transitivity. Proc.

8th Intern. Conf. on Electronic Commerce (ICEC 2006), ACM Press, 259-270.
32. J. Jaskolka, R. Khedri, Q. Zhang. On the necessary conditions for covert channel existence:

A state-of-the-art survey. Proc. 3rd Intern. Conf. on Ambient Systems, Networks and Tech-
nologies (ANT 2012). Elsevier Procedia Computer Science 10(2012), 458-465.

33. S. Khobragade, N. V. Narendra Kumar, R. K. Shyamasundar. Secure synthesis of IoT via
readers-writers flow model. Proc. Intern. Conf. on Distrib. Computing and Internet Techn.
(ICDCIT 2018), LNCS 10722, 86–104.

34. C. E. Landwehr. Privacy research directions. Comm. ACM 59(2) (2016) 29-31.
35. L. Logrippo. Logical method for reasoning about access control and data flow control

models. Proc. 7th Intern. Symp. on foundations and practice of security (FPS 2014). LNCS
8930, 205-220.

36. L. Logrippo. Multi-level access control, directed graphs and partial orders in flow control
for data secrecy and privacy. Proc. of the 10th Intern. Symp. on Foundations and Practice
of Security (FPS 2017), LNCS 10723 (2018), 111-123.

37. L. Logrippo, A. Stambouli. Configuring data flows in the Internet of Things for security
and privacy requirements. Proc. 11th International Symp. on Foundations and Practice
of Security (FPS 2018). Springer LNCS Vol. 11358, 115-130.

38. P. Matousek, J. Rab, O. Rysavy, M. Sveda. A Formal Model for Network-Wide Security Anal-
ysis. Proc. 15th Ann. IEEE Intern. Conf. and Workshop on the Engineering of Computer
Based Systems (ECBS 2008), 171-181.

39. C. Meadows. Extending the Brewer-Nash model to a multilevel context. Proc. 1990 IEEE
Symp. on security and privacy, IEEE Computer Society, 95-102.

40. L. Moreau. The foundations for provenance on the Web. Foundations and trends in web
science. 2(2-3), 2010, 99-241

27

41. A. C. Myers, B. Liskov. Protecting privacy using the decentralized label model. ACM Trans.
on Software Eng. and Methodology, 9(4), 2000, 410-442.

42. N.V. Narendra Kumar, R. Shyamasundar. A Complete generative label model for lattice-
based access control models Proc. Software Engg and Formal Methods (SEFM 2017),
Springer LNCS 10469, 35–53, 2017.

43. S. Osborn. Information flow analysis for RBAC system. Proc. 7th ACM Symp. on Access
control models and technologies (SACMAT ‘02), 163-68.

44. J. Park, D. Nguyen, and R. Sandhu. A provenance-based access control model. Proc. Intern.
Conf. on Privacy, Security and Trust, IEEE, 2012, 137-144.

45. T. Pasquier, J. Singh, D. Eyers, J. Bacon. CamFlow: Managed Data-Sharing for Cloud Ser-
vices. IEEE Trans. on Cloud Computing, 5(3) 2017, 472-484.

46. T. Pasquier, J. Bacon, J. Singh, D. Eyers. 2016. Data-Centric Access Control for Cloud Com-
puting. Proc. 21st ACM Symp. on Access Control Models and Technologies (SACMAT '16),
81-88.

47. T. Pasquier, D. Eyers, J. Bacon. Personal data and the internet of things. It is time to care
about digital provenance. arXiv preprint arXiv:1904.00156, 2019.

48. J. Rushby. Noninterference, transitivity and channel-control security policies. Technical
Report, SRI International, May 2005.

49. A. Sabelfeld, D. Sands. Dimensions and principles of declassification. Proc. 18th IEEE
Computer Security Foundations Worksh. (CSFW’05), 255-271.

50. R.S. Sandhu. Lattice-based enforcement of Chinese Walls. Computers & Security Vol.
11(8), 1992, 753-763.

51. R.S. Sandhu. Lattice-based access control models. IEEE Computer 26(11), 1993, 9–19.
52. R.S. Sandhu, S. Jajodia. Data and database security and controls. Handbook of Information

Security Management, Auerbach Publishers, 1993, 481-499.
53. R.S. Sandhu. On five definitions of data integrity. In Database Security VII: Status and Pro-

spects, North-Holland, 1994, 257-267.
54. A. Sharifi, M.V. Tripunitara. Least-restrictive enforcement of the Chinese wall security

policy. Proc. 18th ACM Symp. on access control methods and technologies (SACMAT
2013), ACM, 61-72.

55. J. Singh, T.Pasquier, J.Bacon, H.Ko, D.Eyers. Twenty security considerations for cloud-sup-
ported Internet of Things. IEEE Internet of Things Journal, 3(3) (2016), 269-284.

56. A. Stambouli, L. Logrippo. Data flow analysis from capability lists, with application to
RBAC. Information Processing Letters, 141(2019), 30-40.

57. R. E. Tarjan. Depth-first search and linear graph algorithms, SIAM Journ. on Computing,
1(2) (1972), 146–160.

58. C. Weissman. Security controls in the ADEPT-50 time sharing system. Proc. 1969 AFIPS
fall joint computer conf. AFIPS Press, 119-133.

