
Subcontracting, Assignment, and Substitution
for Legal Contracts in Symboleo ?

Alireza Parvizimosaed1, Sepehr Sharifi1, Daniel Amyot1, Luigi Logrippo1,2,
and John Mylopoulos1

1 School of EECS, University of Ottawa, Ottawa, Canada
{aparv007, sshar190, damyot, logrippo, jmylopou}@uottawa.ca

2 Université du Québec en Outaouais, Gatineau, Canada

Abstract. Legal contracts specify obligations and powers among legal
subjects, involve assets, and are constrained to satisfy quality constraints.
Smart contracts are software systems that monitor the execution of le-
gal contracts by contracting parties to ensure compliance. As a starting
point for developing software engineering concepts, tools, and techniques
for smart contracts, we have proposed Symboleo, a formal specification
language for legal contracts. The complexity of real-life contracts (e.g.,
in the construction and transportation industries) requires specification
languages to support execution-time operations for contracts, such as
subcontracting, assignment, delegation, and substitution. This paper for-
malizes such concepts by proposing for them a syntax and axiomatic
semantics within Symboleo. This formalization makes use of primitive
operations that support the transfer or sharing of right, responsibility,
and performance among contracting and subcontracting parties. A pro-
totype compliance checking tool for Symboleo has also been created to
support monitoring compliance for contracts that include subcontracting
aspects. A realistic freight contract specified in Symboleo is provided as
an illustrative example for our proposal, as well as a preliminary evalu-
ation with positive results.

Keywords: Contracts · formal specification languages · legal subcontracts ·
smart contracts · subcontracting

1 Introduction and Motivation

Legal contracts are documents that have been used since antiquity for business
transactions to specify obligations and powers among roles. They involve assets,
and define constraints enforcing specific modalities. In a world of digital trans-
formations, many aspects of contracts are being automated. In particular, smart
contracts are software systems that monitor the execution of legal contracts by

? Partially funded by an NSERC Strategic Partnership Grant titled “Middleware
Framework and Programming Infrastructure for IoT Services” and by SSHRC’s
Partnership Grant “Autonomy Through Cyberjustice Technologies”

2 A. Parvizimosaed et al.

contracting parties to ensure compliance. Smart contracts have received much at-
tention in the literature and news recently because of their potential application
in multiple areas, including Finance, Commerce, Government, and Agriculture.
We are interested in developing concepts, tools, and techniques for building
monitorable smart contracts. As a starting point for this endeavour, we have
proposed Symboleo3, a formal specification language for legal contracts [14].

Real-life contracts (e.g., in the construction and transportation industries)
are complex artifacts, based on a rich ontology and an expressive specification
language. Moreover, they can change during execution time in the sense that
obligations and powers may be cancelled by a party that has the power to do so,
and assignments to parties may be changed as well through subcontracting, as-
signment, delegation, novation, and substitution. Intermediate contractors may
further subcontract to third parties, leading to a chain of delegations of perfor-
mance and responsibility (i.e., who does what and who is responsible for what).
For example, large construction projects engage multiple subcontractors in a
hierarchy of contracts in order to reduce construction cost and save time [15].

The contributions of this work include (a) a set of execution-time operations
that allow the sharing or change of rights, performance responsibilities, and li-
abilities among contracting parties; (b) a syntax and axiomatic semantics for
these operations; (c) the definition of the legal notions of subcontracting, assign-
ment, and substitution in terms of the primitive operations; (d) a preliminary
evaluation of the proposal using a realistic freight contract with subcontracting;
and (e) a compliance checking tool for Symboleo that includes reasoning with
subcontracts, substitutions, and assignments.

The rest of the paper is structured as follows. Section 2 gives a quick overview
of Symboleo, while section 3 introduces primitive execution-time operations
along with their syntax and semantics, which support the transfer or sharing
of performance or responsibility. Section 4 discusses how the legal concepts of
subcontracting, assignment, and substitution can be expressed in terms of the
proposed primitive operations. In section 5, we adopt a realistic freight contract
from the literature, specify it in Symboleo and show how to deal with subcon-
tracting, assignment and others with our proposal. Section 6 highlights how such
contract specifications can be analyzed with a compliance checker tool. Section 7
discusses related work, while section 8 concludes.

2 Overview of Symboleo

Contracts can be understood as prescriptions of allowable legal process execu-
tions. They specify obligations and powers that determine who is responsible to
whom for what and when. The how is left to the responsible party to determine.
In this respect, contracts can be seen as outcome-oriented processes, in the sense
that they specify what should be the outcome of a contract execution, without
specifying the activities that have to be performed. Contracts are very different

3 From the Greek word Συµβoλαιo, meaning contract and pronounced ‘simvoleo’

Subcontracting, Assignment and Substitution in Symboleo 3

Fig. 1: Symboleo’s contract ontology

from business processes in that powers can change the status of obligations, e.g.,
by cancelling obligations or imposing new ones during contract execution. The
concepts of our contract ontology are briefly reviewed in the following. Other
definitions can be found in [14].

As shown in Symboleo’s ontology (Fig. 1), a legal contract (or just contract
henceforth) is defined as a collection of obligations and powers between two or more
roles. A contract is concerned with at least one asset (contractual consideration)
from each contractual role. For a contract execution, roles are assigned to parties
(persons or legal entities) that take part in the contract execution.

A legal position is either an obligation or a power that defines a legal relationship
between a debtor and a creditor, has a (possibly null) legal situation as activation
condition (antecedent), and obliges the debtor to bring about another legal situ-
ation (consequent). Legal positions can be instantiated via triggers. Obligations are
legal duties of a debtor towards a creditor to bring about a consequent, while powers
define the right of a creditor to create, change, suspend, or cancel legal positions.
Antecedents, consequents, and triggers are propositions constraining the occurrence
of instantaneous events and situations holding over a time interval. The full ontology
of Symboleo, which extends the UFO-L foundational legal ontology [6] (e.g., see
shaded concepts in Fig. 1), is described in more detail in [14].

The aim of the Symboleo language is to enable contract creators to specify pa-
rameterized contract templates that can be instantiated with different parameter
values. Symboleo’s formal semantics also enables checking contracts for safety
and liveness properties, which respectively verify that bad things do not happen
(e.g., payment loopholes or privacy violations) and that good things eventually
happen (e.g., assets will be delivered and will be paid for) during the execution
of a contract instance.

4 A. Parvizimosaed et al.

Table 1: Sample sale-of-goods (SOG) contract specification

Domain salesD

/∗ Includes concepts that are specializations of the contract ontology concepts such as
Buyer/Seller, Goods and Delivered/Paid, which are specializations of Role, Asset and
Event, respectively. Additional attributes may also be specified. ∗/

Goods isA Asset with goodsID: Integer;
...
Delivered isA Event with delAddress: String, delDueDate: Date;

endDomain
Contract salesC

(
seller: Seller, buyer: Buyer, ID: Integer, amnt: Integer, curr: Currency, de-

lAdd, delDd: String
)

Declarations
/∗ Here, the values of the parameters are passed on to the variables that were defined

in the domain model. ∗/
goods : Goods with goodsID := ID;
...
delivered : Delivered with delAddress := delAdd, delDueDate := delDd;

Preconditions
isOwner(seller, goods) AND NOT isOwner(buyer, goods);

Postconditions
isOwner(buyer, goods) AND NOT isOwner(seller, goods);

Obligations
O1 : O(Seller, Buyer, true, happensBefore(delivered, delivered.delDueD));
O2 : O(Buyer, Seller, true, happensBefore(paid, paid.payDueD));

Powers
P1 : violates(O2,) → P(Seller, Buyer, true, terminates(salesC));

SurvivingObl
/∗ Some obligations will remain active even after the contract has terminated success-

fully, namely confidentiality obligations. ∗/
Constraints

not(isEqual(buyer, seller));

endContract

We illustrate the workings of Symboleo using a sale-of-goods example. Sup-
pose there is a contract between a buyer and a seller, consisting of three template
clauses, namely two obligations and one power (right) guarded by a trigger:

O1. The Seller shall deliver the Goods <goodsID> to the Buyer at address <delAdd>
before the delivery due date <delDd>.

O2. The Buyer shall pay the amount of <amnt> in currency <curr> to the Seller
before the payment due date <payDd>.

P1. In case of violation of the payment obligation (O2), the Seller has the right to
terminate the contract.

A contract specification has a domain section and a contract body section
(Table 1). Domain-dependent concepts and axioms are defined in the domain
section as specializations of Symboleo’s ontology (Fig. 1). The contract body
starts with the contract’s signature, which contains parameters and their types.
Parameter values are used to instantiate a contract. Aside from the specification
of obligations, powers, and surviving obligations (that persist after the successful

Subcontracting, Assignment and Substitution in Symboleo 5

Fig. 2: UML statecharts for obligations, powers, and contracts [14]

termination of a contract, e.g., a non-disclosure clause), pre/post-conditions and
constraints on the contract execution are also specified in the contract body.

The first two clauses of this contract are obligations (O1 and O2 respectively),
while the third is a power (P1). As seen in the example, legal positions have as
signatures [trigger→] O(debtor, creditor, antecedent, consequent) for obligations
and [trigger→] P(creditor, debtor, antecedent, consequent) for powers.

The lifecycle of a contract/obligation/power instance is captured by UML
statecharts defined in Fig. 2 [14]. State transitions are events that are recorded
on ledgers (preferably with assured integrity as in blockchains) that enable the
monitoring function of smart contracts. A contract is initially in its Form state
and transitions to the InEffect state when it is signed and its effective date is
reached. Since O1 and O2 do not have a trigger (true by default), they transi-
tion to the Create state when the contract transitions to the InEffect state. How-
ever, P1 will be instantiated whenever its trigger becomes true, i.e., the event
violated(O2) happens or O2 transitions to the Violation state. After becoming
InEffect (i.e., the antecedent becomes true), the creditor of P1 has the power to
bring about the consequent (exertion of power), i.e., transitioning the contract
to the Unsuccessful Termination state, which results in all other active obligations
and powers transitioning to their Unsuccessful Termination state. After exertion,
the power itself transitions to its Successful Termination state.

The statecharts act as the baseline for Symboleo’s semantics. In [14], the
semantics of transitions are given in terms of axioms that use the predicates
listed in Table 2, inspired by the Event Calculus [13].

6 A. Parvizimosaed et al.

Table 2: Primitive predicates of Symboleo

e within s situation s holds when event e happens.
occurs(s, T) situation s holds during the whole interval T, but does

not occur in any of its subintervals.
initiates(e, s) event e brings about situation s.
terminates(e, s) event e terminates situation s.
happens(e, t) event e happens at time point t.

holdsAt(s, t) situation s holds at time point t.

3 Primitive Execution-Time Operations

During the execution of contracts, when specific values are bound to the param-
eter variables of contract templates, certain operations can change the contract
state at runtime. The most notable types of legal contract execution-time oper-
ations are subcontracting, delegation, substitution, novation and assignment.

These terms may have different interpretations in different legal jurisdic-
tions, and possibly even within a single legal jurisdiction. For example, while
assignment is defined as transferring the claims and rights of an assignor to an
assignee in the Common Law system, some courts in the USA will also treat it
as transferring a contract as a whole, depending on the intentions inferred from
the assignment clause [9].

Despite various intention-dependent definitions, the actions underlying these
operations can be categorised as sharing or transferring rights, responsibilities,
or performance of parties. In this paper, we have extended the original Symboleo
ontology [14] with such relationships, defined between Party and Legal Position in
Fig. 1. Note that “liable” here is a synonym of “responsible”. From a syntactic
viewpoint:
– rightHolder(x, p): for an obligation/power instance x, party p is rightHolder.
– liable(x, p): for an obligation/power instance x, party p is liable.
– performer(x, p): for an obligation/power instance x, party p is performer.

These terms are used in Axioms 1-4 of the augmented axiomatic semantics
of Symboleo, based on the predicates of Table 2. For all obligation instances o,
power instances pow. and party instances p, there exists a time point t for which
the following hold:

happens(activated(o), t) ∧ holdsAt(bind(o.debtor, p), t)

→ initiates(activated(o), liable(o, p)) ∧ initiates(activated(o), performer(o, p))
(1)

happens(activated(o), t) ∧ holdsAt(bind(o.creditor, p), t)

→ initiates(happens(activated(o), rightHolder(o, p))
(2)

happens(activated(pow), t) ∧ holdsAt(bind(pow.creditor, p), t)

→ initiates(activated(pow), rightHolder(pow, p))

∧ initiates(activated(pow), performer(pow, p))

(3)

happens(activated(pow), t) ∧ holdsAt(bind(pow.debtor, p), t)

→ initiates(activated(pow), liable(pow, p))
(4)

Subcontracting, Assignment and Substitution in Symboleo 7

Table 3: Primitive execution-time operations

shareR(x, p) Party p becomes a rightHolder for obligation/power instance x.
shareL(x, p) Party p becomes liable for obligation/power instance x.
shareP(x, p) Party p becomes a performer for obligation/power instance x.
transferR(x,pold,pnew) Party pnew becomes a rightHolder for obligation/power instance

x and pold will no longer be a rightHolder for x.
transferL(x,pold,pnew) Party pnew becomes liable for obligation/power instance x and

pold will no longer be liable for x.
transferP(x,pold,pnew) Party pnew becomes a performer for obligation/power instance x

and pold will no longer be a performer for x.

In other words, after the time an obligation instance o is activated, the party
bound to the debtor role of o is the performer of o and is liable for o (Axiom 1),
and the party bound to the creditor role of o is the rightHolder of o (Axiom 2).

After the time a power instance pow is activated, the party bound to the
creditor role of pow is the rightHolder and the performer of pow (Axiom 3),
and the party bound to the debtor role of pow is liable for pow (Axiom 4).

Based on the above axioms, we define a set of primitive contract execution-
time operations (Table 3) to express what can happen during the execution
of a contract instance. An execution-time operation is initiated/terminated by
an event with a corresponding name (e.g., shareR is initiated/terminated using
event sharedR). The semantics of the primitive sharing and transfer operations
defined in Table 3 are exemplified with shareR and transferR (a party can share
or transfer her rights under a contract to another party). The semantics of the
other four primitive operations are defined with similar axioms not presented
here due to space limitations.

Axiom 5: Given active obligation/power instance x, party p, and the fact
that sharedR(x, p) is the event that initiates the sharing of x with p, at some
time t the following holds:

happens(sharedR(x, p), t) ∧ holdsAt(active(x), t) →
initiates(sharedR(x, p), rightHolder(x, p))

(5)

Axiom 6: Given active obligation/power instance x, party instances pnew

and pold, and the fact that transferredR(x, pold, pnew) is the event that initiates
the transfer of rights, there exists a time point t for which the following holds:

happens(transferredR(x, pold, pnew), t) ∧ holdsAt(active(x), t) ∧
holdsAt(rightHolder(x, pold), t) →

initiates(transferredR(x, pold, pnew), rightHolder(x, pnew)) ∧
terminates(transferredR(x, pold, pnew), rightHolder(x, pold))

(6)

These new primitive operation can now be used to implement various inter-
pretations (e.g., from different jurisdictions) of contract execution-time opera-
tions. The next section defines three operations for general international law.

8 A. Parvizimosaed et al.

4 Assignment, Substitution, and Subcontracting

Although execution-time operations can have different meanings according to the
practices in different jurisdictions or the intentions of the contractual parties, we
focus here on the definitions of assignment (of rights), substitution (of contractual
parties), and subcontracting due to their more stable and consistent definitions
in different contexts and their frequent application in everyday practice.

We formally specify syntax (parametric shorthand) and semantics (axioms)
for these operations in Symboleo, to enable runtime monitoring. Shorthands
are situations in Symboleo and are captured as Prolog predicates in our tool. In
the following axioms, O and P respectively represent the sets of all obligation
instances and all power instances in the contract. Also, the dot (.) operator is
used in some axioms to navigate our ontology, à la OCL.

Assignment (of rights): assignR({x1, ..., xn}, pold, pnew)
Semantics: A party can assign the rights that she is entitled to under a
contract to a third-party [9]. Its axiom builds upon transferR (Axiom 6).
Axiom 7: For any set of obligation/power instances x = {x1, ..., xn} that party
pold is the rightHolder of, if pold assigns her rights for x to another party pnew,
then the rights for x are transferred from pold to pnew. Here, assignedR(x,p) is
the event that initiates the assignment, leading to many primitive transfers.

∀x ∈ P(O ∪ P), ∀xi ∈ x : happens(assignedR(x, pold, pnew), t) ∧
holdsAt(rightHolder(xi, pold), t)→ happens(transferredR(xi, pold, pnew), t)

(7)

Contractual Party Substitution: substituteC (c, r, pold, pnew)
Semantics: A contractual party might decide to leave an ongoing contract and
have a third-party replace her in the contract. A party pold who has a role r in
contract c can substitute herself with another party pnew and transfer all of the
rights, responsibilities, and performance of all the active obligations/powers x
to pnew, given the consent of all original parties and of pnew [9].
Axiom 8: Given the consent of pold, pnew, and other parties of the contract c to
substituteC (c, r, pold, pnew), and given contract c, obligation/power x, and role
r, and the fact that substitutedC (c, r, pold, pnew) is the event that occurs and
initiates the substitution, then there exists a time t for which this holds:

∀x ∈ c.legalPosition : happens(consented(substitutedC(c, r, pold, pnew)), t)

∧ happens(substitutedC (c, r, pold, pnew), t) ∧ holdsAt(active(c), t)

∧ holdsAt(bind(c.r, pold), t) →
initiates(substitutedC (c, r, pold, pnew), bind(c.r, pnew))

∧ terminates(substitutedC (c, r, pold, pnew), bind(c.r, pold))

∧ happens(transferredR(c.x, pold, pnew), t)

∧ happens(transferredL(c.x, pold, pnew), t)

∧ happens(transferredP(c.x, pold, pnew), t)

(8)

Subcontracting: subcontract
(
{o1, ..., om} to {{c1, pa1}, ..., {cn, pan}} with

{constr1, ..., constrn}
)
. Subcontracting involves sharing performance of a set of

Subcontracting, Assignment and Substitution in Symboleo 9

contractual obligations with one or more other parties through subcontracts c1,
..., cn. Since single contractual counter-party is a simple and popular case of
subcontracting, this paper focuses on this case and leaves the generic forms (i.e.,
multiple multilateral subcontracts) to future work.
Semantics: As Axiom 9 indicates, subcontracting is a legal way of granting new
parties this privilege. Subcontractors fulfill the subcontracted obligations once
they successfully terminate the corresponding well-designed subcontracts, which
trigger events that bring about the consequents of the delegated obligations.

For instance, a seller may hire a carrier to transport goods from a warehouse
to port A, another one to ship the goods from port A to port B, and a third
one to transport the goods from port B to the final destination. In this case,
successful termination of three subcontracts fulfills the corresponding obliga-
tions of the original contract. However, violation, suspension, and unsuccessful
termination of subcontracts do not alter the state of the original contract’s
obligations since the contractor, as a liable party and primary performer, can
run an alternative plan (e.g., subcontractor replacement) and consequently
fulfill its original obligations. Contractors may stipulate some constraints to
supervise further subcontracts, e.g., to acquire a main contractor’s consent to
shift its burden to a third party.
Axiom 9: For any set of obligation instances o in O that is subcontracted out
under a set of contracts in C to a set of parties in PA subject to a set of domain
assumptions expressed as additional propositional constraints ({constr1, ...,
constrn}), then the performance of all subcontracted obligations is shared with
all of the (sub)contractual counter-parties.

∀o ∈ P(O), ∀cp ∈ P(C × PA) :

happens(subcontracted(o, cp, {constr1, ..., constrn}), t) ∧
constr1 ∧ ... ∧ constrn → ∀oi ∈ o,∀(c, pa) ∈ cp : happens(sharedP (oi, pa), t)

(9)

5 Case Study: Multiple Freights as Subcontracts

The sale-of-goods contract from section 2 has a delivery clause, and there are
many examples of businesses subcontracting such obligations to third parties
under a separate contract whose post-condition implies the satisfaction of the
subcontracted obligation’s consequent. One of the results (post-conditions) of a
Freight contract ’s successful completion (e.g., Tables 4 and 5) is that the goods
(meat here) to be delivered by the Shipper are delivered to the desired delivery
address (delAdd). Likewise, a precondition bans execution of the freight contract
unless the good is ready on the required lading location (pkAdd).

Subcontracting of an obligation is the act of delegating the satisfaction of a
consequent (contractual performance) of that obligation to another party under
a new contract [9]. The subcontract, also a contract, can be created at runtime
via a power that implicitly exists in the contract (as stated in formula 10). Right
holders of such powers are restricted to subcontract obligations for which they
are liable and all partners consent. The power to assign claims and subcontracts
are present for both parties unless explicitly disallowed in the constraints part
of the contract specification.

10 A. Parvizimosaed et al.

Table 4: Freight contract template example
Agreement is entered into effect between <party1> as Shipper, and <party2> as Carrier.

O1 The Carrier agrees to transport the goods as stated in tender sheet (<qnt> of <qlty> quality
meat, in proper refrigerated conditions, from <pkAdd>, to <delAdd> on <delDueDate>).

O2 The Shipper should pay <amt>(“amount”) in <curr>(“currency”) to the Carrier for its ser-
vices within 3 days after delivery of goods.

O3 The Shipper is additionally subjected to <intRate>% interest rate on the amount due if pay-
ment is breached.

Table 5: Freight contract specification in Symboleo

Domain freightD

Shipper isA Role with pickupAddress: String;
Carrier isA Role with office: String;
Meat isA PerishableGood isA Asset with quantity: Integer, quality: MeatQuality;
Paid isA Event with amount: Integer, currency: Currency, from: Role, to: Role, payDue-

Date: Date;
Delivered isA Event with item : Meat, delAddress: String, delDueDate: Date;
MeatQuality isA Enumeration(‘PRIME’, ‘AAA’, ‘AA’, ‘A’);
teminates{delivered, paid};

endDomain

Contract freightC
(
shipper: Shipper, carrier: Carrier, effDate: Date, qnt: Integer, qlty:

MeatQuality, amt: Integer, curr: Currency, delAdd: String, delDd: Date, pkAdd: String,
intRate: Integer

)
Declarations

goods : Meat with quantity := qnt, quality := qlty;
paid : Paid with amount := amt, currency := curr, from := shipper, to := carrier,

dueD:=payDueDate;
paidLate : Paid with amount := amt*(1 + intRate/100), currency := curr, from :=

shipper, to := carrier;
delivered : Delivered with item := goods, delAddress := delAdd, delDueDate := delDd;
atLocation : Situation with what : Asset, where : String; // External situ. monitoring

Preconditions
atLocation(goods, pkAdd)

Postconditions
atLocation(goods, delAdd)

Obligations
O1 : O(carrier, shipper, true, happensBefore(delivered, delivered.delDueDate));
O2 : happens(delivered, t) → O(shipper, carrier, true, happensBefore(paid, t + 3 days));
O3 : violates(O2) → O(shipper, carrier, true, happens(paidLate,));

Powers // None
SurvivingObls // None
Constraints

not(isEqual(shipper, carrier));

endContract

powx : P
(
creditor, debtor, rightHolder(powx) = Liable(o1) = ... = Liable(om) ∧(
∀c ∈ {c1, ..., cn}, ∃r ∈ c.Role, bind(r, rightHolder(powx))

)
∧(

∀p ∈ PA,∀o ∈ {o1, .., om} : p = Liable(o)→
happens(consented(p, subcontracted

(
o, {(c1, p1), ..., (cn, pn)}

)
,
)))

,

happens(subcontracted
(
{o1, ..., om}, {(c1, p1), ..., (cn, pn)}

)
,
))

(10)

Subcontracting, Assignment and Substitution in Symboleo 11

The contract in Table 4 is a freight agreement between a shipper of goods
(meat) and a carrier who provides shipping services. Table 5 contains a (non-
instantiated) specification that will act as a template for the subcontract(s) of
the delivery obligation of the sample contract introduced in section 2.

Assume the seller’s warehouse of the sales-of-goods (SOG) example from
Table 1 is located in Buenos Aires (Argentina) and the buyer’s warehouse is
located in Ottawa (Canada). The seller might decide not to fulfill the delivery
obligation by himself, but rather would subcontract it to three different carriers:
one to carrierBA, for freight from the seller’s warehouse to the port of Buenos
Aires; one to carrierHal, for freight from Buenos Aires to Halifax; and one to
carrierOtt for freight from Halifax to the buyer’s warehouse in Ottawa. Notice
that the pre/post-conditions of the freight contract specification ensure that
all three freight contracts are executed sequentially. For example, the freight
contract from Halifax to Ottawa is not executed before the goods are delivered
to Halifax as a result of the successful execution of the contract with carrierHal.

6 Analysis

Contracts can be very complex artifacts that hide unwelcome consequences for
some of their parties. To mitigate this risk, we developed an analysis tool4 that
takes as input a set of scenarios (each consisting of a sequence of events), along
with the expected final states of the contract for each scenario, and actually runs
each scenario to validate that it does end in the expected final state. The tool
was implemented by using an existing reactive event calculus tool (jREC [10]),
written in Java and Prolog, which was extended to support the Symboleo se-
mantics and performs abductive reasoning on given scenarios. We designed six
scenarios and corresponding test cases (Table 6) combining the SOG and Freight
contracts. All tests involve meat sales between a seller in Argentina and a buyer
in Ottawa, with freight subcontracting to a carrier. These test cases cover many
possible states of obligations, powers, and contracts, especially boundaries cases.

In Table 6 and Fig. 3, V=Violation, F=Form, Fu=Fulfillment, I=InEffect,
A=Active, UT=Unsuccessful Termination, and ST= Successful Termination of
a contractual clause (i.e., states from Fig. 2). For example, the first test case
violates the first obligation(V1) of Freight and (V1) of SOG, but fulfills SOG’s
second obligation (Fu2). In Fig. 3, the vertical axis shows the states of the con-
tracts and their clauses (O1, O2, O3, P1), and the horizontal axis characterizes
events over time (with time units between brackets). The delivery obligation is
subcontracted to the Fedex carrier (SOG subcontFedex) through a freight con-
tract. However, in Test Case 6, after consent, Fedex assigns its payment rights
to Walmart. As the freight contract proceeds independently, the delivery obli-
gation of the freight contract stays active after the termination of SOG until
its due date arrives and violates the obligation at time 9. Our tool monitors
runtime responsibility, right, and performance relationships of parties. The re-
sults indicate that the execution of these tests complies with expected results,

4 The tool is available at https://sites.google.com/uottawa.ca/csmlab

https://sites.google.com/uottawa.ca/csmlab

12 A. Parvizimosaed et al.

Table 6: Test Cases
Test Case Freight SOG

1. Buyer pays off order but Carrier delivers the meat under
inappropriate conditions resulting in spoiled meat.

V1 V1, Fu2

2. Carrier’s transport is unable to ship loaded meat, and in-
stead the shipper (i.e., Seller) delivers it himself to the Buyer
under proper conditions before due date, and gets paid.

V1 Fu1, Fu2

3. Buyer refuses payment and neither Carrier nor Shipper
delivers the meat till 10 days after due date.

V1 V1, V2,
A3

4. Carrier delivers meat while Shipper awaits more than 10
days for Buyer’s payment.

V2, A3 Fu1, V2,
A3

5. Buyer refuses to pay off the agreed amount before due
date and then the Seller terminates the contract and does
not allow unloading the good at due location.

V1 V2, ST3,
UTSOG

6. Buyer pays original Seller after assigning payment rights
to a third party.

- V2, A3

Fig. 3: Test results showing the states of contracts/clauses over events[time]

which partially validates Symboleo’s axioms and our new subcontracting and
substitution operations.

Subcontracting, Assignment and Substitution in Symboleo 13

7 Related Work

Multi-agent systems investigate runtime commitment operations, namely del-
egation and assignment. Kafalı and Torroni [7] propose eight forms of social
commitment delegations by discharging and instantiating commitments. Implicit
and explicit delegations partially express semantics of obligation delegation and
substitution operations respectively. Implicit operation generates a commitment
between a party and a third party while keeping the original commitment. Ex-
plicit operations cancel the original commitment and then create the new com-
mitment. They also introduce causal delegation chains and delegation trees to
perform reasoning on sequences of delegated commitments [8]. Similar to ex-
plicit operations, Chesani et al. [3] and Dalpiaz et al. [5] formalize commitment
delegation and assignment by means of debtor and creditor replacement axioms,
respectively. This delegation transfers responsibility. In contrast, the approaches
of Chopra and Singh [4] and Yolum and Sing [16] hold the responsibility of the
original debtor. These operations, compared to Symboleo’s, shift liability and
performance altogether and deal only with social norms. Delegation semantics
are incomplete since the fulfillment/violation influence of an implicit delegation
on the original commitment is not defined.

Legal liability, right, and delegation concepts have been studied through tem-
poral logics. Sartor [12] develops notions of obligative and permissive rights,
which express the right of debtors and creditors, respectively, regarding Hohfel-
dian concepts. These legal positions are manipulated at runtime by means of
potestative right and legal power normative operations. Norman and Reed [11]
adopt tense logic axiomatization to specify the semantics of responsibility and
performance transmission and sharing during obligation delegation. In a similar
fashion, these legal notions are formally expressed by a CTL*-based logic [1].
These languages typically specify primary legal norms such as right holder and
responsibility delegation, whereas Symboleo considers runtime operations at the
level of substitution, assignment, and subcontracting via primary operations.

8 Conclusions and Future Work

This paper advances the state-of-the-art by extending Symboleo with execution-
time operations supporting dynamic assignment of rights, consensual substitu-
tion of a contractual party, and subcontracting of obligations. Primitive oper-
ations for the sharing and transfer of right, responsibility, and performance of
legal positions enable the support of higher-level operations in specific jurisdic-
tions. Axiomatic semantics were defined and prototyped in a compliance checker,
which enabled some initial validation for various scenarios involving a sale-of-
good contract and a freight sub-contract. These contributions open the door to
powerful and necessary capabilities for monitoring legal contracts.

For future work, we intend to further generalize our language and axioms to
support multiple multilateral subcontracts, and to improve Symboleo’s syntax
to make it more usable by legal experts. We will also make our compliance

14 A. Parvizimosaed et al.

checker more general and robust. Moreover, we propose to convert Symboleo
specifications to nuXmv [2], to model check the properties on contracts.
Acknowledgment. The authors thank E. Jonchères, V. Callipel, D. Restrepo
Amariles, P. Bacquero, F. Gélinas, S. Giovanni, T. van Engers, and T. van
Binsbergen (lawyers and professors from the Autonomy Through Cyberjustice
Technologies project) for their feedback on Symboleo and guidance on subcon-
tracting, as well as A. Roudak for his feedback on our compliance checker.

References

1. Aldewereld, H., Dignum, V., Vasconcelos, W.W.: Group norms for multi-agent
organisations. ACM Transactions on Autonomous and Adaptive Systems (TAAS)
11(2), 1–31 (2016)

2. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: CAV
2014. LNCS, vol. 8559, pp. 334–342 (2014)

3. Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and monitoring so-
cial commitments using the event calculus. Autonomous Agents and Multi-Agent
Systems 27(1), 85–130 (2013)

4. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: Proceedings of
The 8th International Conference on Autonomous Agents and Multiagent Systems-
Volume 2. pp. 937–944. FAAMAS (2009)

5. Dalpiaz, F., Cardoso, E., Canobbio, G., Giorgini, P., Mylopoulos, J.: Social spec-
ifications of business processes with Azzurra. In: 9th International Conference on
Research Challenges in Information Science (RCIS). pp. 7–18. IEEE CS (2015)

6. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.: Towards ontologi-
cal foundations for conceptual modeling: the unified foundational ontology (UFO)
story. Applied ontology 10(3-4), 259–271 (2015)

7. Kafalı, Ö., Torroni, P.: Social commitment delegation and monitoring. In: Int. W.
on Computational Logic in Multi-Agent Systems. pp. 171–189. Springer (2011)

8. Kafalı, Ö., Torroni, P.: Comodo: collaborative monitoring of commitment delega-
tions. Expert Systems with Applications 105, 144–158 (2018)

9. Kirby, J.: Assignments and transfers of contractual duties: Integrating theory and
practice. Victoria U. Wellington L. Rev. 31, 317 (2000)

10. Montali, M.: jREC. https://www.inf.unibz.it/~montali/tools.html (2016)
11. Norman, T.J., Reed, C.: A logic of delegation. Artificial Intelligence 174(1), 51–71

(2010)
12. Sartor, G.: Fundamental legal concepts: A formal and teleological characterisation.

Artificial Intelligence and Law 14(1-2), 101–142 (2006)
13. Shanahan, M.: The event calculus explained. In: Artificial intelligence today, pp.

409–430. Springer (1999)
14. Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., Mylopoulos, J.: Symboleo:

A specification language for smart contracts. In: 28th IEEE International Require-
ments Engineering Conference (RE’20). IEEE CS (2020), (to appear)

15. Tam, V.W., Shen, L., Kong, J.S.: Impacts of multi-layer chain subcontracting on
project management performance. Int. J. Proj. Manag. 29(1), 108–116 (2011)

16. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An
approach for specifying and executing protocols. Annals of Mathematics and Ar-
tificial Intelligence 42(1-3), 227–253 (2004)

https://www.inf.unibz.it/~montali/tools.html

	Subcontracting, Assignment, and Substitution for Legal Contracts in Symboleo

