Multi-level models for data security in networks and in the Internet of things

Luigi Logrippo
Université du Québec en Outaouais, University of Ottawa
luigi@uqo.ca

Abstract. Data flow control for security is a mature research area in computer security, and its established results can be adapted to the newer area of data security in the Internet of things or the Cloud. This paper takes a fundamental approach to the problem. It shows that, under reflexivity and transitivity assumptions, any network of communicating entities can be seen as a partial order of equivalence classes of entities, which is a simplification and generalization of current theory based on the lattice concept, where lattices are generated by labelling. Networks of communicating entities can be created in many ways, including routing, access control policies (possibly involving labelling), etc. Their intrinsic partial orders are necessary and sufficient for data security, hence in any such network entities will have greater or lower secrecy or integrity according to their position in the partial order. It is shown how complex labelling systems, capable of expressing many types of security requirements, can be constructed to assign entities to their appropriate positions in network partial orders. Established paradigms in data security, such as conflicts, conglomeration, aggregation, are introduced in examples. Then it is shown how entities can be added, removed or relocated in such partial orders, as a result of events such as user or administrative action. A label-based method is described to maintain security requirements through such transformations. Efficient algorithms exist to implement these concepts, they are applications of transitive closure algorithms and strongly connected component algorithms.

Keywords: Data flow control; data security; data secrecy; data confidentiality; data integrity; multi-layer systems; mandatory access control; security labeling systems; Chinese-wall; Brewer-Nash; data aggregation; data conglomeration, data provenance, Internet of things.

1. Introduction

This paper presents some basic concepts that underlie many models for data security. We deal with 'entities' that can model subjects or users in organizational networks, or databases, or 'things' in the Internet of things (IoT), or any entities that can hold data, send or receive them through data channels, which can be any means by which data can be transferred. A reflexive, transitive CanFlow relation models the fact that data can reach certain entities in a network from certain others, directly or indirectly through channels. This relation is shown to define preorders of entities or partial orders of components (the latter representing classes of equivalent entities). On this basis, the relation can be used to define basic concepts of secrecy (also called confidentiality in the literature) and integrity. Following the view that "the fundamental nature of a privacy violation is an improper information flow" (Landwehr [30]), secrecy requirements can address at least some privacy requirements. We consider also network state changes or transformations, caused by introduction of new entities, removal of entities, or relocation of entities. Data security methods based on labelling are presented as a special case. The efficiency of relevant algorithms is discussed. Several examples are introduced.

A prevailing theory on data flow security is based on the lattice model by which data-carrying entities must be organized in lattices of security level. We show in this paper that a simpler and more general theory can be based on the more general concept of partial order. Under the same assumptions of the lattice-based theory, any network can be seen as a partial order of entities, where data secrecy increases as we go up in the partial order, and data integrity increases as we go down. Although this is a theoretical model, we show by examples
that it has practical applications and we propose it for further development in the areas where the lattice model has been considered to be too restrictive, and in the new area of data security in the IoT, in which few if any models of principle exist for data security.

Note that we only deal with data flow, and not with 'information flow' in this paper. The latter can occur as the combined effect of data flows and inferences (Denning [15], Gollmann [24 Sect. 3.3]), and inferences are not considered here.

2. Previous work and contributions
The literature in this subject is extensive, in the order of hundreds of significant papers. It appeared starting in the 1970s, and especially in the 1980s and 90s. Much of it is now textbook material (Bishop [11 Chapter 5]). This literature cannot be cited here properly, and so we limit ourselves to reviewing the papers that have most directly influenced our work. At that time, the main method for data flow security in organizations was Mandatory access control (MAC) implemented by Multi-level access control methods (MLS) based on labeling. These methods were found to be applicable also to operating systems and, to some extent, to programming languages. However MLS methods were considered to be too restrictive and prone to attacks, and their usefulness was considered to be limited to high-security applications, such as the military, and so interest in them waned. We show in our papers that the applicability of MLS is general and we use the early literature as the basis of our work. More recently, interest in this topic has been revived because of the issue of data flow security in the Cloud and, most recently, in the Internet of things (IoT). Several basic concepts are shared among these two topics, see Singh et al. [51], Botta et al. [12].

Bell and La Padula [7] developed a fairly complex theory of data flow security based on partial orders of subjects and objects, system states, and state transitions caused by transition rules triggered by data access requests. Denning [14] simplified and generalized this and other early models by proposing a theory based on lattices of security classes (or labels) assigned to processes and objects, and on restricting data flows according to the order relations in the lattices. Our work belongs to her line of thought, except that we show that the concept of partial order is sufficient to develop a data flow security theory, independent of labeling.

Foley is the author who has most extensively written on data flow policies. Some of his papers on the subject are references [17 to 22], with [17,18] being two research reports summarizing his early research. These papers include much useful theory, examples and discussion that have inspired our work. Using the lattice model with labelling, Foley considered both intransitive data flow relations, noted ↝, and transitive ones, noted ⟷. Foley also considered many types of specialized data security requirements, a few of which will be considered here, especially in Sect. 6.

Sandhu [47,46] presented the applicability of lattice-based models with labelling for information flow security, considering secrecy, integrity and conflict requirements. He demonstrated the use of his model for representing several data flow security policies. Again, his theory and examples were very influential for us.

This valuable body of work remains to be revisited in the context of the IoT and the Cloud. Coming to our times, although the literature on security in the IoT and the Cloud has been abundant, few papers address the specific problems of data security, i.e. secrecy and integrity in those contexts. Several authors propose the use of variants of Role based access control (RBAC) (Ferraiolo et al. [16]) or Attribute based access control (ABAC) (Hu et al. [26]). These
methods address access control and not data flow control directly, and for this reason we do not review this literature. Data flow security is the main objective of this paper, because for real data security it is necessary to control where data can end up eventually (Denning [14]).

Bacon and her team [5,41,42,51] correctly insist on the importance of data flow control in the Cloud and the IoT. They present a IFC (information flow control) architecture and a tool, \textit{CamFlow} (Cambridge flow control architecture), that implements it, including support for application management and auditing, through operating-system and middleware support. Their work is based on labeling methods to represent both secrecy and integrity requirements and includes methods for label upgrades and downgrades. The concepts presented here are consistent with their approach but constitute a more general theory of data flow security that they could use.

Khobragade et al. [29] present a method for data flow security in the IoT based on the lattice model, and concepts of readers and writers. Our model is consistent with theirs, but simpler and more general. In fact, their examples are easily resolved in our formalism. Related research by the same group, presenting the use of labels for data flow control in the Cloud, is in Narendra Kumar and Shyamasundar [38].

Al-Haj and Aziz [4] propose a data-base method for configuring Software Defined Networks (SDN) with data flow paths that comply with given secrecy and integrity policies. We conjecture that a similar method can be used to implement the method proposed here.

This paper should be read with some background knowledge of previous work by the author and collaborators. Briefly, paper [32] uses graph theory to show that partial orders and multi-level models are necessary and sufficient models for designing data flow control systems in networks that can be represented by directed graphs. Paper [52] shows, by theory and simulation, that efficient algorithms exist to obtain partial order models for given access control matrices or Role based access control (RBAC) [16] permission lists; also it shows that, as a consequence, Label-based access control models can be obtained for any network with access control rules to data that can be specified (or translated into) access control matrices. These two papers use the concepts of subjects and objects and the \textit{CanRead} and \textit{CanWrite} relations [31]. Paper [33] unifies the concepts of subjects and objects into the concept of entity, and the \textit{CanRead} and \textit{CanWrite} relations into the \textit{CanFlow} relation. It shows, by using two examples, how the partial order this last relation implies can be used in order to design multi-layer secure networks in the IoT.

This new paper simplifies, generalizes and strengthens our previous conceptual models. Section 3 presents our basic mathematical concepts. Our Property 1, showing the relation between the partial order of entities in any network and the data flow direction, is independent of labeling, and holds in any reflexive, transitive network (Sect. 4). It is then shown how basic secrecy and integrity requirements can be defined in terms of data flows and partial orders (Sect. 5); a method is given to design networks that satisfy such requirements. When labeling is brought in in our model (Sect. 6), it is shown that secrecy and integrity concepts, together with related concepts such as conflicts, conglomerates, aggregates, can be represented by using composite labels that determine the place of entities in partial orders. This paper also shows how our model can be extended to express network transformations, expressing administrative, policy or user decisions that change the \textit{CanFlow} relation; security requirements can be maintained through such transformations (Sect. 7), by allowing only certain labels. The available algorithms that can be used to support this method are reviewed and shown to be efficient in Section 8.
3. Preorders, partial orders and Schröder’s theorem

A preorder (also known as quasi-order) is a transitive, reflexive relation. A partial order is a transitive, reflexive, antisymmetric relation. An equivalence is a transitive, reflexive, symmetric relation. Binary relations are represented here as digraphs, using bidirectional arrows where relations are symmetric. Partial orders are represented as directed acyclic graphs (DAGs) although by definition these should be antireflexive, as well as antisymmetric. To reduce cluttering, reflexivity will not be shown in drawings of graphs.

A crucial role will be played in this work by a basic result well known in order theory, relation theory and graph theory. Since this result is attributed to Ernst Schröder by Birkhoff [10 footnote to Th. 3], we call it Schröder’s theorem. We give here an informal account of its proof, in the two theories that will be used in this paper.

In order or relation theory, given a preorder relation \preceq over a set, consider the set of equivalence classes generated by the symmetries in \preceq. These equivalence classes are in a partial order relation (since the symmetries have been encapsulated in equivalence classes). Further, let us denote this partial order relation with the symbol \preceq, and let $[x] \equiv [y]$ be the equivalence class of set elements equivalent to x under \preceq: we have $x \preceq y$ iff $[x] \preceq [y]$ (Birkhoff [10 Th. 3] [Fraïssé 23 Sect. 2.2]).

Similarly, in digraph theory, if \preceq is represented by the edges of a digraph, then consider the maximally strongly connected subgraphs of this digraph (we call them the components) and condense each of them in a single node. The resulting condensed digraph is acyclic. There is a directed path between nodes in two components in the original digraph iff there is a directed path between the two components in the condensed digraph (Harary et al. [25 Chapt.3], Bang-Jensen, Gutin [6 Sect. 1.5]). Components correspond to equivalence classes and paths in the compressed digraph represent the relation \preceq.

There are algorithms which, given a partial order or digraph, can calculate the partial order \preceq or the corresponding condensed digraph, see Sect. 8. These are called strongly connected components algorithms. Since the set of equivalence classes in a preorder is uniquely defined, the result of these algorithms is uniquely defined.

We write $[x] \equiv [y]$ if $[x] \subseteq [y]$ and $[y] \subseteq [x]$. We write $[x] \subset [y]$ if $[x] \subseteq [y]$ but $[y] \not\subseteq [x]$ is false. Comparing set elements in partial orders, we use the term level, where $\text{level}(x) < \text{level}(y)$ iff $[x] \subset [y]$. When partial orders are represented by digraphs, then $\text{level}(x) < \text{level}(y)$ iff there is a directed path from node $[x]$ to node $[y]$ in the condensed graph. We say that $[x]$ is maximal in a partial order (a sink) if for all $[y]$, $[x] \subseteq [y]$ implies $[x] \equiv [y]$ and is minimal (a source) if for all $[y]$, $[y] \subseteq [x]$ implies $[x] \equiv [y]$. Following the usual terminology for MLS models (Bishop [11 Sect. 5.2.1]) we write that equivalence class $[y]$ dominates equivalence class $[x]$ iff $[x] \subseteq [y]$ and in this case we also say that entity y dominates entity x.

There will be some mention of efficient algorithms in this paper. This term will be taken in its usual meaning in complexity theory: algorithms that run in linear or polynomial time are considered to be efficient, see Aho, Ullman [3 Introduction].

4. Networks, preorders and partial orders

Definition 1: A network N is a finite set of entities with a binary relation Channel.

Thus a network can be fully defined by a Boolean matrix. Variables for entities will be written with the letters $x, y, z...$, constants (used in the examples) by names with upper-case
initials. In the first part of this paper, networks are considered to be fixed at a given state (Bishop [11 Sect. 2.1]).

The primitive concept of entity is generic and can be used, according to modeling needs, to model any entity capable of containing and transmitting data, by way of sending them, writing them, or being read, and for which access or data flow can be controlled at its level of granularity: subjects, objects, users, roles, hardware or software components such as databases or sensors, or also folders, files or data sets that can contain data of certain types.

The primitive relation Channel(xy) intuitively expresses the fact that, in the network under consideration, there is a relation from entity x to entity y, expressing the possibility that data can be directly transmitted from x to y, because of the existence of data transfer authorizations or of communication links, e.g.:

1. Read and write authorizations that can be expressed in Access control matrices (Bishop [11 Chapter 2]) or RBAC permission lists (Ferraiolo et al. [16 Sect. 3.2.2], Osborne [39]) can be represented as Channel relations (Stambouli and Logrippo [52]). If, in a given state, entity (subject) x can read or directly receive data from entity (object) y, then Channel(y,x) can be taken to be true in the network representing that state, while Channel(x,y) can be taken to be true if x can write on, or directly send data to y.

2. In particular, in access control systems of the Multi-level family (MLS) based on labelling, the sets of entities are mapped into partially ordered sets of labels. For a given mapping, access control authorizations, thus Channel relations, between entities exist according to the ordering of labels. Conventionally, the direction of channels is towards the top of the partial order. There are channels from entities at a secrecy level to entities at the same or higher level, but not in the opposite direction. Similarly, in integrity models (Biba [9]) there are channels from entities at a certain level of integrity to entities at an equal or lower level of integrity.

3. Distributed networks have routing relations that can be defined as Channel relations in our sense. Software defined networks (SDN) (Bera et al. [8], Al-Haj, Aziz [4]) provide an ideal method for implementing the theory presented in this paper, because the routing is controlled by centralized software.

4. Encryption can be interpreted as creating channels between entities. For example, it could be said that Channel(xy) is true iff y can decrypt what it receives from x.

5. Covert channels (Bishop [11 Sect. 18.1], Jaskolka [28]) can also be represented as Channel relations, if it is desired to examine the effects of their possible existence on data secrecy and integrity in a network.

6. Communication in social networks: for example, a user can have a folder of photos defined as an entity with channels towards certain friends.

7. Communication possibilities involving entities representing human users can be modeled by Channel relations.

Variations and combinations are known of these methods, and the literature is vast. We assume that, for any given method in any given network state, the Channel relation is well defined. In our network graphs, this relation is represented by directed arrows, and bidirectional arrows represent symmetrical relations, see Fig. 1(a).

Definition 2: The CanFlow relation for a network, written CF(x,y), is the reflexive and transitive closure of the Channel relation.
Thus \(CF \) can also be fully defined by a Boolean matrix. \(CF(x,y) \) means that data can flow from entity \(x \) to entity \(y \). In principle, the \textit{Channel} and \(CF \) relations could be identical. However in practice the first could be more easily determined from the data transfer relations mentioned in the points above. Also, at the network design stage, channels may have to be physically implemented, thus may have costs and so their number may have to be kept low; so a single \(CF \) relation may be implemented by several \textit{Channels}, taking advantage of transitivity.

If data can flow in both directions between any two entities in a set of entities, then all the entities in the set can be considered to be equivalent, in the sense that they can contain the same data.

\textbf{Definition 3}: We say that entities \(x \) and \(y \) are \textit{data equivalent} if \(CF(x,y) \) and \(CF(y,x) \).

We continue to use the notation of Sect. 3. By its reflexivity and transitivity, \(CF \) is a pre-order relation, as the relation \(\preceq \) above, and partitions the set of entities into equivalence classes by the data equivalence relation. By Schröder’s theorem there is a partial order relation between these equivalence classes. Formally:

\textbf{Property 1}: \(CF(x,y) \) iff \([x]\preceq[y] \)

Proof. Directly by Schröder’s theorem and Defs. 2 and 3.

In this sense, in any network data can flow (\(CF \) relation) \textit{upwards} only, starting from the lowest-level entities that can hold them to the highest-level entities, or from sources to sinks.

Our graphical representation of equivalence classes will be by double-sided rectangles, and arrows between them will represent the \(\preceq \) relation, see Fig.1(b).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{(a) A network of entities and (b) its partial order of equivalence classes}
\end{figure}

\textbf{Example 1}. Fig. 1(a) could be read as a IoT network, perhaps implemented by a combination of the methods mentioned above, with two classes of sensors: Sensor \(A \) and sensors \(B,C,D \). The first works alone, but the last three work together, perhaps to complement each other’s data. The nodes above might represent various types of processing nodes, data bases or whatever. We see here several structural concerns, some of which could be:

- Initially, the data from \(A \) and \(B,C,D \) should be kept separate;
- \(I \) is supposed to work only on \(B,C,D \)’s data while \(E,F,G,H \) use data from all sensors;
- \(J,K \) are the final users of the data gathered.

The partial order or condensed digraph of Fig. 1(b) can be obtained from the network of Fig. 1(a) by executing a strongly connected component algorithm.

To go from a partial order such as (b) to a channel graph such as (a) different methods can be used, such as:
Partial order implementation Method 1:
1) According to Property 1, define a \(CF \) relation between entities \(x \) and \(y \) such as \([x] \sqsubseteq [y] \).
2) This \(CF \) relation can be directly used as a Channel relation; it can also be transitively reduced to obtain a reduced Channel relation.

Partial order implementation Method 2:
1) For each equivalence class in a partial order, create channels between its entities in any way that establishes a \(CF \) relation between all pairs of them: this results in a set of strongly connected digraphs.
2) For each pair of equivalence classes such as \([x] \sqsubseteq [y]\), create the additional channels that are sufficient in order to establish a \(CF \) relation between at least one entity in \([x]\) and one entity in \([y]\).

Method 1 is short and elegant, but may lead to channel configurations that are impossible to implement, given the physical network characteristics (e.g. in the physical network there might be a direct channel from \(F \) to \(J \), as shown in the figure, but it might be impossible to create one between \(F \) and \(K \)). So in practice, it may be necessary to take into consideration pre-existing channels, cost and efficiency constraints etc. and this will be easier with method 2. Once the construction is complete, especially if it is done manually, it can be validated by using a strongly connected component algorithm to obtain the partial order of the constructed digraph and to check that it is isomorphic to the initially given partial order digraph.

Canonical label-based networks, described in Sect. 6, are also implementations of partial orders with label-based access control rules.

5. Secrecy (confidentiality), integrity and design from requirements

Data security is often defined as having (at least) the two aspects of secrecy and integrity, see Sandhu [46]. The relation \(CF \) can be used to express a concept of secrecy, taking \(CF(x,y) \) to mean that \(x \) is a secret of \(x \) and \(y \), or that \(x \) is visible to \(x \) and \(y \) (equivalently, \(y \) can know \(x \) or \(y \) is in the area of \(x \) in the terminology of Logrippo and Stambouli [32, 52]). Similarly, \(CF \) can be used to express a basic concept of integrity. If \(CF(x,y) \) we can say that the integrity of \(y \) can be affected by data from \(x \). Data integrity in security has had several, but related, definitions (Sandhu and Jajodia [48]). Our definition corresponds to what Sandhu [49] calls information flow integrity, for which the main historical reference is Biba [9].

Definition 4: Secrecy and integrity of entities. We say that \(x \) is less secret but has more integrity than \(y \) if \([x] \sqsubseteq [y]\), and we say that \(x \) is more secret and has less integrity than \(y \) if \([y] \sqsubseteq [x]\).

On this basis, for any network, it is possible to determine:
- What are the most secret and least secret entities: the most secret are those in the maximal equivalence classes or levels in the partial order (the sinks), because data cannot escape from them; the least secret are those in the minimal equivalence classes or levels (the sources), because their data can flow to levels above them.
- What are the entities with the highest and lowest integrity: the highest integrity belongs to the entities in the sources, since no extraneous data can flow into them; the lowest are in the sinks, for the converse reason.

So, by our definitions, the levels of secrecy and integrity are inversely correlated.

By following these principles, some related problems can be solved:
Given a number of datasets with secrecy and integrity requirements, it is possible to design a network where these are satisfied if the datasets can be placed in a partial order that satisfies the requirements. Using this partial order, a suitable network can be constructed, possibly with one entity per data set. An example, based on slightly different definitions, is in Logrippo [32].

If a network already exists and the partial order is given, then it must be checked whether the entities and channels in the network can implement the required partial order, or a larger one. If so, the datasets can be placed in the appropriate entities.

Example 2. The network of Fig.1 can be seen as a solution for the following security requirements:

- Secrecy: A’s data should only be visible to E,F,G,H and J,K; B,C,D’s data should be visible to all except A; I’s data should only be visible to J,K; and the same holds for the data from E,F,G,H; J,K’s data should be top-secret.
- Integrity: A’s data, as well as data from B,C,D should be top-integrity; A’s data can affect only the integrity of E,F,G,H or J,K, etc.; J,K will by consequence have bottom integrity.

Fig. 2 shows secrecy and integrity diagrams for this network. They can be read as superposed to the digraphs of Figs. 1(a) or (b). All these diagrams contain the same information, however the secrecy diagram shows more clearly where the data originate, while the integrity diagram shows more clearly where they can go. For complex networks, it will be useful to create them.

Other examples can be found in Logrippo, Stambouli [32,33].

6. Label-based access control and requirements

The use of labels is a time-honored method for assigning entities to security levels. It well predates the Bell-La Padula model [7], since the latter was devised to formalize practices well established in the military and other high-security enterprises such as banks and government. This method is still used, informally and formally, for access control in organizations, where a distinction is made between subjects and objects, reading and writing. We reduce these four concepts to the two concepts of entities and channels between entities.
Network requirements or policies define partially ordered sets of labels and the mapping from the set of entities to the set of labels, thus the allowed data flows. Labels are tuples whose elements come from partially ordered domains. Domains can be any partially ordered sets. In the examples of this paper, and according to established data flow security theory (Bishop [11 Sect. 5.2.1]), we consider two types of domains:

- Elementary domains, such as secrecy or integrity levels, with partial order relations understood in security theory
- Category sets, for which the partial order relation is set inclusion.

By the following ‘canonical’ construction and in Sect. 6 we will see that the former can be reduced to the latter. For now, we define a partial order between labels which is the coordinate wise partial order of the partial orders of the domains.

Definition 5: A label is a tuple of elements, each taken from a partially ordered set. A set of labels is uniform if all tuples are of the same cardinality and corresponding elements in the tuples are taken from the same domains. A network is said to be label-based if for all entities x in the network, the function $\text{Lab}(x)$ is defined in the same uniform set of labels.

The set of labels, being the product of partial orders, is also a partial order, which induces a partial order on the set of entities. So $[x] \subseteq [y]$ iff $\text{Lab}(x) \subseteq \text{Lab}(y)$, $[x] = [y]$ iff $\text{Lab}(x) = \text{Lab}(y)$. By Property 1, $\text{CF}(x, y)$ iff $\text{Lab}(x) \subseteq \text{Lab}(y)$. If a label is a simple set, $\text{Lab}(x) \subseteq \text{Lab}(y)$ iff $\text{Lab}(x) \subseteq \text{Lab}(y)$, and so $\text{CF}(x, y)$ iff $\text{Lab}(x) \subseteq \text{Lab}(y)$. These relations are consistent with the established theory of data security, which is based on the domination relation.

An entity x will be written with its label as $x := \langle a_1, \ldots, a_n \mid y_1, \ldots, y_n \rangle$ where a_1, \ldots, a_n come from elementary domains and $\{y_1, \ldots, y_n\}$ is a category set (we will only need one such set in our examples); empty elements will not be shown. Graphically, partially ordered label sets will be represented as DAGs with hexagonal nodes. Edges represent the \subseteq relation between labels, and also the \preceq relation between equivalence classes of entities with those labels.

Categories can be used to show the provenance of the data that can end up in entities. To do this, every source entity is labeled with the set of the names of the entities in its equivalence class, e.g. $x := \langle \{x, y, z\} \rangle$. Then every entity to which x can flow will contain the names of x, y, z in its label. We will see several examples of this in this paper. Note that we use here a very basic concept of provenance; for more complete views, that could be used to refine this research, see Moreau [36], Park et al. [40], Pasquier et al. [43].

For any network (whether label-based or not), it is possible to construct a label-based network that has the same partial order of equivalence classes, and where labels are sets of entity names, showing the provenance of the data in each entity.

Definition 6: A canonical label-based network is a label-based network where each label is a set of entity names in the network. For an entity $x, y \in \text{Lab}(x)$ iff $[y] \subseteq [x]$.

Such label-based networks are said to be ‘canonical’ because they exist and are unique for any network (because of the uniqueness of the partial order of entities in any network). Their labels can be computed efficiently using strongly connected component algorithms, see Sect. 8.

In such networks, one can see the secrecy and integrity of each entity, since the most secret entities are those whose names are not found in other entities, and the entities that have the most integrity are the ones that have only the names of the entities in their equivalence class in their labels.
Example 3. The canonical label-based network for the network of Fig. 1 is given in Fig. 3. The notation: \(B,C,D: \langle \{B,C,D\} \rangle \) in a double-sided rectangle means that entities \(B,C,D \) are in the same data equivalence class and for each the label is the set \(\{B,C,D\} \). Note the correspondence of this diagram with the integrity diagram of Fig. 2.

![Diagram](image)

Figure 3: Canonical label-based network for the network of Fig. 1

The following examples show how conflicts, aggregations, conglomerates, numerical requirements and other types of requirements can be represented with different types of labeling. These are types of requirements that have been studied in the literature on data flow security and have practical applications; hence it is important to show that they can be expressed in our theory.

Example 4: Conflicts. If two data categories are in conflict, then no entity is allowed to contain data from both of them (Sandhu [46], Foley [20,21]). In other words, if data categories \(x,y \) are in conflict, then the sets of entities for which \(x \) or \(y \) are a secret must be disjoint. This can be expressed using labels with sets showing categories: then no label can be allowed to contain the subset \(\{x,y\} \) or, in a practical example of two banks in conflict, \(\{Bank1, Bank2\} \). This could be said to be a ‘static Brewer-Nash or Chinese-wall policy’, whereas the real Chinese-wall policy is of a dynamic type, having been devised in order to prevent reaching such labels as a result of network transformations. This will be demonstrated in Example 11, Sect. 7.2. As a variation, it can be specified that there is no conflict in the presence of other categories, e.g. \(\{Bank1, Bank2, CentralBank\} \) could be allowed. One practical situation for this is the case where the Central Bank has to investigate possible collusion between the two banks, then some employees of the Central Bank will have to be assigned this label.

Example 5: Conglomeration. We have conglomerates when several combinations of data categories should be considered to be bound together, in the sense that if one of them is part of a flow, then the others must be included also. This was considered in Foley [19,21]. In our model, conglomerates can be taken care of by the opposite mechanism as conflicts, i.e. by the requirement that whenever an entity name appears in a label, then all its conglomerates should also appear. For example, if entities \(Company1 \) and \(Company2 \) are the two parts of a conglomerate, then each of them could be labeled \(\langle\{Com1,Com2\}\rangle \) and this pair should appear together in all labels. Another type of conglomeration is the asymmetrical one where \(Company1 \) can appear alone, while \(Company2 \) must appear in combination with \(Company1 \), then \(Company1 \) could be labeled \(\langle\{Com1\}\rangle \) while \(Company2 \) could be labeled \(\langle\{Com1,Com2\}\rangle \). Flow is allowed from the first to the second, but not vice-versa. This can be useful if \(Company2 \) controls \(Company1 \). See Example 11 in Sect. 7.2.
Example 6: Aggregation. With aggregation it is possible to specify that certain combinations of data categories have higher secrecy classification than others; usually this is a consequence of the fact that certain inferences are possible with those combinations (Sandhu, Jajodia [48], Foley [19,21], Meadows [35], Cuppens [13]). The following example shows how aggregations can be specified with labels. Consider a network with five levels of secrecy: Public (P), Unclassified (U), Confidential (C), Secret (S), TopSecret (T), with $P<U<C<S<T$. There are three data categories, X, Y, Z. Taken by itself, each data category is at secrecy level P. However, $\{X,Y\}$ is U, $\{Y,Z\}$ is C, $\{X,Z\}$ is S and $\{X,Y,Z\}$ is T. The label set and partial order corresponding to these classifications are shown in Fig. 4.

![Figure 4: Partially ordered label set for aggregation example](image)

Example 7: Cardinality requirements. Typical is a requirement that no entity should have in its label more than n different categories (Foley [19]). This can be immediately implemented.

Example 8: Labels with both secrecy and integrity levels. For secrecy we use two classifications: Public, Secret, abbreviated P and S with $P<S$. For integrity, we have three classifications: I_1, I_2, I_3. I_1 is the highest integrity level while I_2 and I_3 are lower but are mutually incomparable. Flow is allowed from high to low integrity level, thus we have: $I_1<I_2$ and $I_1<I_3$. The set of labels for this example is the product of these two partial orders. Fig. 5 shows all possible labels for these policies. So each entity in the network will have a label indicating its secrecy and integrity level and the partial order shown in the figure describes the data flow relationships between the entities. A network's policies could use only some of the six labels.

![Figure 5: Partially ordered label set for combined secrecy and integrity example](image)

Example 9: Labels with secrecy, integrity and categories. We consider here a combination of secrecy and integrity requirements with requirements on data categories. Fig. 6 shows six...
entities with their labels. We have three secrecy levels ordered \(\text{Pub} < \text{Clas} < \text{Sec} \) and two integrity levels ordered \(\text{Cert} < \text{Gen} \). We also have three data categories, \(\text{Fin}, \text{Med}, \text{Oth} \) (Financial, Medical, Other). Labels can contain subsets of this set, according to the allowed content of the corresponding entities. The set of all possible labels has 48 elements, and we will not show it. We only show the equivalence classes of the entities in the table with their data flows. The equivalence classes have only one element, with the exception of the equivalence class of the two elements \(E1 \) and \(E6 \), both mapping on the label \(<\text{Pub,Gen,Fin}>\). For example, we see that data of category Other are visible only to (are a secret of) entities \(E3 \) and \(E5 \). However \(E3 \) can only get Public or Certified data of this category, while \(E5 \) can get Public or Classified data, also Certified or Generic data in this category. Since the set \(\{\text{Med,Oth}\} \) does not appear, these two categories could be in conflict.

Figure 6: Labels and data flows for secrecy, integrity and categories

Much more sophisticated options are possible, because of the many possibilities of label purposes and combinations. Going back to Example 4, for \(\text{Bank1} \) two entities could be created, one with \(\text{Bank1} \)'s secret data, not to be shared with anyone, and one with \(\text{Bank1} \)'s public data, to be shared with all other entities, including \(\text{Bank2} \). A more complicated scheme would be to split a bank in three entities: one secret, one confidential for data to share with allied companies, and one public. The confidential level could be split further in several sub-levels, one for each collaborating company. And so on. Each of these possibilities yields a partial order of labels.

The product of different partial orders used above can be uniformed to only one partially ordered set by using only the concept of category. In Example 9 one can replace ‘secrecy levels’ by ‘secrecy categories’, with \(\{\text{Pub}\} \subset \{\text{Pub,Clas}\} \subset \{\text{Pub,Clas,Sec}\} \). For integrity, we have \(\{\text{Cert}\} \subset \{\text{Cert,Gen}\} \). This is justified because Classified entities can also contain Public data and so on, and similarly for integrity. Then we have a product of three partial orders that are all sets of data categories with inclusion. These can be merged into one single partial order of sets of categories with inclusion. For example, the label for \(E2 \) becomes \(<\{\text{Pub,Clas,Sec,Cert,Fin,Med}\}>\). These new labels yield the same partial order as the one in Fig. 6.

The construction of canonical label-based networks and the construction above are very different, but they agree on the fact that, for the data security model presented here, labels consisting of simple category sets are sufficient.

Note that, in the examples above, the use of the lattice model would require adding unnecessary and even unwanted entities and labels, such as labels containing conflicting data categories (Example 4) or incomparable ones (Example 8).
Label-based requirements can be enforced through network transformations by stipulating that only allowed labels are reachable, we will see this in Sect. 7.3.

7. State changes or transformations in networks

7.1 Addition, removal, relocation of entities

State changes, i.e. state transitions or transformations (Bishop [11 Sect. 2.3 and 5.2.3]), can occur in networks for a variety of events, such as user or administrative action, or changes of environmental variables including time- or location-dependent ones, according to policies. There is abundant literature showing that state changes can lead to security breaches, not only in Discretionary access control models, but also in MLS. A controversy on the Bell-La Padula model led to the definition of ‘tranquility principle’. This is now textbook material [11 Sect. 5.3]. In general terms, we only say that, for any network, rigorous policies and auditing must exist, establishing mechanisms and prerequisites for safe transformations. Data purging, an important mechanism, will be mentioned in Sects. 7.2 and 7.3.

We consider an unbounded set of network states \(N_0 \subseteq N_1 \ldots\). Each \(N_i\) is a network with its entities \(x_0, y_1, \ldots\), Channel and the derived \(CF\) relations with partial order \(\preceq\). So entities keep their names through state changes but their indexes represent the current state. Transformations are defined on partial orders, which represent clearly the data flow relations. Three transformations are considered, as follows:

Definition 7: Network transformations.

We say that

1) \(x\) is added in \(N_{i+1}\) if there is no \([x_i]\) but there is \([x_{i+1}]\)
2) \(x\) is removed in \(N_{i+1}\) if there is an \([x_i]\) but no \([x_{i+1}]\)
3) \(x\) is relocated in \(N_{i+1}\) with respect to \(N_i\) if there are \([x_i], [x_{i+1}], [y_i], [y_{i+1}]\) such that the relation between \([x_i]\) and \([y_i]\) is different as the relation between \([x_{i+1}]\) and \([y_{i+1}]\).

Since the result of each transformation is a network, each transformation yields a partial order of equivalence classes of entities, with possibly different Channel, \(CF\) and \(\preceq\) relations. By extension of the previous result, within each network we can only have ‘upward’ data flows in the network’s partial order:

Property 2: For all \(i, CF_i(x_i y_i) \iff [x_i] \preceq [y_i].\)

Proof: The proof of Property 1 holds for each \(N_i\).

Note that if lattices instead of partial orders are used to model networks and transformations, the transformation of a lattice will not necessarily yield a lattice, and then the lattice structure will have to be recovered in some way.

Because of the global nature of partial order relations, additions and removals of entities may cause relocations of other entities. Relocations can also be caused by the creation or removal of channels, since removing channels or flows towards (from) an entity may move it down (up) in the partial order, increasing (decreasing) its integrity but decreasing (increasing) its secrecy, and vice-versa for adding channels or flows. Relocation of one entity causes relocation of others. All this may deserve to be studied within partial order theory, but the above is sufficient for this paper.

Also, we do not discuss in this paper who can ask for transformations or what policies might be used to allow or deny them. This is the subject matter of network administration.
Example 10. We go back to Fig. 1, and we take it as our N_0. In Fig. 79(c) we have removed all outgoing flows from A and thus we have increased its secrecy to the maximum; however by adding incoming flows to it, its integrity has been decreased to the minimum. The converse has been done for I. Fig. 7(d) presents a possible implementation of this partial order. It was obtained by the partial order implementation method 2 of Sect. 4, re-using most channels in the initial configurations and adding some. The channel from D to K has become optional because of transitivity. This is our N_i for $i>0$. (Unfortunately this example is not consistent with the interpretation we have given of Fig. 1(a) earlier, but we use it to reduce the number of figures.)

![Diagram](image_url)

Figure 7: Network transformations through partial orders

Note that the figures can be read in the opposite direction, to illustrate opposite transformations from (d) to (a).

The network administrator should maintain the Channel, CF_i and \preceq_i matrices for the current state i. Recall that the second two can be obtained from the first one by efficient algorithms.

7.2 Data flows over transformations

We assume that each entity can ‘remember’ data from a state to the next, thus causing interstate flows. Note that we need not be concerned about entities that have been added, nor about entities that have been removed: the former have no memory of previous flows and the latter cannot pass it on.

The interstate flow relation will be denoted by CFS. We take this to be a transitive relation, but anti-reflexive and anti-symmetric.

In particular, data can flow between two entities in adjacent states

- if they can flow between the entities in the first state (the destination entity will then remember the data in the next state),
- or if they can flow to an intermediate entity in the first state, from which they can flow to the other one in the next state.

Essentially, the flow can be direct for an entity by memory, or indirect through other entities that can carry data from a state to the next. Fig. 8 illustrates the two possibilities, one in continuous lines and the other in dashed lines. Thinner lines represent ‘memory through states’ (relation CFS) and thicker lines represent flows within states (relation CP).
These intuitions are captured by the following:

Definition 8: $\text{CFS}(x_iy_{i+1}) \overset{\text{def}}{=} CF_i(x_iy_i)$ or for some z ($CF_i(x_iz)$ and $CF_{i+1}(z_{i+1}y_{i+1})$), or equivalently: $\text{CFS}(x_iy_{i+1}) \overset{\text{def}}{=} [x_i] \sqsubseteq [y_i]$ or for some z ($[x_i] \sqsubseteq [z_i]$ and $[z_{i+1}] \sqsubseteq_{i+1} [y_{i+1}]$)

Definition 8 holds not only for distinct x,y,z but also for all combinations of: $x=y$ or $x=z$ or $y=z$.

This does not ensure data security because entities may be relocated by transformations, and the data they contain may be exposed by new data flows in following states. E.g. $[x_i] \sqsubseteq [y_i]$ could be true but $[x_{i+1}] \sqsubseteq_{i+1} [y_{i+1}]$ false. Security policies may require that, if a transformation creates the possibility of certain new data flows for an entity, then the desired security properties should be preserved by using known mechanisms called data purging, sanitizing or declassification. This is a complex problem, among others in practice it is not sufficient to remove data with certain labels, since entities may have the capability of processing the data received, so that these are no longer easily traceable to their source, unless full-fledged provenance labeling is used (Moreau [36], Park et al. [40]). A survey on this problem is in Sabelfeld, Sands [45], an early discussion on it with theory and examples can be found in Foley [21], Pasquier et al. [42] discuss it in Cloud and IoT contexts, while Myers and Liskov [37] provide interesting examples. With reference to the example of Figs. 1 and 7, we see that the flow from entities B,C,D, to entity I is true before and false after the transformation. So the data that may have flown to I from these entities might have to be purged from I. We say ‘might’ because in some situations this might not be required, e.g. if we suppose that I will henceforth only flow to B,C,D. In some cases, the policy might be to simply require that a record be kept of data that might have been brought in from entities that are no longer accessible, possibly in order to identify future conflicts, see Example 11. Also, there is no danger if the data in I have been declassified. We consider only purging in this paper. It can be supposed that purging is done instantly in state transitions.

7.3 State transformations in label-based systems

State changes or transformations in label-based systems with the lattice model have been considered by many authors, starting with Sandhu [46], Foley [19,20,22], Bishop [11 Sect.5.2]. For consideration of the Cloud context, see Pasquier et al. [41]. For the transformation in Figs. 1 and 7, if a canonical label-based system is used, the names of entities B,C,D disappear from the label of I; on the other hand, the label of A goes to contain the names of all entities.

Our theory is consistent with established theory, which considers that new flows are the result of changes in entity’s labels, see the ‘high and low water mark’ policies (Weissman [54], Biba [9], Foley [20,21], Sandhu [47]). We have seen that in label-based security networks, the CF relations are determined by the partial orders of label sets. Let us write $\text{Lab}(x_i)$ to denote...
the label of x in state i. If $CF_i(x_i,y_i)$ is false but $CF_{i+1}(x_{i+1},y_{i+1})$ must be true, then $Lab(x_i) \leq Lab(y_i)$ is false and $Lab(x_{i+1}) \leq Lab(y_{i+1})$ must be made true. If labels are simple category sets, then $Lab(x_i) \subseteq Lab(y_i)$ is false and $Lab(x_{i+1}) \subseteq Lab(y_{i+1})$ must be made true. The reverse reasoning holds for removing flows. As mentioned, purging policies may require that an entity be purged of the data of the removed categories. This is particularly clear with canonical labeling.

As data flows change, certain security properties or requirements must be kept invariant. In our method there is a single mechanism to do this, as long as the properties can be expressed as constraints on reachable labels: First, a set of labels is defined in consideration of all the constraints or requirements, and then the transformations can only use labels in this set. In Sect. 6 we have seen how different label sets can be defined to enforce certain requirements. If the requirements must hold over state changes, the label changes must stay within those label sets. If labels are used to indicate data provenance, the partial order defines the minimum and maximum levels of secrecy and integrity allowed for data of each provenance, and which combinations of data provenances are allowed or required. In succeeding states, labels will show the provenance of the data that can have flown into the entities.

In particular, Chinese-wall (Brewer-Nash) conflict policies can be implemented by forbidding labels allowing flows from conflicting entities into any entity. This is not the usual definition of these policies, but it addresses the same concerns, see Example 4 in Sect. 6 and Example 11 below. Essentially, our model is consistent with the models of Sandhu [46] and Sharifi, Tripunitara [50], although we do not distinguish here between subjects and objects.

Example 11. We will see how two types of security requirements can be expressed simultaneously by using our method: conflicts and conglomerates, see Sect. 6. In this example, labels are simple category sets, indicating data provenance, partially ordered by the set inclusion relation.

We have two banks, two companies and a data server. The following security requirements must be observed:

1) Separation of data (conflict) has to be observed between the two banks, the two companies, and Bank_2 with Company_2. With some obvious abbreviations, these requirements are expressed by forbidding labels containing the following subsets: $\{B1,B2\}$, $\{C1,C2\}$, $\{B2,C2\}$.

2) In addition, both banks need data from the server, thus whenever one of $B1$ or $B2$ appears in a label, this must be in combination (conglomerate) with S.

The resulting partial order of allowed labels is shown in Fig. 9. Note that if the lattice model was used, some labels contradicting the requirements would have to be included, and then it would have to be said that they cannot be reached.
Figure 9. Partially ordered set of allowed labels for Example 11

The purging policy will be as follows: if and when $CF(x,y)$ becomes false, then one of the following has to be done:

- purging from y data that might have flown from x and removing the name of x from the label of y
- or not purging and leaving the name of x in the label of y. In this second case, the resulting labels will not be canonical.

A possible sequence of transformations for this system is as follows, see Fig. 10 (mentioning only some significant steps).

Figure 10: Transformations for Example 11
(a) We take this as the starting state: we have a Server with data flows towards two banks in conflict of interests.
(b) Company1 comes in and a data flow is created from it to Server and extending to the two banks. To do this, C1 is added to the labels of Server and the two banks.
(c) Company2 comes in, and is in conflict of interest with Company1 and Bank2, but not with Bank1. It is decided that Company2 should work with Bank1. To do this while avoiding creating a label containing the forbidden combination \{C1,C2\}, C1 is removed from the label of Bank1, the flow from Company1 to Bank1 is lost, and Company1 data are purged from Bank1. Since Server keeps C1 in the label, the flow from it to Bank1 is also lost, but Bank1 keeps S in its label and does not purge Server data. Then C2 is added to the label of Bank1, giving \{B1,S,C2\}. This opens a data flow from Company2 to Bank1. We still have the flow from Company1 to Bank2 through Server. Note that S has been kept in Bank1’s label to remember that Bank1 might still have previously acquired Server data, which it might continue to need. This can be useful e.g. if in the future Bank1 requests to access data sets in conflict with Server; or, if Server returns to its initial state by purging data acquired in the meantime, it will again be able to flow to Bank1 without the need of authorizations.
(d) In fact, it is decided to give Server in exclusive use to Bank1. To avoid the forbidden label combination \{C1,C2\}, C1 is removed from the label of Server, and Company1 data are purged from Server. \{B1,C2\} is then added to the label of Server. This makes Bank1 and Server equivalent, they are now connected by a bidirectional flow and Company2 data can flow to them.

If desired, now the two remaining unidirectional flows can be made bidirectional, by appropriate label changes. This would transform the system into two equivalence classes of entities, one containing Bank1, the Server and Company2 with label \{B1,S,C2\} and the other containing Bank2 and Company1, with label \{B2,S,C1\}. This having been done, all entities will be at their highest possible levels but other states can be reached by moving them down the partial order.

Since the label transformations in this example have followed the partial order of Fig. 9, in upwards or downwards directions, the mentioned system’s data security requirements have been respected in all network states.

We have assumed that all requirements and label sets are known in advance. In a real system, however, these may change. For example, at state (a) it is possible that the label set be limited to \{\},\{S\},\{B1,S\},\{B2,S\}. At successive states, new categories may come in, possibly with new requirements. With the inclusion of category C1, for which there are no requirements with respect to previously included categories, the set of labels is increased with the following possibilities: \{C1\}, \{S,C1\}, \{B1,S,C1\}, \{B2,S,C2\}. The inclusion of category C2 with its conflict requirements leads to the labels in Fig. 9. New requirements may create exceptions with respect to previous ones, e.g. we have mentioned in Example 4 that the combination \{B1,B2\} may be allowed in the presence of some new category, such as the CentralBank. This subject requires further study.

As already mentioned in Sect. 6, many types of security requirements or policies can be expressed by using labels, and so this method is powerful, in fact probably more powerful than it has ever been used in practice.
8. Algorithms

As mentioned, we consider the ideal case where there is a central administrator who maintains the Channel, CF and \(\subseteq \) matrices. The useful algorithms, mentioned so far, are:

a) Transitive closure algorithm of a digraph, whose complexity is approximatively \(O(n^3) \) (Aho, Ullman [2]).

b) Transitive reduction algorithm, which has the same time complexity, in fact it turns out to be essentially the same algorithm as a) (Aho, Ullman [2]).

c) Strongly connected component algorithms, such as the one of Tarjan [53]. These algorithms also yield the partial order of the components that they find. Their complexity is \(O(n+m) \)

d) Digraph isomorphism algorithms. Several papers exist claiming 'quasi-polynomial' efficiency with various \(O \)-formulae where \(\log(n) \) is in the exponent. The most current survey appears to be in Wikipedia [55].

In the above: \(n \) is the number of entities, \(m \) the number of channels and \(O \) is the order of complexity; only time complexity has been considered.

These algorithms can be used respectively for:

a) Obtaining the \(CF \) relation from a \(Channel \) relation.

b) Reducing a \(CF \) relation to yield a reduced number of channels.

c) Finding the equivalence classes and their partial order (\(\subseteq \) relation) from a \(CF \) relation.

d) Determining whether two partial order graphs are isomorphic. In our method, an application of this algorithm is in the process of checking whether an implementation is correct with respect to a given partial order digraph, see Implementation methods in Sect. 4.

Research continues in graph algorithms and papers exist claiming complexity measures better than the ones mentioned above. This summary discussion has the only goal of showing that, except for d), the computations needed can be done with efficient algorithms not exceeding polynomial, in fact cubic, complexity. So for operations a) to c), we can retain \(O(n^3) \) as the worst-case order of complexity. This is not reassuring, because it means that for a network of \(10^9 \) entities, the order of complexity of the algorithm to be executed is \(O(10^9) \). But these are all internal calculations in one computer, the administrator's. Simulation runs to solve a closely related problem were given by Stambouli and Logrippo in [52] and were shown to execute efficiently. Also, it may be possible to adapt for use in this area the extremely efficient graph processing programs that have been developed for use in in natural sciences research areas, such as computational biology, chemistry, etc.

We have mentioned that beyond this, one can devise implementation methods for optimizing according to some criteria the \(Channel \) relation. New physical channels may have to be opened or some existing ones may have to be closed. Some of the needed channels may be already available, perhaps by transitivity, others may have to be created with varying costs. Channels can be more or less efficient with respect to Quality of service requirements. So implementations will involve the consideration of various requirements, costs and weights. However in general, networks do not need to be reduced or optimized, on the contrary often redundancy is considered to be beneficial.

In practice, maintaining global matrices as mentioned above may be unfeasible and then it will be necessary to devise decentralized and 'on the fly' methods. These are unlikely to
produce optimized networks by any criteria, however as just mentioned this is rarely important.

9. Discussion

We have mentioned that, following Denning [14], much of the research on data flow control for security uses the lattice model based on labeling. However, as mentioned at the beginning of Sect. 4, networks are rarely designed as lattices with labeling, also the essential properties of lattices, such as the existence of unique upper and lower bounds, are seldom used to reason about security properties. We have shown that, with the same reflexivity and transitivity assumptions of [14], any network can be seen as a partial order of equivalence classes of entities. The literature mentions that partial orders can be transformed into lattices by adding fictitious and even impossible entities and labels, however this is not necessary, since a data security theory and practical solutions with efficient algorithms can be built for the simpler and more general partial order model, with or without labeling.

Let us take a critical look at our two basic assumptions. Reflexivity seems to be an easy assumption, as normally entities have access to their own data and if there is data flow partitioning within an entity, then the entity can be conceptually split in several. Concerning transitivity, much research in security networks makes the transitivity assumption, starting with [14]. This assumption can be defended on two grounds. First, it is a pessimistic assumption that can lead to over-protected networks, often a useful property in security. Second, non-transitivity may be modeled in transitive networks by splitting some entities in two or more, some with outgoing edges and some without, and dividing the data accordingly. Non-transitive networks have been motivated and studied in several papers, among others in the mentioned work of Foley and also in Rushby [44]. Non-transitive flow assumptions are important in security, because in some cases it is necessary to assume that some data will not be passed on, see below. This question is related to the question of transitivity of trust in social and other networks (Huang et al. [27], Adelmayer[1]).

Multi-layer security theory is often concerned with hidden channels. As mentioned in Sect. 4, these can be seen as augmenting the Channel relation and so modifying a perceived partial order, which is a well-known vulnerability of access control and data flow control systems. Our conceptual framework does not correct these vulnerabilities but can model them.

Long associated with Mandatory access control, label-based security systems and lattices, the theory of Multi-level security has been shown in this paper to be applicable to any reflexive and transitive data flow network, including organizational networks and IoT networks, with or without labelling. Property 1, in its ‘lattice’ definition (Denning [14]) is postulated to be a necessary condition for data security, but in fact is true, in our ‘partial order’ definition, for all networks. The consequence is that secure entities, with respect to both secrecy and integrity, exist and can be efficiently found in any network that has a number of levels that is sufficient to implement the required partial order.

In many organizations, data flow issues are dealt with by specializing data bases and rigidly regulating channels between them. For example, there may be separate data bases for financial data, for personnel data, and so on. In the method we propose, flows can be dynamically opened or closed according to administrative decisions, for specific classifications or categories of data. This enables more flexible organization-wide and time-dependent data flow policies.
We have seen that for the placement of data, it is necessary to determine the structure of the network, which can be done efficiently with strongly connected component algorithms, and place data accordingly. For secrecy, this means necessarily placing data in entities that are dominated only by entities that are authorized to get them. For integrity, this means necessarily placing data in entities that dominate only entities that are authorized to receive them. For example, if only two levels are available, then the lower should contain the data that must have higher integrity and lower secrecy, and the upper the data that must have lower integrity and higher secrecy. We have mentioned that network transformations may require policies to purge or declassify data.

The practical usefulness of our method can be questioned in cases where data flow relations can change rapidly over time (Matousek et al. [34]), as can happen for example in Attribute-based access control (ABAC) and telecommunications networks. However it will be always true that at each state there will be a partial order of components that establishes certain data flow relations. Hence it is necessary to determine what data flow relations must be kept invariant and plan transformations accordingly (Foley et al. [22]). For example, entities designated to contain the most secret data should remain at the top layer, while entities representing data gathering devices such as detectors or sensors should be kept at the lowest layer. This can be done by requirements on the allowed labels for some entities, e.g. it can be stipulated that entities of type ‘sensor’ can only have labels containing the names of the entities in their equivalence class.

This theory would be inadequate if it allowed dataflows in one direction only. Several partial orders can be defined to coexist for a given set of entities at each state. Logrippo and Stambouli [33] present an example where two partial orders must coexist: one to carry orders from clients to providers, and a second one to carry billing data in the opposite direction. As well, in many organizations and in the military, field data flow from the field to the command, and directives flow from the command to the field. This can be achieved by extending our approach, probably by introducing the concept of trusted entity, which has a long history in data security (Bell, La Padula [7], Myers, Liskov [37]). For our purposes, trusted entities could be defined to purge, to hold or to transform certain data when their position in the network’s partial orders changes. Certain data flows through such entities may have to be defined to be intransitive, contradicting for them the hypothesis mentioned above. Different policies will have to be used for different applications.

The problems of data security in organizational network and the IoT are very complex, since such systems have many needs, aspects and interactions, as well as specific architectures and data flows, often varying from application to application. The theory presented here is far from addressing all these complexities. Even within the realm of its potential usefulness, this work will have to be complemented by implementation methods for real-life networks, demonstrated on practical case studies, etc. However we have made the point that a theory based on partial orders can be feasible and more generally applicable as a conceptual framework than the still widely mentioned theory based on lattices.

Research is necessary on these issues.

10. Conclusions
As indicated in the literature review section, the bases for the theory discussed in this paper have been known for decades, however in this and previous papers we have presented the
novel view that, under reasonable assumptions, all networks can be seen as intrinsically layered and thus layering for data security always exists and can be found. The early theory has therefore a reach that was unsuspected by its authors, since it acquires significance beyond lattices and labels. Organizational data security systems, the Internet of things and the Cloud can all use these concepts. Few papers exist with results in the topic of data flow security in the IoT, and we hope to have shown that our approach generalizes and simplifies previous findings. Labeling methods are described and it is shown how, in the framework of this theory, they can model well-established data security paradigms, such as secrecy, integrity, conflicts, conglomerates, aggregates, as they could in the lattice-based theory. We have also shown how it is possible to describe network state transitions involving creation, removal and relocation of entities. Finally, it has been shown that efficient algorithms to implement this theory and methods exist, which opens the door for software tools to support the design and administration activities mentioned in this paper.

Acknowledgment. This research was funded in part by a grant of the Natural Sciences and Engineering Research Council of Canada. The author is grateful to his PhD student, Abdelouadoud Stambouli, for useful discussions, and to his colleague Jurek Czyzowicz, always ready to answer questions on partial orders and algorithms.

References