
1

Access Control Policies: Modeling and Validation
Mahdi Mankai, Luigi Logrippo

Université du Québec en Outaouais
Gatineau (QC)

Abstract— Access control requires authorization rules and
constraints. To express access control policies, several languages,
such as XACML, EPAL or PONDER, are used. These languages
specify which subjects can (or cannot) access sets of resources
or services to perform specific actions. A user can define
several access control policies and rules, but these access control
languages do not offer any mechanism to avoid conflicts and
inconsistencies among them. In fact, it can happen that more
than a rule or a policy, with opposite decisions, is applicable in
a given context.

We propose a method based on first order logic modeling
to detect and visualize possible conflicts within sets of access
control policies expressed in XACML. We translate the model
into a relational first order logic language called Alloy. Alloy
allows to specify sets of predicates and assertions defining the
desired properties of a system. We can then analyze interactions
and conflicts among access control policies by using the Alloy
Analyzer tool.

I. INTRODUCTION

Selective access control is an important mechanism in
distributed system security. It can be used in order to allow a
user to access only certain information, for certain purposes,
at certain times, or when he or she plays a certain role.
Access control is enforced by mechanisms that need to be
programmed by means of policies. An organization may have
many such policies, which may have been established at
different times, by different people, perhaps without a clear
view of all the consequences. Inconsistencies can then exist
in such sets of policies. While policy mechanisms may be
able to solve inconsistencies at a higher level, users and
administrators still need to be aware of them, because they
may lead to unintended system behavior. For example, a policy
may be added to prevent a certain access, however in fact
the access is still allowed because of another policy of higher
priority, or the new policy may prevent access of someone who
should remain authorized. We will show in this paper that such
inconsistencies can be detected by using logic model checking
tools.

We demonstrate our method with application to the standard
policy language XACML, (eXtensible Access Control Markup
Language) [13] which is an XML-based language for spec-
ifying access control in distributed systems. We have chosen
XACML because it has already achieved a considerable degree
of industrial acceptance. XACML has also been proven to be
adaptable to specify several common access control methods,
such as Role-Based Access Control (RBAC) [3]. The logic
model checking tool that we use is Alloy [7] [8] [9], again a

Appeared in : K. Adi, D. Amyot, L. Logrippo-Proceedings of the 5th
NOTERE Conference, Gatineau, Canada, August 2005. p 85-91

system that is gaining considerable acceptance and which we
have found to be adequate to the task.

II. XACML OVERVIEW

A. The XACML framework

XACML is an OASIS standard that defines an architecture,
policies and messages within an access control system. Figure
1 shows the XACML model that contains two main entities:
the Policy Enforcement Point (PEP) and the Policy Decision
Point (PDP). The PEP is the entity that protects the resources.
It receives the access request and forwards it to the PDP. The
PDP makes a decision according to the information contained
in the request. In an XACML context, each request defines a
subject, a resource and an action which are characterized by
a set of valued attributes that express their properties.

XACML
Access control

policies

Request

XACML
Request

XACML
Response

Permit
PEP

PDP

Fig. 1. The XACML framework

B. XACML policies structure

The access control policies are stored as XML [15] files,
they are structured into rules, policies and policy sets. Several
rules are grouped into policies and policies are grouped into
policy sets. Rules, policies and policy sets define a target
which indicates their domain of applicability. A target specifies
a set of attributes and their values that should match those
given by a request. Let’s consider two policies. The first is
applied when the subject is a student, the resource is the marks
file and the action is printing. The second policy is applied
when the subject is a professor, the resource is the marks file
and the action is modification. If a request from a student to
print the marks file comes to the PEP, the PDP will only select
the first policy to make a decision.

Policies and policy sets are structural elements, they don’t
inform about possible decisions. On the other hand, a rule
specifies an effect which could be permit or deny. Then,

2

if a rule is applied (its target is satisfied), the PDP will
return its effect to the PEP, otherwise the returned response is
NotApplicable. Rules could also specify additional constraints:
conditions. A condition is a constraint that uses more complex
functions over attributes. Conditions can add considerable
complexity and have been ignored in this study.

C. Conflicts Resolution

In a distributed system, a PDP can use several policy
databases. Then, several rules, policies or policy sets can be
applied to a specific single request so, different decisions can
be obtained. XACML provide a mechanism, called Combining
Algorithms, to resolve such conflicts. A Combining Algorithm
is a precedence rule that tells which unique and final decision
the system should return. Each policy and policy set will have
its own specified combining algorithm.

Four standard combining algorithms are defined by
XACML:

• deny-overrides: if a rule or a policy evaluates to deny, the
final decision will be deny

• permit-overrides: if a rule or a policy evaluates to permit,
the final decision will be permit

• first-applicable: the final decision is the one provided by
the first rule or policy in the policy file (an XML file)
that applies to a request context

• only-one-applicable: if more than one rule or policy
apply, no decision will be returned by the involved policy
or policy set (indeterminate response).

III. A LOGICAL MODEL OF XACML

We propose in this section a logical model of XACML
access control policies. We will consider the elements of the
language as sets related by functions and relations. We first
focus on XACML structures then we will consider access
control constraints. Only a subset of XACML will be covered
by this paper for purposes of simplicity.

A. Modeling structures

1) Attributes and Values: Let Values be a set of values and
Attribute a set of attributes. Each attribute can have a set of
possible values. Thus, we define a binary relation values :
Attribute → V alue which maps each attribute to its possible
values.

2) Subjects, resources and actions: First, let Element be
a set of elements which could be subjects, resources or
actions. Each element is defined by a set of couples (Attribute,
Value) that denote the element attribute and its actual value.
So, we define a ternary relation attributes : Element →
Attribute → V alue which maps each element to its attributes
and their values.

As an example, consider an attribute called role, its possible
values can be professor and student. If Bob is student, the
attributes relation will include the tuple (Bob, role, student).

Then, we can consider the sets Subject, Resource and Action
that are partitions of the set Element. In this way, an element
could be only a subject, a resource or an action.

3) Requests: An access control request contains informa-
tion about the subject, the resource to be accessed and the
action to be performed. We define Request as a set of requests
in XACML. Each request defines one subject, one resource
and one action. So, we define the following functions:

• subject : Request → Subject
defines the subject of a request

• resource : Request → Resource
defines the resource of a request

• action : Request → Action
defines the action of a request

4) Targets: Let Target be a set of targets. Each target is
defined by a set of subjects, resources and actions specifying
a domain of application. So, we define the following relations:

• subjects : Target → Subject
maps a target to its subjects

• resources : Target → Resource
maps a target to its resources

• actions : Target → Action
maps a target to its actions

5) Effects: Effect is a set of effects. The possible values
of Effect are: Permit, Deny, NotApplicable and Indeterminate.
Indeterminate effect is ignored for purposes of analysis.

6) Rules: Rule is a set of XACML access control rules.
Each rule is defined by an effect, a target and a condition. So,
we define the following functions:

• ruleTarget : Rule → Target
defines the target of a rule

• effect : Rule → Effect
defines the effect of a rule

As mentioned, we will not consider conditions in the present
paper.

7) Combining Algorithms: CombiningAlgo is a set of
XACML combining algorithms. This set contains the standard
combining algorithms mentioned in subsection II-C.

8) Policies: Policy is a set of XACML access control
policies. Each policy is defined by a target, a set of rules and
a combining algorithm. So, we define the following functions
and relations:

• policyTarget : Policy → Target
a function that defines the target of a policy

• rules : Policy → Rule
a relation that maps each policy to its child rules

• ruleCombiningAlgo : Policy → CombiningAlgo
a function that defines for a policy its rule combining
algorithm

9) Policy sets: PolicySet is a set of policy sets. Each policy
set is defined by a target, a set of policies and a combining
algorithm. So, we define the following functions and relations:

• policySetTarget : PolicySet → Target
a function that defines the target of a policy set

• policies : PolicySet → Policy
a relation that maps each policy set to its child policies

• policyCombiningAlgo : PolicySet →
CombiningAlgo
a function that maps each policy to its policy combining
algorithm

3

In XACML, policy sets could be grouped into parent policy
sets. We have not considered this aspect in this article in order
to simplify the model.

B. Access Control Constraints

In order to express access authorization constraints,
XACML offers two mechanisms: targets and conditions. The
PDP performs some tests and comparisons to check if at-
tributes of requests obey the constraints imposed by targets
and conditions. These constraints are included in our model
as logical functions and predicates. We describe in the next
paragraphs the evaluation of targets against requests and the
response of rules and policies.

1) Target Verification: Targets define a set of subjects,
resources and actions. In order to apply a rule, a policy or a
policy set, the subject, resource and action of a request should
match respectively at least one subject, one resource, and one
action of a target.

Saying that a request element matches the target element
means that all target attributes should match those specified
by the request.

As an example let P be an access control policy. Its target
is defined by:

• Subjects:

– Subject:

∗ role = Professor

– Subject:

∗ name = Bob
∗ role = Student

• Resources:

– Resource:

∗ resource name = Course marks file

• Actions:

– Action:

∗ action name = Modify
∗ action name = Read

The policy P is applied to the following requests:

• Request 1:

– Subject:

∗ name = John
∗ role = Professor

– Resource:

∗ resource name = Course marks file

– Action:

∗ action name = Modify

• Request 2:

– Subject:

∗ name = Bob
∗ role = Student

– Resource:

∗ resource name = Course marks file

– Action:

∗ action name = Modify

But P is not applied to the following requests:
• Request 3:

– Subject:
∗ name = John
∗ role = Student

– Resource:
∗ resource name = Course marks file

– Action:
∗ action name = Modify

• Request 4:
– Subject:

∗ name = Bob
∗ role = Student

– Resource:
∗ resource name = Course marks file

– Action:
∗ action name = Print

P is not applied to Request 3 since the subject attributes
don’t match those of the target. In fact, to apply policy P, a
subject should be professor or a student named Bob. Request
3 specifies a student named John.

P is not applied to Request 4 because the requested action
is Print which is not specified in the policy’s target.

In the following paragraphs we assume that targetMatch is
a logical function that checks if a target matches a request.

2) Rule Response: The response on an XACML access
control rule depends on its target and its specified effect. If
a request matches a rule’s target, the response of the rule
will be the rule’s effect, otherwise the rule’s response will
be NotApplicable.

3) Policy Response: The response of an XACML access
control policy depends on its target, its child rules and its
rule combining algorithm. As for a rule, the policy’s target is
evaluated against a request to determine whether the policy
is applied or not. If it is applied, we will consider the
responses of its child rules that apply. A unique decision will
be returned according to the combining algorithm of the policy
as mentioned in subsection II-C.

4) Policy set Response: The response of an XACML access
control policy set depends on its target, its child policies and
its policy combining algorithm in a similar way as for policies.

IV. MODELING WITH ALLOY

Alloy is a modeling language based on relational first order
logic. The Alloy Analyzer [10] is a tool that permits to verify
and analyze Alloy models. Alloy is a structural and declarative
language. It is suitable to describe complex structures and
logical constraints. In this section, we provide a brief overview
of Alloy. Then, we provide a translation of the XACML logical
model into Alloy notation.

A. Alloy Overview

To model structures, Alloy uses the concepts of signature
and relation. A signature is a type in Alloy. It can be con-
sidered equivalent to a class in the object oriented paradigm
since a signature can be instantiated.

4

A relation is a structure that relates signatures and their
instances. Functions are special binary relations: they map
each instance from the left signature to only one instance from
the right signature e.g. the function effect maps each rule to
only one effect.

Constraints are represented in Alloy by facts. A fact is
a logical formula that always holds. Alloy uses first order
logic in an ASCII format. We can also specify predicates that
could be evaluated to return true or false and functions that
could return signature instances. Alloy is able to automatically
instantiate and evaluate predicates.

We can also define assertions in Alloy. An assertion is a
logical formula representing a system property. Assertions can
be analyzed to check if they hold or not. The Alloy Analyzer
will show a counterexample if an assertion is inconsistent.
A counterexample is a set of instances that respects the
constraints defined by the model and doesn’t respect the
analyzed assertion.

B. XACML Alloy Model

In section III we have proposed a logical model for
XACML. To obtain the Alloy model we need to translate the
logical notation into Alloy. Every set is defined by a signa-
ture. These signatures are related by relations and functions.
The constraints in XACML are translated into Alloy’s facts
and functions. We present some examples in the following
paragraphs.

1) XACML Policies:

abstract sig Policy {
policyTarget : one Target,
rules : set Rule,
ruleCombiningAlgo : one CombiningAlgo}

We declare a signature Policy for the set of policies. This
signature is declared as abstract to force Alloy not to generate
random policies automatically, but let us define each specific
policy. The function policyTarget is represented as a relation
that relates each policy to only one target. The relation rules
maps each policy to a set of rules. The function ruleCom-
biningAlgo relates each policy to one combining algorithm.

2) Subjects, Resources and Actions:

abstract sig Element {
attributes : Attribute -> Value}
{attributes in values}

sig Subject, Resource, Action
extends Element{}

Since subjects, resources and actions have the same structure,
we define first an abstract general signature Element. Then,
we define its subtypes that are Subject, Resource and Action.

After the Element signature definition we add a fact (be-
tween the brackets) that forces the couple (Attribute,Value)
to be significant. For example, we consider two subject’s
attributes: name and role. The name attribute has two possible
values Bob and John. The role attribute has two possible
values professor and student. So, the attribute signature has
two instances (name and role) and the value signature has

four instances (Bob, John, professor and student). The relation
values is a relation that defines for each attribute its possible
values (as mentioned in paragraph III-A.1). In this case it
includes the following couples:

• (name, Bob)
• (name, John)
• (role, professor)
• (role, student)

But the relation attributes maps each element to a set of
couples of type (Attribute,Value). So, it can map a subject
to the couple (name, professor) that has no meaning since
relation attributes is supposed to define the subject’s attributes
and their actual values. That’s why we add the fact that
says attributes in values meaning that the couples
(Attribute,Value) defined by the relation attributes should be
included in the couples above defined by the relation values.

3) Target Verification: The targetMatch function is defined
by a predicate that returns true if some target’s subject,
resource and action in the policy, rule or policy set match
a request’s subject, resource and action.

pred targetMatch (t:Target,r:Request) {
some s: t.subjects |

elementMatch(s,r.subject)
some s: t.resources |

elementMatch(s,r.resource)
some s: t.actions |

elementMatch(s,r.action)}

4) Rule Response: The function ruleResponse will be trans-
lated into Alloy. It will return the effect returned by the
function ruleEffect, if the rule’s target matches a request,
otherwise it will return the NotApplicable effect.

fun ruleResponse (r:Rule,req:Request)
:Effect{

if targetMatch(r.ruleTarget, req)
then r.ruleEffect
else NotApplicable}

V. ACCESS CONTROL VERIFICATION AND VALIDATION

In this section we analyze actual XACML access control
policies using the model defined above and the Alloy Analyzer.

A. An Example of access control policy

We consider a plain access control policy consisting of three
rules. We assume that we control access to a file of course
marks:

1) a professor can read or modify the file of course marks
2) a student can read the file of course marks
3) a student cannot modify the file of course marks

B. A Complete Model

The model described in section IV-A is an abstract model.
It defines only abstract entities. We need to specify actual
and specific policies, rules, targets, attributes and values. A
subject is defined by an attribute that could be called Role.

5

The role attribute could have Student and Professor values. A
resource is defined by the attribute ResourceName that could
be MarksFile. Finally an action is defined by the attribute
ActionName that could have value Read or Modify. So, the
values relation will be defined by the following couples:

• (Role, Student)
• (Role, Professor)
• (ResourceName, MarksFile)
• (ActionName, Read)
• (ActionName, Modify)
We define four targets T, T1, T2 and T3, one policy P, and

three rules R1, R2 and R3. The relation policyTarget is defined
by the couple {(P,T)} that indicates that the target of P is T
(recall that we need a target for the whole policy, although it
is not used by any rule). The relation ruleTarget is defined by
the tuples {(R1,T1), (R2,T2), (R3,T3)} that indicates that the
targets of R1, R2 and R3 are respectively T1, T2 and T3.

We define three subjects SUB1, SUB2 and SUB3, one
resource RES and three actions ACT1, ACT2 and ACT3. The
relation attributes is defined by the tuples:

• (SUB1, Role, Professor) to indicate that SUB1 is a
professor

• (SUB2, Role, Student) to indicate that SUB2 is a student
• (SUB3, Role, Professor) and (SUB3,Role,Student) to

indicate that SUB3 could be a professor or student
• (RES1, ResourceName, MarksFile) to indicate that RES1

is a marks file
• (ACT1, Action, Read) to indicate that ACT1 is a read

action
• (ACT2, Action, Modify) to indicate that ACT2 is a modify

action
• (ACT3, Action, Read) and (ACT3, Action, Modify) to

indicate that ACT3 could be a read or modify action
The subjects relation is defined by the couples:
• (T, SUB3) to indicate that the subject of T is SUB3
• (T1, SUB1) to indicate that the subject of T1 is SUB1
• (T2, SUB2) to indicate that the subject of T2 is SUB2
• (T3, SUB2) to indicate that the subject of T3 is SUB2

Similarly, the resources relation is defined by the tuples (T,
RES1), (T1, RES1), (T2, RES1) and (T3, RES1) and the
relation actions by tuples (T, ACT3), (T1, ACT3), (T2, ACT1)
and (T3, ACT2).

R1 and R2 will result in permit and R3 will result in deny.
Then, the relation effect will include the couples :

• (R1, Permit)
• (R2, Permit)
• (R3, Deny)

C. Model Analysis

The Alloy model of the access control policies can be
analyzed, by using a set of predicates and assertions that
represent the properties to be verified.

First we can ask Alloy to show an example in which a rule
generates a Permit response. For this purpose, we define the
following predicate in Alloy:

pred PermitRule(r : Request, r1 : Rule){

Fig. 2. A Permit Response

Fig. 3. Inconsistent Rules

ruleResponse(r1,r) = Permit}

Alloy will find the example shown in figure 2. In this example
Alloy found a request and rule instances (the two parameters
of the predicate) for which PermitPolicy is evaluated to true.
Then, when a student asks to read the file of course marks,
the access is granted by rule 2.

We can also check if there exist two rules that return two
different decisions (permit and deny) in a context of a specific
request. So, we define the following predicate in Alloy:

pred InconsistentRules
(q : Request, r1, r2 : Rule){

ruleResponse(r1,q) = Permit
and ruleResponse(r2,q) = Deny}

Alloy returns the result shown in figure 3. In this figure, we can
see that a request to modify the file of course marks processed

6

by a subject that has both student and professor role leads to
two possible decisions generated by Rule1 and Rule3. The user
then knows that the access model must be corrected in some
way.

We can finally verify that a professor’s request to modify the
marks file will be always accepted by the following assertion:

assert PermitForProfessor {
all q : Request {
{˜(q.subject.attributes).Attribute =
Professor}
=> policyResponse(P,q) = Permit}}

For this example Alloy didn’t find a counterexample for this
assertion. This means that this property holds in the specific
context of this example.

VI. RELATED WORK

In [4], Multi-Terminal Binary Decision Diagrams (MTB-
DDs) were used to represent access control policies and
analyze conflicts and change impact among them. [11] [12]
have used other languages such as PONDER [2] to specify
policies and have developed their own conflict detection tools
[1] to analyze and verify conflicts. [16] has demonstrated a
different approach: instead of checking a posteriori a given
set of policies, it is shown how access control policies can
be specified in a logic-based language [6], checked and then
translated into XACML. Surely, a similar thing could be done
with Alloy: first, policies could be specified and checked in
Alloy and then translated into XACML. Or perhaps more
pragmatically one can expect that policies will be specified
by using GUIs and then checked at that stage before being
translated into XACML or other languages. It remains to be
seen how each method can fit into business models.

VII. CONCLUSION

We have shown how XACML policies can be formalized
in logic and how inconsistencies in them can be detected by
using a standard logic model checker. Of course, this detection
process has a high computational complexity and it cannot be
guaranteed that it can always complete in reasonable time.
However all the examples of XACML policies that we have
encountered so far (some taken from real-life examples) were
not complex and the result of the analysis was available in an
acceptable time (less than one minute). In principle, elements
of our method can be used to detect inconsistencies in other
policy languages such as EPAL [14] or PONDER, however
the adaptation that must be done in each case in not negligible.

Part of this project are also a translator from XACML into
Alloy, a translator from XACML into natural language, and
an analyzer that scans Alloy outputs such as the one of figure
3 to yield natural language explanation.

A question that comes up is, how far can we go in this
process before we encounter undecidability problems, or at
least problems that will be intractable with common model
checkers and theorem provers. Indeed, XACML allows the
use of functions that can be like ordinary programs, and we
have not taken into consideration such functions in our work.

In this case, methods such as ours can still be useful to detect
possible inconsistencies, which will be reported to users who
will be able to do some manual inspections, or run tests. In
this latter case, an automatic tool can still be useful in order
to suggest which tests should be run, as has been shown, in a
different context [5].

VIII. ACKNOWLEDGMENT

This research was supported in part by a grant from the Na-
tional Sciences and Engineering Research Council of Canada.
We are grateful to Ann Anderson of Sun Microsystems and
the NOTERE reviewers for useful comments.

REFERENCES

[1] N. Damianou, N. Dulay, E. Lupu, M. Sloman, and T. Tonouchi,
“Tools for Domain-based Policy Management of Distributed Sys-
tems,” in IEEE/IFIP Network Operations and Management Symposium
(NOMS2002), Apr. 2002, pp. 213–218.

[2] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy
Specification Language,” Lecture Notes in Computer Science, vol. 1995,
p. 18, 2001. [Online]. Available: citeseer.ist.psu.edu/damianou01ponder.
html

[3] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandra-
mouli, “Proposed NIST standard for role-based access control,” ACM
Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, 2001.

[4] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and Change-Impact Analysis of Access-Control Policies,”
in International Conference on Software Engineering. ACM, 2005.

[5] N. Gorse, L. Logrippo, and J. Sincennes, “Formal Detection of Feature
Interactions with Logic Programming and LOTOS,” Journal on Software
and System Modelling, 2005, (to appear).

[6] D. P. Guelev, M. Ryan, and P. Y. Schobbens, “Model-Checking Access
Control Policies,” in Seventh Information Security Conference (ISC
2004). Lecture Notes in Computer Science. Springer-Verlag, Sept. 2004,
pp. 219–230.

[7] D. Jackson, “ALLOY Home Page.” [Online]. Available: http:
//alloy.mit.edu/

[8] ——, Micromodels of Software: Lightweight Modelling and Analysis
with ALLOY, Feb. 2002.

[9] ——, ALLOY 3.0 Reference Manual, May 2004.
[10] D. Jackson, I. Schechter, and H. Shlyahter, “Alcoa: the alloy constraint

analyzer,” in ICSE ’00: Proceedings of the 22nd international conference
on Software engineering. ACM Press, 2000, pp. 730–733.

[11] E. Lupu and M. Sloman, “Conflict Analysis for Management Policies,”
in Proceedings of the 5th IFIP/IEEE International Symposium on
Integrated Network management IM’97, San Diego, CA, 1997. [Online].
Available: citeseer.ist.psu.edu/lupu97conflict.html

[12] E. C. Lupu and M. Sloman, “Conflicts in Policy-Based Distributed
Systems Management,” IEEE Transactions on Software Engineering,
vol. 25, no. 6, pp. 852–869, Nov. 1999. [Online]. Available:
citeseer.ist.psu.edu/lupu99conflicts.html

[13] OASIS, “eXtensible Access Control Markup Language (XACML).”
[Online]. Available: http://www.oasis-open.org/committees/tc home.
php?wg abbrev=xacml

[14] M. Schunter and C. Powers, “The Enterprise Privacy Authorization
Language (EPAL 1.1),” 2003. [Online]. Available: http://www.zurich.
ibm.com/security/enterprise-privacy/epal/

[15] W3C, “eXtensible Markup Language (XML).” [Online]. Available:
http://www.w3.org/XML/

[16] N. Zhang, M. Ryan, and D. P. Guelev, “Synthesising verified access
control systems in XACML,” in FMSE ’04: Proceedings of the 2004
ACM workshop on Formal methods in security engineering. ACM
Press, 2004, pp. 56–65.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

