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Abstract

Let q be a prime power and Fq be the finite field with q elements. A q-ary m-sequence
is a linear recurrence sequence of elements from Fq with the maximum possible period. A
covering array CA(N ; t, k, v) of strength t is a N ×k array with entries from an alphabet of
size v, with the property that any N×m subarray has at least one row equal to every possible
m-tuple of the alphabet. The covering array number CAN(t, k, v) is the minimum number
N such that a CA(N ; t, k, v) exists. Finding upper bounds for covering array numbers is one
of the most important questions in this research area. Raaphorst, Moura and Stevens give
a construction for covering arrays of strength 3 using m-sequences that improves upon some
previous best bounds for covering array numbers. In this paper we introduce a method that
generalizes this construction to strengths greater than or equal to 4. Our implementation
of this method returned new covering arrays and improved upon 38 previously best known
covering array numbers. The new covering arrays are given here by listing the essential
elements of their construction.

Keywords: covering arrays, linear feedback shift register sequences, primitive polynomials
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1. Introduction

Let M be a N ×k array with entries from an alphabet of size v. If the N × s subarray of
M defined by s columns contains every one of the vs possible s-tuples at least once, then the
set of these columns is covered ; otherwise, it is uncovered. If there exists a positive integer
t ≤ k such that every t columns of M are covered, then M is a covering array of strength t
and size N , denoted by CA(N ; t, k, v).
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In areas such as software development and manufacturing, it is often infeasible to perform
exhaustive system tests. However, empirical research shows that in many types of systems
errors are triggered only when a small number of factors interact [18]. In those cases, a
practical alternative is t-way combinatorial testing, where the objective is to check every
t-combination of factors. This approach can dramatically reduce the number of tests that
need to be performed, while still being extremely effective in detecting errors [5, 18]. A
t-way combinatorial test suite with N tests, for a system with k factors each with v possible
levels, corresponds to a CA(N ; t, k, v). In this context, the construction of covering arrays
of small sizes is important, since it implies a reduction on the number of tests, time and cost
needed for a system to be tested.

For given t, k, v, the smallest N such that a CA(N ; t, k, v) exists is the covering array
number CAN(t, k, v). Only few families of covering arrays are known that have a minimum
number of rows [3, 16, 17]. Generally, for fixed t and v, a CA(N ; t, k, v) with N = O(log k)
can be constructed in polynomial time [2]. Other upper bounds for covering array numbers
follow from numerous methods for obtaining covering arrays that exist in the literature.
These include combinatorial and algebraic constructions [4, 21, 22], greedy [2, 7, 31] and
metaheuristic [6, 14, 25, 30] computer algorithms, and recursive methods for obtaining new
covering arrays from existing ones [7, 10, 11, 15]. Surveys on the subject include [9, 19], and
[1, Chapter 3]. Colbourn as of this date actively maintains an online database of the best
known upper bounds for covering array numbers [8].

Linear Feedback Shift Register (LFSR) sequences over finite fields have been extensively
used in applications such as cryptography and communications [13, 20], but less so for the
construction of combinatorial arrays. An orthogonal array OAλ(t, k, v) is a λvt×k array over
an alphabet of size v, with the property that the λvt × t subarray defined by any t columns
contains each t-tuple exactly λ times. When λ = 1, we simply write OA(t, k, v); such an
array is also an optimal CA(vt; t, k, v). Munemasa [24] uses LFSR sequences corresponding
to primitive trinomials over F2, to create strength-2 binary orthogonal arrays that are very
close to being strength 3. Raaphorst et al [27] employ LSFR sequences to construct a
CA(2q3 − 1; 3, q2 + q + 1, q) for every prime power q. This is, to the best of our knowledge,
the only construction in the literature that uses LFSR sequences to construct covering arrays
that are not orthogonal arrays.

In this paper, we introduce a method of using LFSR sequences to build covering arrays
based on theoretical results established in [27]. It yields covering arrays over finite fields
with q elements, strength t, and size l(qt − 1) + 1, where q is a prime power, and l, t are
integers with l ≥ 1, t ≥ 2. It generalizes two of the previous LFSR-based constructions; for
t = 2, our method yields an OA(2, q + 1, q), and for t = 3 the covering arrays in [27]. For
the implementation of our method, we give algorithms that rely on finite field theory and
combinatorial exhaustive generation. In particular, we use backtracking for this generation
and reduce the search space by proving finite field properties and by using generation of
binary necklaces. Finally, we discuss our implementation which gave 38 new covering arrays
that improve upon previously best upper bounds for covering array numbers of strength 4,
found in [8].

The structure of this paper is as follows. In Section 2 we give some background on
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LFSR sequences, we discuss how they are used to construct covering arrays, and we give
an overview of our method. The method relies on two parts, to which we dedicate Sections
3 and 4. In Section 5 we discuss our computer implementation of the method and present
our results. In Section 6 we conclude with some remarks on connections of our method with
finite geometry.

2. LFSR sequences and arrays

2.1. Preliminaries

We begin with some background on LFSR sequences; for a comprehensive presentation
we refer to [13] and [20, Chapter 5].

Let f(x) = xm + cm−1x
m−1 + · · ·+ c1x+ c0 ∈ Fqm [x], and I = (b0, . . . , bm−1) ∈ Fqm . The

sequence S(f, I) = (a0, a1, . . . ) defined as

ai =

{
bi if 0 ≤ i < m,

−cm−1ai−1 − cm−2ai−2 − · · · − c1ai−(m−1) − c0ai−m if i ≥ m,
(1)

is an LFSR sequence over Fq with characteristic polynomial f and initial values I. For every
such sequence there exists a positive integer P such that ai = aP+i; the smallest such P is
the least period of the sequence, and it divides qm − 1.

Suppose that f is irreducible, α ∈ Fqm is one of its roots, and furthermore α generates
the multiplicative group F∗qm = Fqm \ {0} of Fqm . Then α is a primitive element of Fqm , and
f is a primitive polynomial. An LFSR sequence with primitive characteristic polynomial is
an m-sequence, that is, a sequence with period qm − 1, which is maximum.

The trace function in Fqm over Fq is the mapping

Trqm/q : Fqm −→ Fq
x 7→ x+ xq + xq

2

+ xq
3

+ · · ·+ xq
m−1

,

which is linear over Fq, i.e. Trqm/q(ca+ b) = cTrqm/q(a) + Trqm/q(b) for all c ∈ Fq, a, b ∈ Fqm .
The trace is used to represent m-sequences as follows.

Proposition 2.1 ([20, Theorem 8.33]). Let f be a primitive polynomial over Fq of degree m
and α ∈ Fqm one of its roots. For any initial values I = (a0, . . . , am−1) there exists a unique
element β ∈ Fqm such that bi = Tr(βαi) for all 0 ≤ i ≤ m − 1. Then, the LFSR sequence
S(f, I) = (a0, a1, . . . ) has the property that ai = Tr(βαi), for all i ≥ 0.

In Proposition 2.1, the sequence
(
Trqm/q(βα

i)
)
i≥0

is the trace representation of S(f, T ).

If β = αs for some s, then
(
Trqm/q(βα

i)
)
i≥0

is the left cyclic shift of (Tr(αi))i≥0 by s. In this

paper, we refer to
(
Trqm/q(α

i)
)
i≥0

as the LFSR sequence associated with α.

Let α be a primitive element of Fqm , w = (qm − 1)/(q − 1), and a = (ai)i≥0 be the
LFSR sequence associated with α. We denote the left cyclic shift by i of a as Lwi (a) =
(ai, ai+1, . . . , ai+w−1), and define
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M(α) =


Lw0 (a)
Lw1 (a)

...
Lwqm−2 (a)
0, 0, . . . , 0

 . (2)

We note that for 0 ≤ i ≤ qm−2, 0 ≤ j ≤ w−1, the (i, j)-th element of M(α) is Trqm/q(α
iαj).

The following theorem describes the coverage properties of M(α), and is the cornerstone
of the results of this paper.

Theorem 2.2 (See [27, Theorem 2]). Let q be a prime power, α be a primitive element of
Fqm, m ≥ 3, w = (qm − 1)/(q − 1), and c0, c1, . . . , cw−1 denote the column vectors of M(α).
Then, the following are equivalent.

1. A set of columns {ci1 , . . . , cis} is uncovered in M(α).

2. The elements αi1 , . . . , αis ∈ Fqm are linearly dependent over Fq.

Furthermore, if s = m the following is also equivalent to (1) and (2).

3. There is a row r other than the all-zero, such that ri1 = · · · = rim = 0.

Let q be any prime power, α be a primitive element of Fq3 , and let M ′(α) be the array
that consists of the columns of M(α) in reverse order. Raaphorst et al [27] prove that the
vertical concatenation of M(α), M ′(α), and a row of zeros, is a CA(2q3− 1; 3, q2 + q+ 1, q).
The same construction for m > 3 does not yield a covering array, so it is natural to ask
whether a different generalization can be given.

Observing that reversing the columns of the matrix can be considered as a permutation
of its columns, the authors of [27] considered the following generalized construction. They
generated M(α) for primitive α ∈ Fqm , m ≥ 4, and ran search algorithms to find a permuta-
tion group of smallest order s(m, q), such that vertically concatenating the s(m, q) permuted
copies of M(α) and a row of zeros, yields a CA(s(m, q)(qm − 1) + 1;m, (qm − 1)/(q − 1), q).
The resulting arrays in those attempts did not improve the known best upper bounds for
covering array numbers.

We note that when α ∈ Fqm is primitive then so is α−1, and M ′(α) = M(α−1). With that
in mind, in this paper we consider the following generalization. Let α1, . . . , αl be primitive
elements of Fqm , and w = (qm−1)/(q−1). We define the LFSR array generated by α1, . . . , αl,
denoted M(α1, . . . , αl), to be the vertical concatenation of M(α1), . . . ,M(αl) with all but
one copy of the all-zero rows removed. We note that M(α1, . . . , αl) is a (l(qm − 1) + 1)×w
array.

Special cases of LFSR arrays have been previously used to produce covering and orthog-
onal arrays:
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• For any m ≥ 2, any prime power q, and primitive α ∈ Fqm , we have that M(α) is
an OAλ(2, (q

m − 1)/(q − 1), q) with λ = qm−1. This follows from the 2-tuple balance
property of m-sequences (see [13, Section 5.6]).

• For m = 3, any prime power q, and primitive α ∈ Fqm , from [27] we have that
M(α, α−1) is a CA(2(q3 − 1) + 1; 3, q2 + q + 1, q).

• We have from [12] that for α ∈ Fm2 whose minimal polynomial is a pentanomial that
satisfies certain conditions, the array consisting of 2m consecutive columns of M(α) is
a OAλ(3, 2m, 2), with λ = 2m−3, which is a CA(2m; 3, 2m, 2). This is an extension of
a result by Munemasa [24].

• We have from [26] that for α ∈ Fm3 whose minimal polynomial is a trinomial that
satisfies certain conditions, any array consisting of 3m consecutive columns of M(α)
is a OAλ(3, 3m, 3), with λ = 3m−3. This is also a CA(3m; 3, 3m, 3).

2.2. A new method for constructing covering arrays from LFSR sequences

For integers i, j with i < j we denote [i, j] = {i, i+ 1, . . . , j}.
Let M be an N × k array with columns c0, . . . , ck−1, and let e ⊆ [0, k − 1]. We define

M [e] to be the subarray of M consisting of the columns ci, i ∈ e. The following method
yields covering subarrays of LFSR arrays.

Method 1 (Covering arrays from LFSR arrays). Let q be a prime power and m ≥ 3. The
following steps yield a covering array of strength m over Fq.

Step 1: Choose primitive elements α1, . . . , αl ∈ Fqm for some l ≥ 2, and construct M =
M(α1, . . . αl).

Step 2: Find a subset e of column indices of M with maximum size, such that M [e] is a
covering array.

The array M [e] is a CA(l(qm − 1) + 1;m, |e|, q).

In the following sections we discuss algorithms to efficiently implement this method. In
Section 3 we determine how to choose the primitive elements in Step 1 so that we avoid
redundancies, and in Section 4 we give an algorithm that solves the optimization problem
in Step 2.

3. The choice of primitive elements

A question that naturally arises from the description of Method 1 is what should the
choice of α1, . . . , αl be in Step 1, so that the resulting covering array in Step 2 has the
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maximum number of columns. It is well known (see for example [13, Theorem 4.9] ) that
there exist Φ(qm − 1)/m shift-distinct m-sequences of order m over Fq, so this is also the
number of different LFSR arrays. Hence, a straightforward approach would be to carry
out the method for all

(
Φ(qm−1)/m

l

)
l-tuples of elements α1, . . . , αl that correspond to those

distinct m-sequences.
Let w = (qm − 1)/(q − 1), and q = pn for a prime p and positive integer n. In this

section we use finite fields to partition the set of all primitive elements of Fqm into Φ(w/mn)
classes, with the property that two primitive elements are in the same class if and only if
they correspond to LFSR arrays with identical coverage of columns. It follows that we only
need to choose one representative from each of those classes, and carry out the method for
the

(
Φ(w/mn)

l

)
l-tuples α1, . . . , αl of representatives.

The above-mentioned classes use the notion of cyclotomic cosets. For i ∈ Z∗w, we define
the cyclotomic coset of p modulo w that contains i to be the set

Ci
p,w = {ipr (mod w) : r ∈ Z≥0} .

For any i, j ∈ Z∗w, we have that Ci
p,w ⊆ Z∗w and, furthermore, if Ci

p,w ∩ Cj
p,w 6= ∅ then

Ci
p,w = Cj

p,w. We conclude that there exists a set Γp,w ⊆ Z∗w such that

Z∗w =
⋃

i∈Γp,w

Ci
p,w, (3)

and for all i, j ∈ Γp,w with i 6= j, we have that Ci
p,w ∩Cj

p,w = ∅. The elements of Γp,w are the
cyclotomic coset leaders of p modulo w.

Definition 3.1. Let m ≥ 2, and M1, M2 be N × k arrays with elements from an alphabet
of the same finite size. Denote ci, di, i ∈ [0, k − 1] to be their columns, respectively. The
arrays M1 and M2 have the same m-coverage if for every I ⊆ [0, k − 1] with |I| = m, we
have that {ci : i ∈ I} is covered if and only if {di : i ∈ I} is covered.

The main theoretical result of this section is the following.

Theorem 3.2. Let q be a power of a prime p, and m,w be integers with m ≥ 2, w =
(qm − 1)/(q − 1). Let α be a primitive element of Fqm. Then for any i ∈ Γp,w we have that
αi is also a primitive element of Fqm, and the following hold.

1. For any primitive element β ∈ Fqm, there exists i ∈ Γp,w such that M(β) and M(αi)
have the same m-coverage.

2. For all i, j ∈ Γp,w with i 6= j, we have that M(αi) and M(αj) do not have the same
m-coverage.

The proof of Theorem 3.2 requires several theoretical results that we give later in the
section. First we discuss its implications regarding Method 1. In particular, it follows from
Theorem 3.2 that it suffices to carry out Method 1 only for l-tuples of primitive elements
αi1 , . . . , αil where {i1, . . . , il} ∈

(
Γp,w

l

)
. From the next proposition we have that |Γp,w| = Φ(w)

mn
,

hence we have
(

Φ(w)/mn
l

)
l-tuples of primitive elements to examine.
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Proposition 3.3. Let p be a prime, and n, q,m,w be integers with n > 0, q = pn, m ≥ 2,
w = (qm − 1)/(q − 1). Then we have that |Ci

p,w| = mn, for all i ∈ Z∗w.

Proof. The size of Ci
p,w is equal to the smallest positive integer r such that ipr ≡ i (mod w),

which is equivalent to w|pr − 1, since gcd(i, w) = 1. Now, w|qm − 1 = pmn − 1, and thus
pmn ≡ 1 (mod w). We note that, by its definition, r is the order of p in Z∗w and therefore
pmn ≡ 1 (mod w) implies that r|mn, hence r ≤ mn. Assume by means of contradiction that
r < mn. Then, since r|mn, it must be r ≤ mn/2. On the other hand, since w|pr−1, we have
that pr − 1 ≥ w > pmn−n− 1, and thus r > mn− n. Then mn/2 > mn− n which simplifies
to m < 2, contradicting our assumption that m ≥ 2. We conclude that r = mn.

The rest of the section is dedicated to the proof of Theorem 3.2. First, we need to prove
a few auxiliary lemmas.

Lemma 3.4. Let q be a prime power, m be an integer with m ≥ 2, and α, β primitive
elements of Fqm. Then, M(α) and M(β) have the same m-coverage if and only if there
exists γ ∈ Fqm such that, for all s ∈ [0, qm − 2],

Trqm/q(α
s) = 0 if and only if Trqm/q(γβ

s) = 0.

Proof. Let w = (qm − 1)/(q − 1) and {a0, . . . , aw−1}, {b0, . . . , bw−1} be the column vectors
of M(α) and M(β) respectively.

“⇐” Let I ⊆ [0, w − 1] such that |I| = m and {ai : i ∈ I} is covered. Suppose by
contradiction that {bi : i ∈ I} is uncovered. Then, by Theorem 2.2 there exists a row of
M(β) that has zeros at the columns bi, i ∈ I. From the definition of M(β), the latter
means that there exists γ ∈ F∗qm such that Trqm/q(γβ

i) = 0 for all i ∈ I. This implies that
Trqm/q(α

i) = 0 for all i ∈ I, which means that {ai : i ∈ I} is uncovered, a contradiction.
“⇒” We observe that ord(αw) = q − 1, hence αw is a primitive element of F∗q, and for

every s ∈ [0, qm − 2] we have that αs = cαu, where u ∈ [0, w − 1], u ≡ s (mod w), and
c ∈ Fq. Hence, from the linearity of the trace over Fq, it is sufficient to prove this direction
for all s ∈ [0, w − 1].

We know that ker(Trqm/q) is a vector space over Fq with dimension m − 1 (see for
example [23, Theorem 2.1.83]). Since α is primitive, it follows from the above that there
exist i1, . . . , im−1 ∈ [0, w − 1] such that B = {αi1 , . . . , αim−1} is also a basis for ker(Trqm/q).
This means that αi1 , . . . , αim−1 are linearly independent and the first row of M(α) has zeros
at the columns ai, i ∈ {i1, . . . , im−1}. Then, from Theorem 2.2 and our assumption that
M(α) and M(β) have the same m-coverage, βi1 , . . . , βim−1 are also linearly independent,
and there exists a row of M(β) with zeros at the columns bi, i ∈ {i1, . . . , im−1}. The latter
means that there exists γ ∈ F∗qm such that Trqm/q(γβ

i) = 0 for all i ∈ {i1, . . . , im−1}. We
conclude that B′ = {γβi1 , . . . , γβim−1} is a basis for ker(Trqm/q).

Now, suppose that Trqm/q(α
s) = 0 for some s ∈ [0, w − 1]. Then, by Theorem 2.2,

we have that the set of columns
{
ai1 , . . . , aim−1 , as

}
of M(α) is uncovered and thus the set

of columns
{
bi1 , . . . , bim−1 , bs

}
of M(β) is also uncovered, from our assumption that M(α)

and M(β) have the same m-coverage. Hence there exists a row of M(β) with zeros at the
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columns bi1 , . . . , bim−1 , bs, and so there exists δ ∈ F∗qm such that δβi ∈ ker(Trqm/q) for all
i ∈ {i1, . . . , im−1, s}. Since B′ is a basis for ker(Trqm/q), we have that δ = cγ for some c ∈ F∗q.
Then δβs ∈ ker(Trqm/q) implies that γβs ∈ ker(Trqm/q) from the linearity of the trace.

Lemma 3.5. Let p be a prime, and q, n,m, l integers with n > 0, q = pn, m ≥ 2, and
0 < l < qm − 1. Then, we have that Trqm/q(x

l) = Trqm/q(x)l for all x ∈ Fqm if and only if
l = pr for some integer r such that 0 ≤ r < mn.

Proof. If l = pr, 0 ≤ r < mn, then Trqm/q(x
l) = Trqm/q(x)l from the properties of the

Frobenius automorphism in Fq.
Conversely, suppose that Trqm/q(x

l) = Trqm/q(x)l for all x ∈ Fqm . For a polynomial f on
x, we denote [xn]f(x) to be the coefficient of xn in f . We observe that

[x1+(l−1)q]Trqm/q(x
l) =

{
1, if l = 1

0, otherwise,
(4)

and

[x1+(l−1)q]Trqm/q(x)l =

{
1, if l = 1

l, otherwise.
(5)

If l = 1, then l = pr with r = 0. If l > 1, then it follows from Equations (4) and (5) and
our assumption that Trqm/q(x

l) = Trqm/q(x)l, that l ≡ 0 (mod p). Hence l = kpr for some
positive integers k, r, with 0 < r < mn, and p 6 | k. We have that, for all x ∈ Fqm ,

Trqm/q(x
k)p

r

= Trqm/q(x
kpr) = Trqm/q(x

l) = Trqm/q(x)l

=
(
Trqm/q(x)k

)pr
. (6)

Taking pr-th roots in Equation (6) yields that Trqm/q(x
k) = Trqm/q(x)k for all x ∈ Fqm .

By comparing the coefficients of Trqm/q(x
k) and Trqm/q(x)k in the same way as we did for

Trqm/q(x
l) and Trqm/q(x)l, we have that either k = 1, or k ≡ 0 (mod p). Since we have

assumed that p 6 | k, it must be k = 1, and thus l = pr.

Lemma 3.6. Let p be a prime, q, n,m be integers such that n > 0, q = pn, m ≥ 2, and
α, β primitive elements of Fqm. Then M(α) and M(β) have the same coverage if and only
if β = αp

r
, for some r ∈ [0,mn− 1].

Proof. If β = αp
r

for some r ∈ [0,mn−1], then for every s ∈ [0, qm−2] we have Trqm/q(β
s) =

Trqm/q(α
spr) = Trqm/q(α

s)p
r
. Hence, Trqm/q(β

s) = 0 if and only if Trqm/q(α
s) = 0, and thus

M(α) and M(β) have the same m-coverage, from Lemma 3.4.
For the converse, assume that M(α) and M(β) have the same m-coverage. Since α

is primitive, there exists l ∈ Z∗qm−1 such that β = αl. Then, from Lemma 3.4, there
exists γ ∈ Fqm such that, for all s ∈ [0, qm − 2], we have Trqm/q(α

s) = 0 if and only if
Trqm/q(γα

ls) = 0. Again from the primitivity of α, we have that F∗qm = {αs : s ∈ [0, qm − 2]},
so we conclude from the above that there exists γ ∈ Fqm such that, for all x ∈ F∗qm , we have

Trqm/q(x) = 0 if and only if Trqm/q(γx
l) = 0. (7)
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Let y be an element of some extension of Fqm such that Trqm/q(γy
l) = 0. Then γyl =

z ∈ ker(Trqm/q) ⊆ Fqm , and yl = z/γ ∈ Fqm . Since gcd(l, qm − 1) = 1, the l-th root of z/γ
exists, and y = (z/γ)1/l ∈ Fqm . We have proved that Trqm/q(γx

l) splits in Fqm . Now,

Trqm/q(γx
l) =

∏
a∈ker (Trqm/q)

(
γxl − a

)
.

Because Trqm/q(γx
l) splits in Fqm , so does γxl − a for all a ∈ ker(Trqm/q). Furthermore, the

only root of γxl − a is (a/γ)1/l, and its degree is l; it follows that it must be γxl − a =
γ(x− (a/γ)1/l)l, and so

Trqm/q(γx
l) =

∏
a∈ker (Trqm/q)

γ(x− (a/γ)1/l)l. (8)

From Equation (7) we have that

ker(Trqm/q) =
{

(a/γ)1/l ; a ∈ ker(Trqm/q)
}
,

and it is well known that | ker(Trqm/q)| = qm−1, hence Equation (8) becomes

Trqm/q(γx
l) = γq

m−1
∏

a∈ker(Trqm/q)

(x− a)l

= γq
m−1

 ∏
a∈ker(Trqm/q)

(x− a)

l

= γq
m−1

Trqm/q(x)l. (9)

By comparing the coefficient of xl in Trqm/q(γx
l) and γq

m−1
Trqm/q(x)l, we have that γ =

γq
m−1

, which means that γ ∈ Fqm−1 . However γ ∈ Fqm , hence γ ∈ Fqm ∩ Fqm−1 = Fq, and
from the linearity of the trace over Fq, Trqm/q(γx

l) = γTrqm/q(x
l). Equation (9) then implies

that Trqm/q(x
l) = Trqm/q(x)l, and by Lemma 3.5 we have that l = pr, for some integer r such

that 0 ≤ r < mn.

Lemma 3.7. Let p be prime, and q, n,m integers with n > 0, q = pn, and w = (qm−1)/(q−
1). For all i, j ∈ Z∗qm−1, we have that M(αi) and M(αj) have the same m-coverage if and
only if j (mod w) ∈ Ci

p,w.

Proof. Suppose that j (mod w) ∈ Ci
p,w. Then there exist integers r, h such that j = ipr+hw,

and thus αj = cαip
r

with c = αwh. We have that cq−1 = αw(q−1)h = α(qm−1)h = 1, which
means that c ∈ Fq. Then, from the linearity of the trace and the properties of the Frobenius
automorphism we have that, for all positive integers s,

Trqm/q(α
js) = Trqm/q(c

sαisp
r

) = csTrqm/q(α
is)p

r

.
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We conclude that Trqm/q(α
js) = 0 if and only if Trqm/q(α

is) = 0, which implies from Lemma
3.4 that M(αi) and M(αj) have the same m-coverage.

Conversely, assume that M(αi) and M(αj) have the same m-coverage. Then, from
Lemma 3.6 we have that αj = αip

r
for some r ∈ [0,mn− 1], and thus j ≡ ipr (mod qm− 1).

Since w|qm − 1, we also have j ≡ ipr (mod w), which means that j (mod w) ∈ Ci
p,w.

We now have the background to give the proof of the main theorem.

Proof of Theorem 3.2. We begin with the first part. Let β be a primitive element of Fqm .
From the primitivity of α, we have that there exists l ∈ Z∗qm−1 such that β = αl. Let u = l
(mod w). Then u = l + hw for some integer h, and thus αu = cαl, with c = αhw. We
have that cq = c, which means that c ∈ Fq. Hence, for any positive integer s, we have
that Trqm/q(α

us) = csTrqm/q(α
ls) and therefore Trqm/q(α

ls) = 0 if and only if Trqm/q(α
us) =

0. It follows from Lemma 3.4 that M(αl) and M(αu) have the same coverage. Since
gcd(l, qm − 1) = 1, then also gcd(l, w) = 1, hence gcd(u,w) = 1 as well. This means u ∈ Z∗w
and thus, from Equation (3), there exists i ∈ Γp,w such that u ∈ Ci

p,w. From Lemma 3.7,
M(αu) has the same coverage with M(αi). Since M(αu) was shown above to also have the
same coverage as M(β), we conclude that M(β) has the same coverage with M(αi).

We now prove the second part. Suppose by means of contradiction that i, j ∈ Γp,w,
i 6= j, and M(αi) has the same m-coverage with M(αj). Then, from Lemma 3.7 we have
that j ∈ Ci

p,w. Thus, Ci
p,w ∩Cj

p,w 6= ∅ which means that Ci
p,w = Cj

p,w, as discussed just before
Equation (3). This contradicts our assumption that i, j ∈ Γp,w, and we conclude that M(αi)
and M(αj) do not have the same coverage.

We close this section by showing how Theorem 3.2 can be used with Method 1. For
prime power q, m ≥ 3, and l ≥ 2, a CA(l(qm − 1) + 1;m, k, q) can be found as follows:

1. Create a set Γp,w of cyclotomic coset leaders modulo w, as defined in Equation (3).
This can be done by calculating the cosets Ci

p,w for all i ∈ Z∗w, and picking (any) one
representative from each distinct coset.

2. Pick any primitive polynomial Fq[x] and let α be any of its roots.

3. For every {i1, . . . , il} ∈
(

Γp,w

l

)
, find a subset e of column indices of M = M(αi1 , . . . , αil)

with maximum size, such that M [e] is a covering array; see Method 1.

4. Let ({i∗1, . . . , i∗l }, e∗) be a pair ({i1, . . . , il}, e) found in Step 3, where e is maximum
among all such pairs. We have that M(αi

∗
1 , . . . , αi

∗
l )[e∗] is the desired CA(l(qm − 1) +

1;m, k, q), with |k| = |e∗|.

We note that in Step 2 a different root would produce identical arrays in Step 3. Indeed,
for a different root β, we have that β = αq

r
, for some r ∈ [0,m − 1] (see [20, Chapter 3]).

Hence, for any i we have Trqm/q(β
i) = Trqm/q(α

iqr) = Trqm/q(α
i)q

r
= Trqm/q(α

i), where the
last equality comes from the fact that Trqm/q(α

i) ∈ Fq. It follows that M(α) = M(β).
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4. The search for maximum covering subarrays

Step 2 of Method 1 is an optimization problem whose search space consists of sets of
positive integers. In this section we give an algorithm for Step 2. In Section 4.1 we show
how the search space can be reduced significantly and generated efficiently, and in Section
4.2 we present a backtracking algorithm to implement Step 2 of Method 1.

4.1. The search space

We begin by introducing a concept required in this section.

Definition 4.1. For S ⊆ [0, n− 1] and integer i, we define the shift of S by i modulo n to
be

S +n i = {s+ i (mod n) : s ∈ S} .

The next proposition follows from the cyclic nature of LFSR arrays. It can be used to
reduce the search space in Step 2 of Method 1.

Proposition 4.2. Let q be a prime power, m ≥ 2, w = (qm − 1)/(q − 1), and α be a
primitive element of Fqm. Denote by c0, c1, . . . , cw−1 the column vectors of M(α) and let
S ⊆ [0, w − 1]. Then, for any i ∈ [0, w − 1], we have that {cj : j ∈ S} is covered if and only
if {cj : j ∈ S +w i} is covered.

Proof. Assume that {cj : j ∈ S} is not covered. From Theorem 2.2 there exists integer r
with 0 ≤ r < qm − 1 such that the row with index r in M(α) has zeros at the columns with
indices from S. From the definition of M(α) this means that Trqm/q(α

rαs) = 0 for all s ∈ S.
For every j ∈ S +w i we have that j = s + i + kw for some integer k and some s ∈ S.

Setting c = αkw and observing that c ∈ Fq, we have that Trqm/q(α
r−iαj) = Trqm/q(cα

rαs) =
cTrqm/q(α

rαs) = 0. This shows that the row of M(α) with index r − i (mod qm − 1) has
zeros at the columns with indices from S+w i, and using Theorem 2.2, we conclude that the
set of these columns is not covered.

It follows from Proposition 4.2 that it is enough to generate subsets of columns of LFSR
arrays that are unique up to cyclic shifts. In Section 4.1.1 we establish a criterion for sets
to be unique in this sense using binary necklaces, and in Section 4.1.2 we give an algorithm
that generates those unique sets efficiently.

4.1.1. A canonicity criterion for sets

We consider two sets S, T ⊆ [0, n− 1] to be isomorphic if there exists integer i such that
T = S+n i, and we denote ES the equivalence class of S under this isomorphism. We use the
notion of binary necklaces to define canonical representatives of those equivalence classes.

Definition 4.3. Let A be an ordered set and a be a string of elements of A. The necklace
of a, denoted by neck(a), is the lexicographically smallest of all cyclic shifts of a.

In this paper we are only interested in binary necklaces, i.e. A = F2.
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Example 4.4. Let a = 10101. The following are all the cyclic shifts of a, listed in lexico-
graphical order:

01011 < 01101 < 10101 < 10110 < 11010,

therefore, neck(a) = 01011. Let b = 101010. All the (distinct) shifts of b are 010101 and
101010, so neck(b) = 010101.

For S ⊂ [0, n−1], we define the characteristic vector of S to be charn(S) = b0b1 · · · bn−1 ∈
Fn2 with bi = 1 if and only if i ∈ S. For a binary string b = b0 · · · bn−1 we denote Li(b) =
bi · · · bn−1b0 · · · bi−1 its left cyclic shift by i. Finally, the all-zero binary string of length r is
denoted 0r. We also introduce the following binary representation for sets.

Definition 4.5. Let n be a positive integer, S a nonempty subset of [0, n− 1], and consider
bi ∈ F2 with 0 ≤ i ≤ max(S), such that bi = 1 if and only if i ∈ S. We define

binn(S) = 0n−max(S)−1b0 · · · bmax(S) ∈ Fn2
= Lmax(S)+1(charn(S)).

Moreover, for S = ∅, we define binn(S) = 0n.

In this paper we select canonical representatives of the above-mentioned equivalence
classes as given in the next definition.

Definition 4.6. A set S ⊆ [0, n−1] is canonical if either S = ∅, or S contains 0 and binn(S)
is a necklace.

We need to show that this notion of canonicity is well defined. Let b = 0sw, where w is
either a binary string that starts with 1 or the empty string. We define getSet(b) to be the
set whose characteristic vector is w0s.

Proposition 4.7. Let S ⊆ [0, n− 1] be a nonempty set. Then there exists a unique T ∈ ES
such that 0 ∈ T and binn(T ) is a binary necklace.

Proof. The characteristic vectors of the elements of Es are all the cyclic shifts of the char-
acteristic vector of S, hence there exists a necklace among them. Denote b that necklace.
Then b = 0sw, for some w that starts with 1, and because b is a necklace also ends with 1.
Let T = getSet(b) = getSet(0sw). Then T is the set with characteristic vector w0s. This
fact implies that 0 ∈ T and that binn(T ) = 0sw = b, which is a necklace. Now, let U be the
set in ES whose characteristic vector is b = 0sw, and min(U) be the least element of U . Then
w0s is also the characteristic vector of U +n (−min(U)), hence T = U +n (−min(U)) ∈ ES.

We have shown the existence of the set T in question; it remains to show its uniqueness.
Let T ′ ∈ ES such that 0 ∈ T ′ and binn(T ′) is a necklace. Since T and T ′ are in ES, we have
that binn(T ) and binn(T ′) are cyclic shifts of each other and since they are both necklaces,
we have binn(T ) = binn(T ′). Hence T ′ = getSet(binn(T ′)) = getSet(binn(T )) = T .

We conclude this section by showing that binn is a bijection between nonzero binary
necklaces and canonical sets.
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Proposition 4.8. There exists a one-to-one correspondence between canonical subsets of
[0, n− 1] and binary necklaces of length n.

Proof. We claim that binn is the needed bijection and getSet is its inverse. For S = ∅ we
have binn(S) = 0n and getSet(0n) = ∅ = S.

Let S ⊆ [0, n − 1] be canonical and nonempty. Then by the definition of canonicity,
binn(S) is a nonzero necklace of length n. Hence binn maps canonical sets to nonzero binary
necklaces of length n.

Let b be a nonzero binary necklace of length n. Then b = 0sw, 0 ≤ s < n− 1 for some
w starting with 1. Let T = getSet(b). Then T has characteristic vector w0s, hence 0 ∈ T .
Furthermore binn(T ) = b, a necklace. We conclude that getSet maps binary necklaces to
canonical sets, and it is the inverse of binn when that is restricted to canonical sets.

4.1.2. Generating canonical subsets

Algorithm 1 Generating all nonzero binary necklaces of length n [28].

procedure BinaryNecklaces(b)
Output b
done← false
while not done do

b← L(b)
b′ ← τ(b)
if b′ is a necklace then

BinaryNecklaces(b′)
else

done← true
Main;
BinaryNecklaces(0n−11)

In this section we use the correspondence between canonical sets and binary necklaces
to efficiently generate all canonical subsets of [0, n− 1].

For a binary string b = b0 · · · bn−1 we denote τ(b) = b0 · · · bn−2bn−1, where bn−1 is the
binary complement of bn−1. Algorithm 1 above is from Ruskey et al [28]; it generates
every nonzero binary necklace exactly once. An important feature of this generation is that
once a non-necklace is encountered, the algorithm backtracks. Thus each time a necklace is
generated, exactly one non-necklace is examined, therefore yielding a very efficient algorithm,
which requires on average only two “necklace checks” for each necklace generated. In order
to generate canonical sets, we translate Algorithm 1 to the language of sets. The next lemma
is key to this translation.

Lemma 4.9. Let S ⊆ [0, n − 1] be a nonempty set. Then, for all integers j with 1 ≤ j <
n−max(S), we have that binn(S ∪ {max(S) + j}) = τ (Lj(binn(S))).
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Proof. Let b = binn(S) = 0n−max(S)−1b0 · · · bmax(S), where bi ∈ F2 and bi = 1 if and
only if i ∈ S. Then for integer j with 1 ≤ j < n − max(S), we have τ (Lj(S)) =
0n−(max(S)+j)−1b0 · · · bmax(S)0

j−11 = binn(S ∪ {max(S) + j}).

Algorithm 2 Generating all nonempty canonical subsets of [0, n− 1].

procedure CanonicalSubsets(S,n)
Output S
for j from max(S) + 1 to n− 1 do

if bin(S ∪ {j}) is a necklace then
CanonicalSubsets(S ∪ {j},n)

else
break

Main;
CanonicalSubsets({0}, n)

Theorem 4.10. Algorithm 2 returns all the nonempty canonical subsets of [0, n− 1].

Proof. The proof follows by combining the fact that Algorithm 1 generates all the binary
necklaces of length n [28], together with Proposition 4.8 and Lemma 4.9.

4.2. A backtracking algorithm to search for covering subarrays

In this Section we give a backtracking algorithm to compute Step 2 of Method 1. In
particular, the procedure CAsearch(M) in Algorithm 3 returns a subset e of column
indices of M with maximum size, such that M [e] is a covering subarray. This is accomplished
by the recursive procedure CAsearchBT where canonical sets that correspond to covering
subarrays of M are generated (according to Algorithm 2) while searching for one of maximum
size.

In CAsearchBT we use the framework in Algorithm 2 to go through the canonical
subsets of columns of M . At each recursive call, we have a set e ⊆ [0, w− 1] such that M [e]
is a covering array, and we generate a set of candidate columns c such that M [e ∪ {c}] is a
covering array. This set is defined as

CM(e) = {c : max(e) < c < w and M [e ∪ {c}] is a covering array} .

We remark that any set f such that e ⊆ f and M [f ] is a covering array, must satisfy
f ⊆ e ∪ CM(e). So, we recursively continue with e ∪ {c}, for every possible c ∈ CM(e), as
long as it can lead to a maximum sized set and it is canonical.

In Algorithm 3, the global variable MAX stores the largest subset e found so far, with the
desired property. We employ the classical idea of bounding in backtracking by examining
the size of CM(e); more specifically in line 7 we backtrack whenever |e ∪ CM(e)| ≤ |MAX|.
Moreover, when we consider extensions of e, a similar condition can be used to limit the
choice of elements of CM(e) in line 9.
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Algorithm 3 Algorithm to carry out Step 2 of Method 1

1: procedure CAsearch(M)
2: procedure CAsearchBT(e, CM(e))
3: global MAX
4: if |e| > |MAX| then
5: . Record e if it is the best found so far
6: MAX← e
7: if |e|+ |CM(e)| > |MAX| then
8: . Otherwise e cannot be extended to a maximum
9: for i from 0 to |CM(e)| − (|MAX| − e) do

10: . Larger i cannot yield maximum
11: c← CM(e)i . the i-th element of CM(e)
12: if bin(e ∪ {c}) is a necklace then
13: X ← ExtendCM(e, c, CM(e)>c,M)
14: . X ← CM(e ∪ {c})
15: CAsearchBT (e ∪ {c} , X)
16: else
17: break
18: global MAX← {0}
19: CAsearchBT({0} , {1, . . . , w − 1})
20: return MAX

An important feature of the algorithm is the recursive construction of CM(e∪{c}) based
on CM(e), accomplished by procedure ExtendCM called in line 13 of Algorithm 3, and
given in Algorithm 4. This is based on a series of definitions and Proposition 4.11, that are
given next.

We recall that q is a prime power, m ≥ 4, M = M(α1, . . . , αl) where α1, . . . , αl are
primitive elements of Fqm , and w = (qm−1)/(q−1). We denote by c0, . . . , cw−1 the columns
of M . For x = {x1, . . . , xm−2} with 0 < x1 < · · · < xm−2 < w we define

UM(x) =
{
j : xm−2 < j < w, and

{
c0, cx1 , . . . , cxm−2 , cj

}
is not covered

}
.

Furthermore, for any positive integer j we denote

CM(e)>j = {i : i ∈ CM(e), i > j} .

The following proposition shows how to compute CM(e) recursively.

Proposition 4.11. Let e ⊆ [0,m − 1] such that M [e] is a covering array. Let c ∈ CM(e),
and

R(c) =
⋃

{x1,...,xm−2}∈( e
m−2)

{i+ c : i ∈ UM(x1 − c, . . . , xm−2 − c)} ,

where all computations are modulo w. Then CM (e ∪ {c}) = CM(e)>c \R(c).

15



Algorithm 4 Updating CM(e) recursively as per Proposition 4.11

c ∈ CM(e)
Returns CM(e ∪ {c})
procedure ExtendCM(e, c, CM(e)>c, M)

if CM(e)>c = ∅ then
return ∅

if n < m− 1 then
return CM(e)>c

else
C ← CM(e)>c
for all x1, . . . , xm−2 ∈

(
e

m−2

)
do

C ← C\ (UM(x1 − c, . . . , xm−2 − c) +w c)
if C = ∅ then

return ∅
return C

Proof. “⊂” Let d ∈ CM(e ∪ {c}). Then d > c and M [e ∪ {c, d}] is a covering array. Hence,
its subarray M [e ∪ {d}] is also a covering array, and therefore d ∈ CM(e)>c. It remains to
show that d 6∈ R(c).

Assume by means of contradiction that d ∈ R(c). Then there exist x1, . . . , xm−2, ∈ e,
and i ∈ UM (x1 − c, . . . , xm−2 − c), such that d = i + c. Then {0, x1 − c, . . . , xm−2 − c, i} is
uncovered in M , and from Proposition 4.2 we have that

{0, x1 − c, . . . , xm−2 − c, i}+w c = {c, x1, . . . , xm−2, i+ c}
= {c, x1, . . . , xm−2, d}

is also uncovered in M . This contradicts our assumption that d ∈ CM(e ∪ {c}).
“⊇” Let d ∈ CM(e)>c \ R(c), and assume by means of contradiction that d 6∈ CM(e ∪

{c}). Then there exist x1, . . . , xm−2 ∈ e such that the set of columns with indices in I =
{x1, . . . , xm−2, c, d} is uncovered. From Proposition 4.2 we have that the set of columns
with indices in I +w (−c) = {x1 − c, . . . , xm−2 − c, 0, d− c} is also uncovered. Thus, d− c ∈
UM(x1 − c, . . . , xm − c). This implies that d ∈ R(c), a contradiction.

Procedure ExtendCM in Algorithm 4 is based on the recursive computation of CM(e∪
{c}) based on CM(e) and R(c) given in Proposition 4.11.

The discussion in this section gives the arguments for correctness of our main algorithm,
stated in the next theorem.

Theorem 4.12. Let q be a prime power, m ≥ 3, α1, . . . , αl primitive elements of Fqm, and
M = M(α1, . . . , αl). Then Algorithm 3 returns a canonical subset e of [0, w − 1] such that
M [e] is a covering array with maximum size.
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5. Implementation and new bounds for covering array numbers

In this section, we construct covering arrays using Algorithm 3, and discuss the results
of our search for strength 4 covering arrays. We observe that for m = 3 the construction in
[27] gives the maximum arrays M [e] where e = [0, w − 1]. Hence, the smallest open case
is when m = 4. At the end of the section we comment on the search of covering arrays of
higher strengths.

Our experiments are as follows. For prime powers q, 2 ≤ q ≤ 23, and l up to 6, we
choose l-tuples α1, . . . , αl of primitive elements of Fq4 (as per Section 3), and construct
M = M(α1, . . . , αl). We then run the procedure CASearchBT in Algorithm 3 with input
M , which yields a set e of indices of columns of M such that M [e] is a CA(N ; 4, k, q), with
N = l(q4 − 1) + 1 (by the construction of M), and k = |e|.

In Table 1, the columns denoted CA(N ; 4, k, q) contain the parameters of the covering
array with the largest k obtained from our experiments for the corresponding values of
q and l, and different choices of α1 . . . , αl. The number of these choices varies. Entries
with an asterisk (*) indicate that all the possible l-tuples were tested, and the procedure
CAsearchBT was complete. For the rest of the entries, up to 30 l-tuples were tested at
random, and for each of them CAsearchBT was not run until the end. This means that
k is the largest found by our partial runs of CAsearchBT, but may not be the optimum
one.

q l CA(N ; 4, k, q) PrevN q l CA(N ; 4, k, q) PrevN
2 2 CA(31; 4, 6, 2)* 21 9 2 CA(13121; 4, 18, 9) 13113
3 2 CA(161; 4, 10, 3)* 159 9 3 CA(19681; 4, 42, 9) 30537
3 3 CA(241; 4, 12, 3)* 189 9 4 CA(26241; 4, 50, 9) 30537
3 4 CA(321; 4, 12, 3)* 189 9 5 CA(32801; 4, 82, 9) 33129
4 2 CA(511; 4, 17, 4)* 760 11 2 CA(29281; 4, 21, 11) 29271
4 3 CA(766; 4, 20, 4) 760 11 3 CA(43921; 4, 37, 11) 69091
4 4 CA(1021; 4, 20, 4) 760 11 4 CA(58561; 4, 77, 11) 69091
5 2 CA(1249; 4, 16, 5) 1865 11 5 CA(73201; 4, 125, 11) 73931
5 3 CA(1873; 4, 25, 5) 2845 13 2 CA(57121; 4, 24, 13) 57109
5 4 CA(2497; 4, 23, 5) 1865 13 3 CA(85681; 4, 45, 13) 136045
7 2 CA(4801; 4, 15, 7) 4795 13 4 CA(114241; 4, 98, 13) 136045
7 3 CA(7201; 4, 26, 7) 7189 13 5 CA(142801; 4, 170, 13) 146185
7 4 CA(9601; 4, 43, 7) 9583 16 2 CA(131071; 4, 28, 16) 188401
7 5 CA(12001; 4, 47, 7) 9583 16 3 CA(196606; 4, 55, 16) 315136
8 2 CA(8191; 4, 17, 8) 8184 16 4 CA(262141; 4, 129, 16) 315136
8 3 CA(12286; 4, 30, 8) 12272 17 2 CA(167041; 4, 29, 17) 240721
8 4 CA(16381; 4, 48, 8) 18880 17 3 CA(250561; 4, 61, 17) 402577
8 5 CA(20476; 4, 65, 8) 19776 17 4 CA(334081; 4, 141, 17) 402577
8 6 CA(24571; 4, 67, 8) 19776 19 2 CA(260641; 4, 30, 19) 377227

23 2 CA(781249; 4, 35, 23) 815167

Table 1: Overview of our results, where N = l(q4−1)+1. The columns denoted PrevN contain the previous
smallest upper bounds for CAN(4, k, v); bold indicates improvement.

We recall that the covering array number CAN(t, k, q) is the smallest n such that
a CA(n; t, k, q) exists. Hence, a CA(N ; t, k, q) implies that N is an upper bound for
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CAN(t, k, q). In Table 1, column PrevN contains the previously smallest known [8] up-
per bounds for CAN(4, k, q), for the k and q of the corresponding array. Bounds in bold
indicate that they are improved by our results, and the numbers of rows of the corresponding
arrays, also indicated in bold, are the new smallest known upper bounds for CAN(4, k, q).

More results follow recursively; from the fusion operation [10] we obtain a CA(N −
2(v − q); t, k, v) from a CA(N ; t, k, q). Table 2 contains the results of the fusion operation
on our arrays, that improve previously smallest bounds. These are CA(N ; t, k, v) with
v ∈ {q − 1, q − 2}, N = l(q4 − 1) + 1 − 2(v − q), and q, k from the corresponding array in
Table 1. We note that these include arrays with alphabets that are not prime powers.

In Table 3 we give the essential elements of the construction of the new arrays displayed
in Table 1. The first column contains their parameters CA(N ; t, k, q). We recall that the
arrays are of the form M(α1, . . . , αl)[e] for primitive elements α1, . . . , αl ∈ Fq4 , and αj = αij ,
j = 1, . . . , l, for powers ij chosen as per Section 3, for a fixed primitive α ∈ Fq4 . These powers
are listed in the second column, and α is a root of the polynomial Pq(x) in Table 4, for the
corresponding q.

We demonstrate with an example how to construct the covering arrays in Table 3. For
example, to obtain a CA(1249; 4, 16, 5), we generate the LFSR sequences associated with
α and α7, where α is a root of P5(x), given in Table 4. Then the rows of the array are
obtained by generating all the 54−1 shifts of the two sequences, choosing for each shift only
the elements with indices from e = {0, 6, 9, 15, 39, 45, 48, 54, 78, 84, 87, 93, 117, 123, 126, 132}.
This array can also be expressed using trace representation, as follows

(
Trqm/q(α

i)
)
i∈e(

Trqm/q(αα
i)
)
i∈e

...(
Trqm/q(α

54−2αi)
)
i∈e(

Trqm/q(α
7i)
)
i∈e(

Trqm/q(αα
7i)
)
i∈e

...(
Trqm/q(α

54−2α7i)
)
i∈e

0 · · · 0


.

Table 3: Components of the new covering arrays.

M(αi1 , . . . , αil)[e] i1, . . . , il e
CA(511; 4, 17, 4) 1, 31 5i, i = 0, 1, . . . , 16
CA(1249; 4, 16, 5) 1, 7 0, 6, 9, 15, 39, 45, 48, 54, 78, 84, 87, 93, 117, 123, 126, 132
CA(1873; 4, 25, 5) 1, 7,17 0, 9, 12, 21, 24, 33, 36, 45, 48, 57, 60, 69, 72, 81, 84, 93, 96,

105, 108, 117, 120, 129, 132, 141, 144
CA(16381; 4, 48, 8) 1, 43, 421, 1324 0-14, 16, 18, 20, 22, 24, 26, 28, 31, 33, 34, 37, 41, 48, 52,

124, 125, 128, 176, 226, 230, 240, 251, 275, 279, 285, 321,
365, 432, 433, 440, 444, 452, 510,

Continued on the next page
18



Table 3 – Continued from the previous page
M(αi1 , . . . , αil)[e] i1, . . . , il e
CA(19681; 4, 42, 9) 1, 7,13 10i, i = 0, 1, . . . , 41
CA(26241; 4, 50, 9) 1, 1129, 1273,

1329
0-3, 5, 6, 8, 9, 11, 13, 15, 16, 18, 19, 22-24, 27-29, 32-34, 38,
43, 46, 49, 54, 56, 57, 60, 65, 67, 70, 80, 97, 102, 117, 168,
201, 226, 310, 335, 358, 367, 369, 391, 458, 468, 482

CA(32801; 4, 82, 9) 1, 29, 43, 47,
139

0-81

CA(43921; 4, 37, 11) 1, 271, 3491 0, 1, 12, 13, 24, 25, 36, 37, 48, 49, 60, 61, 72, 73, 84, 85, 96,
97, 108, 109, 180, 349, 360, 409, 589, 601, 613, 660, 685,
709, 925, 937, 949, 997, 1020, 1189, 1237

CA(58561; 4, 77, 11) 1, 271, 3491,
5861

0-3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27,
29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
53, 54, 56, 57, 59, 60, 63, 66, 73, 76, 79, 80, 83, 86, 92, 95,
98, 101, 104, 107, 110, 192, 236, 352, 412, 423, 447, 507,
528, 546, 623, 650, 662, 694, 697, 700, 859, 921, 925, 1078,
1254

CA(73201; 4, 125, 11) 1,119, 181, 245,
397

0-50, 57-62, 69-74, 81-86, 93-107, 111-114, 176, 177, 197,
230-232, 243, 283, 300, 311, 312, 323, 324, 360-362, 418,
419, 443, 455, 469, 539, 566, 603, 673, 674, 675, 798, 824,
945, 1018, 1066, 1174, 1198, 1308, 1339, 1340

CA(85681; 4, 45, 13) 1, 313, 357 0, 1, 14, 15, 28, 29, 42, 43, 56, 57, 70, 71, 84, 85, 98, 99,
112, 113, 126, 127, 140, 141, 154, 168, 182, 238, 336, 532,
574, 686, 714, 742, 798, 1051, 1092, 1162, 1387, 1695, 1737,
1792, 1820, 1862, 1946, 1974, 2030

CA(114241; 4, 98, 13) 1, 3, 213, 503 0-38, 42-44, 48, 72-74, 79-81, 83, 84, 123-126, 131, 132, 149,
150, 159, 164, 165, 183, 197, 203, 223, 225, 227, 229, 237,
240, 247, 273, 274, 292, 327, 333, 403, 406, 572, 601, 609,
617, 625, 776, 847, 966, 1115, 1288, 1299, 1359, 1386, 1480,
1669, 1750, 1866, 1952, 2098

CA(142801; 4, 170, 13) 1, 79, 109, 171,
421

0-86, 150-169, 243, 245, 247, 264-266, 268, 273, 280, 281,
454, 456, 458-462, 464, 466, 468, 502, 611, 614-619, 642,
773, 782, 797, 803, 810, 811, 828, 829, 965, 975, 977, 979,
983-987, 997, 1158, 1160, 1162, 1163, 1165, 1331, 1447,
1504, 1506, 1643, 1788, 1790, 1792, 2009, 2028, 2152

CA(131071; 4, 28, 16) 1, 601 0-3, 5, 6, 8, 11, 12, 17, 22, 23, 25, 36, 45, 46, 50, 157, 184,
352, 661, 1316, 2236, 2736, 3028, 3102, 3126, 3443

CA(196606; 4, 55, 16) 1, 4636, 11086 0-3, 5, 6, 8, 11, 12, 17, 20, 22, 26, 29, 34, 35, 39, 40, 45, 49,
54, 69, 73, 78, 91, 100, 102, 105, 111, 120, 122, 137, 146,
155, 164, 184, 208, 239, 332, 333, 395, 399, 404, 537, 598,
858, 1746, 1754, 2020, 2279, 2743, 2751, 2810, 2816, 3189

CA(262141; 4, 129, 16) 1, 295, 475, 883 0-53, 87-98, 108-110, 123-125, 129-131, 135-137, 170-173,
182, 185-187, 189-194, 199-201, 210, 223, 308, 337-340, 342,
383, 385, 412, 422, 455, 617, 635, 812, 817, 839, 841, 847,
849, 911, 933, 1438, 1499, 1929, 1938, 1994, 2239, 2758,
2782, 3328, 3383, 3675

CA(167041; 4, 29, 17) 1, 18929 0-3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 23, 24, 27, 35, 36, 134, 252,
367, 877, 952, 1771, 1871, 2171, 2239, 3184, 4154

Continued on the next page

19



Table 3 – Continued from the previous page
M(αi1 , . . . , αil)[e] i1, . . . , il e
CA(250561; 4, 61, 17) 1, 6481, 18929 0-3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27,

29, 30, 32, 33, 35, 36, 38, 40, 41, 43, 46, 49, 52, 54, 57, 60,
82, 93, 98, 110, 115, 120, 123, 151, 168, 194, 219, 248, 264,
371, 709, 910, 1220, 1371, 1428, 1778, 2004, 2324, 2446,
2921, 3623

CA(334081; 4, 141, 17) 1, 707, 739, 989 0-61, 63, 65, 67, 69, 71, 73, 102-112, 114, 116, 118, 120, 122,
124, 126, 128, 140, 240, 242, 244, 246, 248, 250, 252, 254,
256-265, 281, 283, 285, 423, 426, 484, 494, 496, 696, 726,
804, 1049, 1127, 1131, 1147, 1149, 1224, 1232, 1237, 1241,
1242, 1245, 1375, 1582, 1913, 2142, 2863, 3061, 3098, 3541,
3576, 3629, 3633, 3863, 3933

CA(260641; 4, 30, 19) 1, 32689 0-3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 43, 51, 53, 62,
72, 248, 357, 1470, 1779, 2660, 3200, 4355, 5378, 5756

CA(781249; 4, 35, 23) 1, 89 0-3, 5, 6, 8, 9, 11, 12, 14, 18, 19, 21, 22, 24, 25, 27, 28, 31,
35, 41, 45, 118, 347, 586, 1397, 2394, 2505, 4479, 5556,
6315, 8126, 9124, 9954

Although the algorithms in this paper can be applied to search for covering arrays of any
strength, the running time increases significantly for strengths t ≥ 5. We were able to run
a few cases of strength t = 5, 6 for small alphabets q. We had one notable result, namely a
CA(485; 5, 11, 3) which improves the upper bound of CAN(5, 11, 3) from 546 to 485. This
array can be constructed as M(α, α17)[e], where α is a root of x5 + 2x4 + 1 ∈ F3[x], and
e = {11i : i = 0, . . . , 10}.

6. Conclusions and future work

We comment on a related backtracking construction of covering arrays by Sherwood,
Martirosyan and Colbourn [29], and note that it is similar to ours in that they select length-
qt vectors via linear combinations which are then vertically concatenated to form columns of
a covering array. We observe that they also relate coverage with linear independence of these
vectors, but consider a more restrictive set of vectors, while allowing more variation on the
choice of vectors that are vertically concatenated. We restrict our attention to subarrays that
share certain algebraic properties, that is, the ones that come from the same set of columns
taken from two different LFSR arrays; its cyclic structure is exploited in our backtrack search
via necklace generation. This allows us to find arrays for larger parameter values than in [29].
An open question would be how we could relax the algebraic structure considered to broaden
the search space while still being able to handle similarly large parameter values.

On another note, some of our results show patterns that suggest connections with finite
geometry. In fact it is established in [27] that the columns of the LFSR array M(α) where
α is a primitive element of Fqm , are the points of the projective space PG(m− 1, q), and the
indices of zeros in every row correspond to the hyperplanes in this projective space. In this
context, the columns of the CA(511; 4, 17, 4) in Table 3 are the points of an ovoid (a set of
points such that no three are colinear) in that projective space. This suggests that it may
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v q l CA(N ; 4, k, v) PrevN v q l CA(N ; 4, k, v) PrevN
10 11 3 CA(43923 ; 4, 37, 10) 57486 15 17 3 CA(250564; 4, 61, 15) 278181
10 11 4 CA(58563 ; 4, 77, 10) 66545 15 16 2 CA(131073; 4, 28, 15) 173727
12 13 3 CA(85683 ; 4, 45, 12) 114186 15 16 3 CA(196608; 4, 55, 15) 277827
12 13 4 CA(114243 ; 4, 98, 12) 129345 15 16 4 CA(262143; 4, 129, 15) 315134
14 16 2 CA(131075 ; 4, 28, 14) 147753 16 17 2 CA(167043; 4, 29, 16) 188401
14 16 3 CA(196610 ; 4, 55, 14) 226647 16 17 3 CA(250563; 4, 61, 16) 315136
14 16 4 CA(262145 ; 4, 129, 14) 283193 16 17 4 CA(334083; 4, 141, 16) 315136
15 17 2 CA(167045 ; 4, 29, 15) 173800 18 19 2 CA(260643; 4, 30, 18) 355669

Table 2: Results from the fusion operation on our arrays, where N = l(q4 − 1) + 1− 2(v − q).

q Minimal polynomial in Fq[x] of α ∈ Fq4
4 P4(x) = x4 + (a+ 1)x3 + ax2 + a, F2 = F2(a), a2 = a+ 1
5 P5(x) = x4 + x3 + 2x2 + 2
8 P8(x) = x4 + ax3 + a, F8 = F2(a), a3 = a+ 1
9 P9(x) = x4 + ax3 + a, F9 = F3(a), a2 = a+ 1
11 P11(x) = x4 + 4x3 + 2
13 P13(x) = x4 + 6x3 + 2x2 + 2
16 P16(x) = x4 + a2x3 + ax2 + a, F16 = F2(a), a4 = a+ 1
17 P17(x) = x4 + 6x3 + 3
19 P19(x) = x4 + x3 + 2
23 P23(x) = x4 + 9x3 + 5

Table 4: Minimal polynomials of the primitive elements used in Table 3.

be possible to obtain a direct construction of covering arrays using finite geometry; we are
currently working in this direction.
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