
ar
X

iv
:c

s.
N

I/
00

08
00

6
v1

9

A
ug

 2
00

0

Algorithms for Analysing Firewall and Router Access Lists

Scott Hazelhurst
Programme for Highly Dependable Systems, Department of Computer Science,

University of the Witwatersrand, Johannesburg,Private Bag 3, 2050 Wits, scott@cs.wits.ac.za

Abstract

Network firewalls and routers use a rule database to decide which packets will be allowed from
one network onto another. By filtering packets the firewalls and routers can improve security and
performance. However, as the size of the rule list increases, it becomes difficult to maintain and
validate the rules, and lookup latency may increase significantly. Ordered binary decision diagrams
(BDDs) – a compact method of representing and manipulating boolean expressions – are a potential
method of representing the rules. This paper presents a new algorithm for representing such lists as
a BDD and then shows how the resulting boolean expression can be used to analyse rule sets.

1 Introduction

Network routers and firewalls play a very important role in network traffic management. By regulating
which packets are accepted by a firewall or router, both the security and performance of the network can
be improved. Routers and firewalls usually have rules which indicate which packets should be accepted
and which rejected.

A network manager can express many complex rules for accepting or rejecting packets. The efficacy
of traffic management depends on how good these rules are. In practice, these rules develop over a period
of time and evolve as needs changes. Two problems emerge:

• As the list of rules become more complex they become more difficult to understand. The person
who maintains the list may leave and be replaced. For someone to understand the rule base from
scratch can be very difficult. This makes maintaining the rule base difficult if changes are made
either for operational or performance needs since it may not be obvious what the effect of changing,
deleting or adding a rule may be. Even changing the position of a rule in the rule list can change
the semantics of the list.

• The cost of performing look-up on a rule list may become expensive, and particularly for routers,
this may add significantly to latency in the network.

Terminology: To simplify notation, in the rest of the paper the term filter is used to cover both routers
and firewalls, and the term rule set is used to refer to a list of rules that implement the filter’s policy.

1.1 Rule sets

Filter rules come in several formats; typically these are proprietary formats. While the expressiveness
and syntax of the formats differ, the following generic description gives a good feeling for what such
rules sets look like. A rule set consists of a list of rules of the form if condition then action , where the
action is either accept or reject.

Example 1.1. A rule in an access list for a Cisco router might say something like [4]:

access-list 101 permit tcp 20.9.17.8 0.0.0.0
121.11.127.20 0.0.0.0

range 23 27

1

This says that any TCP protocol packet coming from IP address 20.9.17.8 destined for IP address 121.11.
127.20 is to be accepted provided the destination port address is in the range 23 . . . 27. More detail is
given later.

The rules are searched one by one to see whether the condition matches the incoming packet: if it
does, the packet is accepted or rejected depending on the action (which will either be accept or reject); if
the condition does not match the rule, the search continues with the following rules. If none of the rules
match the packet is rejected.

Since the rules are checked in order, the order in which they are specified is critical. Changing
the order of the rules could result in some packets that were previously rejected being accepted (and/or
vice-versa).

This paper uses CISCO access-list format for specifying the rule set, but the methods proposed
generalise to other formats.

1.2 Research goals

Hazelhurst et al. [5] explored the use of binary decision diagrams (BDDs) for representing access rule
lists, and showed the potential of using BDDs for speeding-up look-up, performing analysis, and possible
hardware support. This paper extends the work focusing on the problem of analysing the access rule lists.
The contributions of the paper are:

• An improved technique for representing a rule set as a boolean expression using BDDs;

• A set of algorithms that can be used to analyse a rule set to help validate it, and to understand the
effect of changes on the rule set.

• A prototype graphical interface that can be used to help analyse the rule set.

The use of these techniques will allow more complex and sophisticated rule sets to be used with greater
confidence. This will improve both security and traffic management.

1.3 Content and structure of paper

Section 2 introduces the BDDs. Section 3 then shows how a rule set can be converted into a BDD
representation. Section 4 explores visualisation and analysis techniques that use BDD representations.
Section 5 presents a simple graphical interface for a prototype filter analysis tool. Finally, Section 6
describes the status of the work and discusses possible future research.

2 Binary Decision Diagrams

A decision diagram is a method of representing a boolean expression. For example the boolean expres-
sion (x1 ∨ x2) ∧ x3 can be represented by the decision diagram in Figure 1.

To evaluate an expression given an interpretation of the variables, you start at the root and move
downwards. If the variable has a 0 value, choose the path given by the dashed line; if the variable has
a 1 value, choose the path given by the other line. By following this rule you can easily evaluate the
function.

Bryant [3] introduced the concept of reduced, ordered binary decision diagram, which obeys the
following rules.

• all duplicate terminals are removed (i.e. we shall have at most one terminal labelled 1, and one
labelled 0);

• all duplicate non-terminals are removed;

x1

x2 x2

x3

0 0

x3

0 1

x3

0 1

x3

0 1

Figure 1: A simple decision diagram for (x1 ∨ x2) ∧ x3

• all redundant tests are removed (i.e. if both edges leaving a vertex go to the same place, you can
delete that vertex since it implies that the value of the variable that that node represents is irrelevant
at that point); and

• a total order is placed on the variables in the expression and for any edge (x, y), the label of x

comes before the label of y in the order (variables are encountered in the same order on any path
from root to leaf).

In this paper reduced ordered binary decision diagrams are simply called binary decision diagrams and
abbreviated as BDDs. Efficient algorithms are known for manipulating boolean expressions (e.g. con-
junction, implication, . . .). There are two important properties of BDDs. First, they are compact repre-
sentations of boolean expressions (in a heuristic sense – there are expressions which are not compact).
Second, for a given variable ordering, the BDD representation of an expression is canonical. (As a sim-
ple example, this means that if we build BDDs for ¬(a ∧ (b ∨ c)) and (¬a ∨ ¬b) ∧ (¬a ∨ ¬c) we get
exactly the same BDD). In practice this means that checking equivalence can be done very cheaply once
the BDD is constructed. The figure below shows the BDD representation of (x1 ∨ x2) ∧ x3.

x1

x2

x3

As can be seen this is significantly smaller. In practice it is not uncommon to work with expressions
that have BDDs tens of megabytes in size. With such expressions, the efficiency benefits gained by
using BDDs can make many orders of magnitude difference in the size boolean expressions that can be
manipulated.

Number representation

Integers can be represented as bit vectors, and hence as vectors of BDDs. Symbolic manipulation of
numbers can therefore be done as bit operations. Among others, addition and comparison can efficiently
be implemented. One of the reasons that many symbolic numerical expressions can be efficiently imple-
mented as bit-vectors is that BDDs for common sub-expressions are shared.

Complexity issues

The size of the BDD is very dependent on the variable ordering chosen. Although the problem of finding
an optimal BDD ordering is NP-complete [1], in practice there are good rules of thumb for finding good
variable orderings and many BDD packages come with heuristic routines for dynamic variable ordering.

It must be emphasised that although BDDs have worked well in many applications areas, they are
not a panacea – after all the Boolean Satisfiability problem can easily be represented using BDDs, which
immediately indicates that BDDs cannot be used to solve all boolean problems efficiently. A stronger
result is in fact known — there are some problems which require exponential space [2].

3 Converting rule sets into boolean expressions

This section describes how a rule set can be converted into a boolean expression (which is represented
as a BDD). Section 3.1 describes how an individual rule in a rule set can be converted into a boolean
expression (and hence a BDD). Section 3.2 shows how the boolean expressions for the individual rules
can be combined to give a boolean expression for the entire list. Some initial experimental results are
given in Section 3.3.

In the description, CISCO access lists are used as illustration. However the methods can be modified
to fit other approaches.

3.1 Rule conversion

A CISCO access rule is of the form

access-list 101 permit tcp
20.9.17.8 0.0.0.0
121.11.127.20 0.0.0.0
range 23 27

The key components in a rule are:

• permit or reject: which indicates packets matching the rule are to be accepted. How this field will
be used is described in the next section.

• The protocol of the packet: in this case, TCP. Other possible examples are UDP and ICMP.

• The source address: four segments, each a number in the range 0 . . . 255.

• The mask for the source address (also four segments).

• The destination address (in the same format as the source).

• The destination mask.

• The range of port addresses. If the port component is empty, all ports match. The eq x can be
used as short-hand for range x x.

3.1.1 Representing numbers as bit-vectors

The key technique used is that numbers can be represented as bit vectors. For example, an address
segment is a number between 0 and 255. At a lower level, the address segment is just a vector of 8
bits. Using BDDs, we can represent sets of numbers symbolically and perform many operations on them
efficiently.

For example, to represent the 8-bit number x symbolically, we introduce the bit-vector 〈x7, . . . , x0〉,
where each of the xis are boolean (BDD) variables. The condition that the vector of x’s is equal to 3, is
just 〈x7, . . . , x0〉 = 〈f , f , f , f , f , f , t, t〉. Using the definition of equality of vectors yields the boolean ex-
pression x′7x

′

6x
′

5x
′

4x
′

3x
′

2x1x0, (bits 0 and 1 are high, the others low). To help make the presentation of for-
mulas more compact, unless the formula would be confusing, negation is shown using a prime or tick, and

juxtaposition is used for conjunction. The condition that x = 2 is represented by x′
7
x′

6
x′

5
x′

4
x′

3
x′

2
x1x

′

0
.

The condition x = 2 ∨ x = 3 is represented by x′7x
′

6x
′

5x
′

4x
′

3x
′

2x1x0 ∨ x′

7x
′

6x
′

5x
′

4x
′

3x
′

2x1x
′

0 which is just
x′

7x
′

6x
′

5x
′

4x
′

3x
′

2x1. Large expressions can be represented compactly using BDDs.

3.1.2 Boolean variables for the components of a rule

We introduce a number of boolean variables and expressions to represent the information in the rule.
We assign each protocol a number 0, . . . , np−1. These numbers can be represented in mp = log2 np

bits, and so we introduce mp variables π0, . . . , πmp−1 to encode the protocol used. In the examples given
below, the protocols can be represented in 3 bits. For example, if the rule refers to a tcp protocol (protocol
3) packet, then this is represented by the expression 〈π2, π1, π0〉 = 〈f , t, t〉, or just π′

2π1π0.
For each segment of the source address we introduce 8 variables of the form sax[0], . . . , sax[7],

where x is the segment number. For example, if segment 2 of the source address refers to the number
141, this is encoded as sa2[7]sa2′[6]sa2′[5]sa2′[4]sa2[3]sa2[2]sa2′[1]sa2[0].

For each segment of the destination address we introduce 8 variables of the form dax[0], . . . , dax[7],
where x is the segment number. The encoding of destination addresses is similar to the encoding of the
source address.

As there can be up to 64000 ports specified, port numbers can be represented in 16 bits, so we
introduce 16 boolean variables (p[15], . . . , p[0], with p[15] being the most significant bit) which encode
the port number. Using these variables it is possible to succinctly represent individual ports as well as
ranges of ports. Examples are given below.

For the moment we ignore the effects of the mask – the Section 3.1.4 discusses mechanisms that
handle masks.

3.1.3 Example

In the example above the source address 20.9.17.8 would be encoded by the boolean expression:
sa1′[7]sa1′[6]sa1′[5]sa1[4]sa1′[3]sa1[2]sa1′[1]sa1′[0]∧
sa2′[7]sa2′[6]sa2′[5]sa2′[4]sa2[3]sa2′[2]sa2′[1]sa2[0]∧
sa3′[7]sa3′[6]sa3′[5]sa3[4]sa3′[3]sa3′[2]sa3′[1]sa3[0]∧
sa4′[7]sa4′[6]sa4′[5]sa4′[4]sa4′[3]sa4[2]sa4′[1]sa4′[0]

The destination address can be encoded in a similar way.

Representing the range of ports needs a little more care. Let port
def
= 〈p[15], . . . , p[0]〉. Conditions

can be expressed using boolean operations. Similarly to other parts of the rule, the condition that the port
number must be 25 is just port = int2bv 25, where int2bv is a function that converts a number into its
bit-vector representation.

The range operations can also be represented efficiently. For example, a greater-than-or-equal-to
operation can easily be defined too. In an ML-like language this might be defined by:

letrec geq (x:xrest) (y:yrest) =
(x AND (NOT y)) OR
((x=y) AND (geq xrest yrest))

/\ geq [x] [y] = (x=y);

The port-range information in the example rule above would be encoded as:

(port geq int2bv 23) ∧ (port leq int2bv 27)

The boolean expression that represents this is

(p[15]′p[14]′p[13]′p[12]′p[11]′p[10]′p[9]′p[8]′p[7]′

p[6]′p[5]′p[4]) ∧ (p[3]p[2]′ ∨ p[3]′p[2]p[1]p[0])
(1)

This may appear complicated, but the BDD representation is compact.

3.1.4 Masks

The source (and destination) addresses in a rule actually both have two components: a base address and
a mask. The mask gives the rule specifier the flexibility to specify a number of possible matches in one
rule. In effect the mask indicates which bits of the base address should be matched on and which ignored.
Masks are used extensively and so any mechanism for representing the rule set must be able to deal with
them.

If the base address given in a rule is s1.s2.s3.s4 and the mask is m1.m2.m3.m4, then a packet with
address a1.a2.a3.a4 matches exactly when

(s1 or m1 = a1 or m1) ∧ (s2 or m2 = a2 or m2) ∧ (2)

(s3 or m3 = a3 or m3) ∧ (s4 or m4 = a4 or m4),

where the or operation is bit-wise or-ing of the two vectors.1 The segments of the mask are typically
either 0 (which means the segment must match exactly) or 255 (which means the segment is ignored).
For example if the source address given is:

• 146.141.27.66 0.0.0.0: this means that the packet must match exactly as coming from the machine
concave.cs.wits.ac.za;

• 146.141.27.66 0.0.255.255: this means that the packet must come from some machine in the Wits
domain.

To cope with masks, the mechanism for dealing with addresses described above needs to be gener-
alised. This is easily accomplished using a direct implementation of Equation 2.

3.2 Conversion of the entire rule set

Using the methods described above the entire rule set can in principle be represented by a boolean ex-
pression. Suppose cvtrule is the function that converts one rule into a boolean expression. The cvtruleset
function can be defined recursively using cvtrule.

• If the rule set is empty then no packets can be accepted and so the corresponding boolean expres-
sion is f.

• If the first rule is an accept rule then a packet will be accepted if it matches the rule or if accepted by
the rest of the rule set. So the corresponding boolean expression is the disjunction of the boolean
expression representing the first rule and the boolean expression representing the rest of the rules.

• If the first rule is a reject rule then a packet will be accepted if it does not match the first rule and it
is accepted by the rest of the rule set. So the corresponding boolean expression is the conjunction
of the negation of the boolean expression representing the first rule and the boolean expression
representing the rest of the rules.

The pseudo-code for this is given below:

let cvtruleset ruleset =
if empty ruleset return FALSE
else

let curr = firstof ruleset
let rest = tail ruleset
if typeof curr = accept

return (cvtrule curr) OR
(cvtruleset rest)

elsif typeof curr = reject
return (NOT (cvtrule curr)) AND

(cvtruleset rest)

1Here or binds tighter than ‘=’.

3.3 Results

The algorithm described above has been implemented in a protoype tool built on top of the Voss sys-
tem [6]. This system has a lazy functional language called FL as its front-end and uses BDDs internally
to represent symbolic boolean expression. The Voss system also has heuristics for finding good BDD
variable orderings. A simple Perl script processes the rule set which is then read in by the prototype tool.
Then using FL as a front end, a user can analyse the rules in various ways — this is described in detail
in the next section.

The algorithm for converting rule sets into a boolean formula has been tested one some synthetic
test cases and a large real rule set supplied by an internet service provider. A set of just over 430 rules
provided by a commercial internet service provider was converted into a boolean expressions using the
simple algorithms described above. The total time taken to produce the BDD to represent this rule set
was about 20s on a Sun Ultra 4, yielding a BDD of apprimately 1.1K in size (the text file with the access
list is about 32K in size). The maximum depth of the BDD (determined by the number of variables)
is 83 which means that to check whether a packet should be accepted requires in the worst case 83
bit-operations.

This result is encouraging since it shows that the BDD representation is feasible and that lookup can
be done very quickly. More experimental evidence is needed, with more rule sets and with real log data.
While worst case is important, average case is much more important. What average case is depends on
what real data looks like and what the pattern of incoming packets is. This is particularly important in
assessing the cost of the lookup in the original rule set.

One of the advantages of the boolean expression is that the ‘shape’ of the BDD has no effect on the
semantics, only on the cost of look-up. So changing the variable ordering may mean that the size of the
BDD is greater or that the length of the maximum path in the BDD grows, but the semantics remains the
same. A statistical analysis of traffic would indicate a variable ordering to be used that would minimise
average lookup, even if worst-case lookup suffers. Doing the same with the linear representation of the
rules is much more difficult because of the importance of the linear order of the access lists.

4 Analysing BDD representations of rule set

Section 3 examined the use of BDDs for compact representation and lookup in rule sets. This section
presents how the the BDD representation can be used for analysis. While some of the analysis can be
fully automated, the main point of the proposed tool is to provide a human user with the ability to interact
with the rule set to understand it and the effect of possible changes. The tool does not act as an oracle,
but a means of exploring the rule set.

4.1 Display of rule set

The cornerstone of the algorithms to analyse rule sets is the routine that given a boolean expression
representing the rule set displays it it for a human user. The BDD representation of the rule set is a
compact machine-friendly way of representing the rules; however it is far from human friendly.

Therefore the tool has an algorithm that presents the boolean formula in a human readable way, in a
tabular form. Here is a simple example presenting a rule set containing two rules. In the examples that
follow, lines that start with a colon are the input given by the user to the prototype tool.

: sc [Proto,Port] cond;
:
Proto Ports Src 1 Src 2 Src 3 Src 4 Dest1 Dest2 Dest3 Dest4

1 | 0--65535 | 0--255 0--255 0--255 0--255 0--255 0--255 0--255 0--255
3 | 80 | 0--255 0--255 0--255 0--255 120 17 112 100

The table displays the condition cond showing all the values of source address, destination address, port
and protocol which packets will be allowed through. The first argument to sc gives, in order, the first two

columns that should be chosen (the routine has a default order, but the user can specify any order using
the first argument). The size of the table depends very much of the order of the columns. Experience has
shown that listing using port and protocol first yields the smallest tables, using the addresses first leads
to huge tables. By changing the order, a user can view the rules in different ways. At present, displaying
the table of a large set of rules produces very large tables.

4.2 Instantiating the conditions

One of the most useful ways of validating a rule set is to ask ‘what if’ questions. For example:

• Do we accept packets on port 25? If so what type of packets?

• On which ports do we accept tcp packets?

• Which packets do we accept from address y?

• What type of packets will we accept that are being sent to address y?

• And so on . . .

All these queries can be expressed as boolean conditions, and depending on the user’s goal, the results
displayed using the routine described above. Any boolean combination of conditions is allowed. Here
are some examples:

• What type of udp packets do we accept?

: sc [Port,Proto] ([Proto <- udp] ::: cond);

Ports Proto Src 4 Src 3 Src 2 Src 1 Dest4 est3 Dest2 Dest1
53 | 2 | 0--255|0--255|0--255|0--255|0--255|0--255 |0--255 | 0--255

• What packets do we accept which have the first segment of the destination address of 121 and
which are not icmp packets?

: sc [Port,Proto] ([Dest1<-120, NOT(Proto<-icmp)] ::: cond);

Ports Proto Src 4 Src 3 Src 2 Src 1 Dest4 Dest3 Dest2 Dest1
0--19| 1|0--255|0--255|0--255|0--255|0--255|0--255|0--255| 120

20--21| 1|0--255|0--255|0--255|0--255|0--255|0--255|0--255| 120
3|0--255|0--255|0--255|0--255| 3| 112| 17| 120

22| 1|0--255|0--255|0--255|0--255|0--255|0--255|0--255| 120
3| 9| 0| 20| 120|0--255|0--255|0--255| 120

23--24| 1|0--255|0--255|0--255|0--255|0--255|0--255|0--255| 120
......

• List the packets we accept for the 120.121 network?

> sc [] ([Source1<-120, Source2<-121] ::: cond);

Ports Proto Src 4 Src 3 Src 2 Src 1 Dest4 Dest3 Dest2 Dest1
0--19| 1|0--255|0--255|0--255|0--255|0--255|0--255|0--255| 120

20--21| 1|0--255|0--255|0--255|0--255|0--255|0--255|0--255| 120
3|0--255|0--255|0--255|0--255| 3| 112| 17| 120

22| 1|0--255|0--255|0--255|0--255|0--255|0--255|0--255| 120
3| 9| 0| 20| 120|0--255|0--255|0--255| 120

23--24| 1|0--255|0--255|0--255|0--255|0--255|0--255|0--255| 120
......

• It is also possible using the gs routine to summarise the results. The gs routine lists for each of
the columns specified in the first argument, the range of values for which some packet with the
specified condition is accepted. For example:

: gs [Port,Proto,Dest4,Dest3] ([Proto<-tcp] ::: cond);

shows the range of protocols, protocols and third and fourth destination address segments for
which tcp packets are accepted, without giving the other details. This is useful as it allows the user
to view the rule set at different levels of abstraction.

• Which packets are not accepted? As the condition for acceptance is given as a boolean expression,
we can look at its negation to discover which packets are not accepted. For example the following
call to the tool lists, in the order asked for, which gre packets destined for ports 80 through 90 are
not accepted.

sc [Proto,Port,Dest1,Dest2,Dest3,Dest4]
([Port range (80,90), Proto<-gre] ::: not_allowed);

4.3 Dealing with modifications

Probably the most useful part of the tool is the ability to analyse changes to the rule set, whether those
changes are changes to a particular rule, a change in the order of the rules, or a removal or addition of a
rule.

The original rule set is represented as a boolean formula, the modified rule set is represented as a
boolean formula, and then the two formulas together can be used to perform any desired analysis (for
example, whether they two formulas are equivalent, or whether one logically implies the other).

An example is given below of the use of the tool. In the example, the rule set in the file real1 is
read in and stored internally as a BDD — it is accessible as the boolean variable cond, where it can be
analysed using one of the techniques previously described. Then the rule set real1a is read in and stored
internally; at the same time this is done two boolean variables are set: newallow is a boolean expression
which indicates which packets are allowed by the new rule set but not by the old one, and newdeny
indicates which packets are refused by the new rule set but allowed by the new one. In the example
below, those packets are displayed in a useful order.

: rule ‘‘real1’’;
:
: new_rule ‘‘real1a’’;
:
: sc [Port,Proto,Dest1,Dest2,Dest3,Dest4,Source1,Source2,Source3] newdeny;

Ports Proto Dest1 Dest2 Dest3 Dest4 Src 1 Src 2 Src 3 Src 4
20--21| 3| 120| 17| 21 | 2| 0--119|0--255| 0--255| 0--255

120| 0--11| 0--255| 0--255
12| 0--207| 0--255

208| 0--32
34--255

209--255| 0--255
13| 0--153| 0--255

155--255| 0--255
14| 0--226| 0--255

228--255| 0--255
15--255| 0--255| 0--255

121--255| 0--25| 0--255| 0--255

Figure 2: Analysing an access file by category

4.4 Automatic validation

One automatic validation algorithm has been implemented. This rule goes through the list of rules
and detects any redundant rules — this can be done efficiently, and if a redundant rule is detected it
is presented to the user. A redundant rule is not necessarily an error, but it may result in slower than
necessary lookup, and if the user expects the rule to be useful, then it may indicate that there is a problem
with the rule set.

This detection routine was used on some synthetic examples, and on a ‘real’ rule set containing
approximately 55 rules. In this case, about 5 redundant rules were detected. In most cases the redundant
rule is caused by the same rule appearing more than once in a rule set. However, another cause of
redundancies is caused by mask values in one rule cover subsequent rules.

Other automatic validation techniques are possible. For example, it would be possible to show for
each (or some) deny rule in a list, which subequent rules (if any) are affected by it.

5 User Interface Issues

The methods presented in the previous sections can be packaged in an easy-to-use way which hides the
underlying algorithm. The first interface developed was a textual-based interface in FL, which provides
the user with a simple but very expressive query language.

A prototype graphical interface has been developed using Tcl/Tk and is illustrated in Figures 2 and
3. Figure 2 shows the analysis of an access file. The user types in the name of the file in the given box.
Below that is information showing how the analysis will be shown. ‘Display options’ shows the order
in which the information will be presented. By clicking on these options the user can change the order
of presentation. The user can also restrict the analysis by entering values in the boxes. In the example
given, only rules pertaining to tcp packets from the 121.21 network are displayed.

Figure 3 shows the results of comparing two rule sets. The user enters the file names and chooses the
appropriate options for displaying the results. The differences are then displayed in the window.

For an industrial strength front-end, more care needs to be taken with the design. The ideal system
would probably provide the most important functionality through the graphical interface, and then allow
an advanced user to issue more powerful queries through a textual interface.

Figure 3: Analysing an access file by category

6 Conclusion

This paper has examined the problem of using filter rule sets for routers and firewalls. These rule sets
are important for both security and performance. Unfortunately as the size of the filter rule sets grow it
becomes more difficult to understand the rules.

This paper has shown that even large rule sets can be represented as a boolean expression in a compact
way using BDDs. As a boolean expression it can easily be manipulated in various ways which allows
the rule set to be manipulated an analysed.

• The rule set can be displayed at various levels of abstraction from different perspectives. This
enables the user to understand what the rule set allows and does not allow.

• A range of queries can be performed on the rule set. This allows a human user to test the rule set
to ensure that the behaviour of the rule set is as expected.

• The effect of changing the rule set can easily be seen. This can help reduce the possibility of errors
being introduced.

• Some automatic analysis of the rule set is possible.

• A simple graphical interface to the tool enables the algorithms presented in this paper to be used
easily without the user having to understand the underlying theory.

In all cases, the computational resources required are modest. By using these techniques a network
manager can gain greater confidence that the rule set is correct. This will also allow larger and more
complex rule sets to be used, improving both the performance and the security of the network.

There are a number of areas for future research. How to present the rules in tabular form in a
compact way needs further work. A naı̈ve algorithm works reasonably well, but the table size can grow
dramatically. It should be possible to present the table more compactly. Also by integrating the tool
with other tools like nslookup it should be possible present the information in a friendlier way. (From a
practical point of view, a lot of work could be spent on the graphical interface.) Another possibility is
using the boolean formula to generate the set of rules as a CISCO access-list (using only accept or only
deny rules).

The prototype tool is not efficiently implemented (it is a collection of C, FL, Perl and Tcl/Tk code).
While acceptable for a prototype, an industrial-strength tool would need to be efficiently reimplemented.

More experience and case studies could also lead to other ways of automatically analysing rule sets.
Finally, there are related research areas: how to use the BDD representation for fast lookup, and

possible hardware support.

Acknowledgements

I gratefully acknowledge the help of The Internet Solution who posed this question initially and who
provided examples of real access lists to us. Andrew Henwood and Anton Fatti worked on a previous
version of this tool. The work was supported by grants from the University of the Witwatersrand Re-
search Committee and the National Research Foundation. Some of the work was done while the author
was on sabbatical leave at the Laboratoire D’Analyse et D’Architecture des Systèmes, Centre National
de la Recherche Scientifique. A shortened version of the paper appears in the South African Telecom-
munications and Networks Application Conference ’99.

References

[1] B Bollig and I Wegener. ‘Improving the Variable Ordering of OBDDs is NP-Complete’. IEEE
Transactions on Computers , 45(9):993–1002, (September 1996).

[2] R Bryant. ‘On the Complexity of VLSI Implementations and Graph Representations of Boolean
Functions with Application to Integer Multiplication’. IEEE Transactions on Computers , 40(2):205–
213, (February 1991).

[3] R Bryant. ‘Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams’. ACM Com-
puting Surveys, 24(3):293–318, (September 1992).

[4] Cisco Systems Inc. Configuring IP Systems. Published at the Cisco web site, 1997. http://
www.cisco.com /univercd /cc /td /doc /product /software.

[5] S Hazelhurst, A Fatti, and A Henwood. ‘Binary Decision Diagram Representations of Firewall and
Router Access Lists’. Technical Report TR-Wits-CS-1998-3, Department of Computer Science,
University of the Witwatersrand, (October 1998). Proceedings of SAICSIT ’98.

[6] C J Seger. ‘Voss — A Formal Hardware Verification System User’s Guide’. Technical Report 93-45,
Department of Computer Science, University of British Columbia, (November 1993). Available by
anonymous ftp as ftp://ftp.cs.ubc.ca/pub/local/techreports/1993/TR-93-45.ps.gz.

