CSI 5109 Assignment 4

1. By constructing the refusal trees of the two behaviour expressions below, show that conformance is not a symmetric relation.

\[A = a; b; \text{stop} \] \[B = i; a; \text{stop} \] \[b; c; \text{stop} \]

\[
\text{Tr}(A) = \{ \epsilon, a, ab, c\}
\]
\[
\text{Tr}(B) = \{ \epsilon, a, b, bc\}
\]

\[
\text{Tr}(A) \cap \text{Tr}(B) = \{ \epsilon, a\}
\]

\[
\text{Ref}(A, \epsilon) = \{ b\}
\]
\[
\text{Ref}(B, \epsilon) = \{ b, c\}
\]

\[
\text{Ref}(A, \epsilon) \subseteq \text{Ref}(B, \epsilon)
\]

\[
\text{Ref}(A, a) = \{ a, c\}
\]
\[
\text{Ref}(B, a) = \{ a, b, c\}
\]

\[
\text{Ref}(A, a) \subseteq \text{Ref}(B, a)
\]

A conf B since \(\text{Ref}(A, \epsilon) \subseteq \text{Ref}(B, \epsilon) \) and \(\text{Ref}(A, a) \subseteq \text{Ref}(B, a) \); but B does not conform to A since \(\text{Ref}(B, \epsilon) \nsubseteq \text{Ref}(A, \epsilon) \) (not to mention that \(\text{Ref}(B, a) \nsubseteq \text{Ref}(A, a) \) either).

\Rightarrow \text{CONF is NOT a symmetric relation.}
2. Given the behaviour expressions:
 \[A = (a; (b; \textit{stop} [i; c; \textit{stop})] [a,c]; (a; (i; b; \textit{stop} [i; c; \textit{stop})) \]
 \[B = (a; (b; \textit{stop} [c; \textit{stop})] [a, c]; (a; (i; b; \textit{stop} [i; c; \textit{stop})) \]

 a) Are \(A \) and \(B \) weak bisimulation equivalent?

 If \(A \) and \(B \) are derived on \(a \):
 \[A \rightarrow_{a} A' = (b; \textit{stop} [i; c; \textit{stop})] [a,c]; (i; b; \textit{stop} [i; c; \textit{stop}) \]
 \[B \rightarrow_{a} B' = (b; \textit{stop} [c; \textit{stop})] [a, c]; (i; b; \textit{stop} [i; c; \textit{stop}) \]

 Then \(A' \) (executing \(i \) on left side) and \(B' \) (executing first \(i \) on right side) on \(\varepsilon \):
 \[A' \rightarrow_{\varepsilon} A'' = (c; \textit{stop}) [a,c]; (i; b; \textit{stop} [i; c; \textit{stop}) \]
 \[B' \rightarrow_{\varepsilon} B'' = (b; \textit{stop} [c; \textit{stop})] [a, c]; (b; \textit{stop}) \]

 The resulting \(A'' \) can execute \(c \) but \(B'' \) cannot \(\Rightarrow \) \(A \) is NOT weak bisimilar to \(B \).

 b) Does one of them conform to the other?

 \[\text{Ref}(A) = \text{Ref}(B) = \{a, b, c\} \]

 \[\text{Tr}(A) = \text{Tr}(B) = \text{Tr}(A) \cap \text{Tr}(B) = \{\varepsilon, a, ab, abb, ac\} \]

 \[\text{Ref}(A,\varepsilon) = \text{Ref}(B,\varepsilon) = \{b, c\} \Rightarrow \text{Ref}(A,\varepsilon) \subseteq \text{Ref}(B,\varepsilon) \text{ and } \text{Ref}(B,\varepsilon) \subseteq \text{Ref}(A,\varepsilon) \]

 \[\text{Ref}(A,a) = \text{Ref}(B,a) = \{a, c\} \Rightarrow \text{Ref}(A,a) \subseteq \text{Ref}(B,a) \text{ and } \text{Ref}(B,a) \subseteq \text{Ref}(A,a) \]

 \[\text{Ref}(A,ab) = \text{Ref}(B,ab) = \{a, b, c\} \Rightarrow \text{Ref}(A,ab) \subseteq \text{Ref}(B,ab) \text{ and } \text{Ref}(B,ab) \subseteq \text{Ref}(A,ab) \]

 \[\text{Ref}(A,ac) = \text{Ref}(B,ac) = \{a, b, c\} \Rightarrow \text{Ref}(A,ac) \subseteq \text{Ref}(B,ac) \text{ and } \text{Ref}(B,ac) \subseteq \text{Ref}(A,ac) \]

 Thus, \(A \) conf \(B \) and \(B \) conf \(A \).

 c) Are they trace equivalent?

 Yes. As shown above: \(\text{Tr}(A) = \text{Tr}(B) = \{\varepsilon, a, ab, abb, ac\} \)

 d) Are they testing equivalent?

 Since \(A \) conf \(B \) and \(B \) conf \(A \) and they share the same traces, \(A \) te \(B \).
3. Construct the canonical tester of the following behaviour expression and derive the set of test cases:

\[(a; (b; \text{stop} [] c; \text{stop})) || [a,c] || (a; (i; b; \text{stop} [] c; \text{stop}))\]

\[L = \{a,b,c\}\]
\[L^* = \{\{\},\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}\]

\[\text{Tr}(S) = \{\varepsilon, a, ab, abb, ac\}\]

\[\begin{align*}
\text{Ref}(S, \varepsilon) &= \{\{\},\{a\},\{b\},\{c\}\} \\
\text{Ref}(S, a) &= \{\{\},\{a\},\{c\}\} \\
\text{Ref}(S, ab) &= \{\{\},\{a\},\{c\},\{a,c\}\} \\
\text{Ref}(S, abb) &= L^* \\
\text{Ref}(T(S), \varepsilon) &= \text{Ref}(S, \varepsilon) \\
\text{Ref}(T(S), a) &= \text{Ref}(S, a) \\
\text{Ref}(T(S), ab) &= \text{Ref}(S, ab) \\
\text{Ref}(T(S), abb) &= L^* \\
\text{Ref}(T(S), ac) &= L^*
\end{align*}\]

where \(\forall \sigma \in \text{Ref}(T(S), \varepsilon), \{a,b,c\} \in \text{Ref}(S, \varepsilon) \iff \{a,b,c\}\sigma \in \text{Ref}(S, \varepsilon)\)

where \(\forall \sigma \in \text{Ref}(T(S), a), \{a,b,c\} \in \text{Ref}(S, a) \iff \{a,b,c\}\sigma \in \text{Ref}(S, a)\)

where \(\forall \sigma \in \text{Ref}(T(S), ab), \{a,b,c\} \in \text{Ref}(S, ab) \iff \{a,b,c\}\sigma \in \text{Ref}(S, ab)\)

where \(\forall \sigma \in \text{Ref}(T(S), abb), \{a,b,c\} \in \text{Ref}(S, abb) \iff \{a,b,c\}\sigma \in \text{Ref}(S, abb)\)

where \(\forall \sigma \in \text{Ref}(T(S), ac), \{a,b,c\} \in \text{Ref}(S, ac) \iff \{a,b,c\}\sigma \in \text{Ref}(S, ac)\)
4. By reference to the notes by Burstall, prove the following:

a) For all m, n, \(m + \text{succ}(n) = \text{succ}(m+n) \) \[\text{Proposition 5.2 on page 7}\]

lemmas:
\[
\begin{align*}
0 + n &= n & (1) \\
\text{succ}(m) + n &= \text{succ}(m + n) & (2)
\end{align*}
\]

I.H.
\[
m + \text{succ}(n) = \text{succ}(m + n)
\]

Base: \(m = 0 \)
\[
0 + \text{succ}(n) = \text{succ}(0 + n)
\]
LHS reduced by lemma (1):
\[
\text{succ}(n) = \text{succ}(0 + n)
\]
RHS reduced by lemma (1):
\[
\text{succ}(n) = \text{succ}(n)
\]

Step: \(m \rightarrow \text{succ}(m) \)
\[
\text{succ}(m) + \text{succ}(n) = \text{succ}(\text{succ}(m) + n)
\]
LHS by lemma (2):
\[
\text{succ}(m + \text{succ}(n)) = \text{succ}(\text{succ}(m) + n)
\]
LHS by I.H.:
\[
\text{succ}(\text{succ}(m + n)) = \text{succ}(\text{succ}(m) + n)
\]
RHS by lemma (2):
\[
\text{succ}(\text{succ}(m + n)) = \text{succ}(\text{succ}(m + n))
\]

b) For all l, \(\text{join}(l,\text{nil}) = l \) \[\text{first Lemma 6.1 on page 9}\]

lemmas:
\[
\begin{align*}
\text{join}(\text{nil},l) &= l & (1) \\
\text{join}(s::k,l) &= s::\text{join}(k,l) & (2)
\end{align*}
\]

I.H.:
\[
\text{join}(l,\text{nil}) = l
\]

Base: \(l = \text{nil} \)
\[
\text{join}(\text{nil},\text{nil}) = \text{nil}
\]
LHS by lemma (1):
\[
\text{nil} = \text{nil}
\]

Step: \(l \rightarrow s::l \)
\[
\text{join}(s::l,\text{nil}) = s::l
\]
LHS by lemma (2):
\[
s::\text{join}(l,\text{nil}) = s::l
\]
LHS by I.H.:
\[
s::l = s::l
\]
c) Given the definition:
 \[
 \text{length : list(alpha) -> nat}
 \]
 \[
 \text{length(nil) <= 0} \quad (1)
 \]
 \[
 \text{length(n::l) <= length(l) + 1} \quad (2)
 \]

Prove that:
\[
\text{length(join(k,l)) = length(k) + length(l)}
\]

lemmas:
\[
0 + n = n \quad (3)
\]
\[
\text{join(nil,l) = l} \quad (4)
\]
\[
\text{join(s::k,l) = s::join(k,l)} \quad (5)
\]
\[
\forall m,n \in \text{nat}, m + n = n + m \quad (6)
\]

I.H.
\[
\text{length(join(k,l)) = length(k) + length(l)}
\]

Base: \(k = \text{nil} \)
\[
\text{length(join(nil,l)) = length(nil) + length(l)}
\]
RHS by (1):
\[
\text{length(join(nil,l)) = 0 + length(l)}
\]
RHS by lemma (3):
\[
\text{length(join(nil,l)) = length(l)}
\]
LHS by lemma (4):
\[
\text{length(l) = length(l)}
\]

Step: \(k -> s::k \)
\[
\text{length(join(s::k,l)) = length(s::k) + length(l)}
\]
RHS by (2):
\[
\text{length(join(s::k,l)) = length(k) + 1 + length(l)}
\]
LHS by lemma (5):
\[
\text{length(s::join(k,l)) = length(k) + 1 + length(l)}
\]
LHS by (2):
\[
\text{length(join(k,l)) + 1 = length(k) + 1 + length(l)}
\]
LHS by I.H.:
\[
\text{length(k) + length(l) + 1 = length(k) + 1 + length(l)}
\]
LHS by lemma (6):
\[
\text{length(k) + 1 + length(l) = length(k) + 1 + length(l)}
\]