
Error Locating Arrays, Adaptive Software Testing, and

Combinatorial Group Testing

Jacob Chodoriwsky

Thesis submitted to the Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of Master of Science in

Mathematics 1

Department of Mathematics and Statistics

Faculty of Science

University of Ottawa

c⃝ Jacob Chodoriwsky, Ottawa, Canada, 2012

1The M.Sc. program is a joint program with Carleton University, administered by the Ottawa-
Carleton Institute of Mathematics and Statistics

Abstract

Combinatorial Group Testing (CGT) is a process of identifying faulty interactions

(“errors”) within a particular set of items. Error Locating Arrays (ELAs) are combi-

natorial designs that can be built from Covering Arrays (CAs) to not only cover all

errors in a system (each involving up to a certain number of items), but to locate and

identify the errors as well. In this thesis, we survey known results for CGT, as well

as CAs, ELAs, and some other types of related arrays. More importantly, we give

several new results.

First, we give a new algorithm that can be used to test a system in which each

component (factor) has two options (values), and at most two errors are present. We

show that, for systems with at most two errors, our algorithm improves upon a related

algorithm by Mart́ınez et al. [32] in terms of both robustness and efficiency.

Second, we give the first adaptive CGT algorithm that can identify, among a

given set of k items, all faulty interactions involving up to three items. We then

compare it, performance-wise, to current-best nonadaptive method that can identify

faulty interactions involving up to three items. We also give the first adaptive ELA-

building algorithm that can identify all faulty interactions involving up to three items

when safe values are known. Both of our new algorithms are generalizations of ones

previously given by Mart́ınez et al. [32] for identifying all faulty interactions involving

up to two items.

ii

Acknowledgements

As I reflect upon the trials I’ve faced during the time I have spent at the University

of Ottawa, I am vividly reminded of the well-known, longstanding metaphor about

standing on the shoulders of giants. I count myself blessed as having had many

metaphorical giants to stand and lean upon.

Mom, Dad, thank you for teaching me perseverance. Without it I would surely

not have accomplished this. Adrian, Sonya, and Dave, thank you for always believing

in me, even when I didn’t.

I thank Fabrice Colin for his generous support of my pre-master’s research in

graph theory and algorithms. My work with him was an irreplaceable first step in

this tremendous odyssey.

I humbly thank the University of Ottawa and the Department of Mathematics

and Statistics, for their excellent financial support during my time in Ottawa. Notable

in the department are Suzanne Vézina, Michelle Lukaszczyk, and Carolynne Roy, who

have always ensured that taking care of paperwork was more pleasant than it had to

be. Very special thanks to Chantal Giroux for consistently assigning me absolutely

splendid teaching assistantships, and to Steven Desjardins, for being such a pleasure

to work for. Benoit Dionne, your tremendous efforts at keeping everything running

smoothly are definitely noticed.

Without the wisdom of my office mates and fellow discrete mathematicians, I

would be lost. Amy, you have shown me that a windowless office need not be dull.

iii

Acknowledgements iv

Maryam, I find inspiration in your take-no-prisoners attitude. Patrick, I sincerely

thank you for helping me to keep things in perspective. Elizabeth, your energy and

encouragement have often helped to push me forward. Sebastian, your wit always

keeps me on my toes, even to this day. Cate, your friendship made my first year at

this university particularly memorable.

The help and support of the staff at the Office of Graduate Studies, Faculty of

Science has been absolutely stellar; I sincerely appreciate the top-notch professional-

ism of Elvira Evangelista, Lorraine Houle, Diane Perras, and Manon Gauvreau.

Mike Newman, I may not have survived my first term of graduate school without

your helpful guidance and always-approachable attitude. I also appreciate the time

and effort you and Brett Stevens invested in my thesis examination. I heartily thank

Paul Mezo for his endless patience, and Daniel Panario for ensuring that I will never,

ever forget about Catalan numbers.

I owe very deep gratitude to my supervisors, Lucia Moura and Mateja Šajna, for

both their financial support and the mentorship they blessed me with. Mateja, your

combination of sharp editing skills and attention to fine detail has been a life saver;

most of what I know about technical writing, I owe to you. Lucia, before I met you

I would never have thought that a meeting regarding a thesis or course project could

be so truly stirring. Our collaborative brainstorming sessions have absolutely made

this thesis a memorable endeavour.

Most of all, I thank my wife Rebecca. Her love carries me through the days when

I am at my weakest.

Contents

List of Figures vii

List of Tables viii

1 Introduction and Background 1

1.1 The Testing Problem . 2

1.2 Covering Arrays . 6

1.3 Mixed Covering Arrays . 11

1.4 Motivation for Stronger Arrays 13

1.5 Graph Theory . 15

1.6 Overview . 17

2 Arrays for Error Determination 19

2.1 Locating and Detecting Arrays 19

2.2 Error Locating Arrays . 25

2.3 Nonadaptive Location of Errors for Binary Alphabets 35

3 Robust Error Location for Binary Alphabets 38

3.1 A Characterization of Locatable Gk,2 Graphs with d ≤ 2 Edges . 39

3.2 Finding a Passing Test, Binary Alphabet 43

3.3 Strength-2 Error Location for Gk,2 Graphs with At Most Two

Edges . 52

v

CONTENTS vi

3.4 Algorithm Analysis . 78

4 Combinatorial Group Testing and Error Location with Safe Val-

ues 89

4.1 Pointwise Group Testing and Strength-1 ELAs with Safe Values . 91

4.2 Pairwise Group Testing . 94

4.3 Strength-2 ELAs with Safe Values via CGT 99

4.4 Higher-Strength Nonadaptive Group Testing 100

5 Strength-3 Group Testing and Error Location 104

5.1 Combinatorial Group Testing, Strength 3 105

5.2 Performance Analysis . 119

5.3 Strength-3 ELAs with Safe Values via CGT 127

5.4 Comparison to d(H)-Disjunct Matrix Method 128

6 Conclusion 137

6.1 Robust Error Location for Binary Alphabets 137

6.2 Combinatorial Group Testing and Error Location for Strengths

Greater than Two . 140

6.3 Other Related Open Problems 141

Bibliography 144

List of Figures

2.1 Relationships between detecting and locating arrays [14]. 24

2.2 A G(4,2,2,2) for the home theatre testing problem from Table 2.2. . . 30

2.3 Structures which prevent the location of errors [32]. 32

3.1 Locatable versus nonlocatable Gk,2 graphs with parts (vertical pairs

of vertices) corresponding to factors w, x, y, and/or z [32]. 39

3.2 NonlocatableGk,2 graphs with two edges (top row), and their location-

equivalents (bottom row). 42

vii

List of Tables

1.1 A desktop computer testing problem. 4

2.1 Existence constraints for detecting and locating arrays [14]. 25

2.2 A home theatre testing problem. 29

5.1 Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9] for

d = 1. 129

5.2 Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9] for

k = 10, d ∈ [2, 4]. 130

5.3 Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9] for

k = 100, d ∈ [2, 15]. 131

5.4 Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9] for

k = 1, 000, some values of d ∈ [2, 126]. 132

5.5 Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9] for

k = 10, 000, some values of d ≤ 1, 128. 133

5.6 Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9] for

k = 100, 000, some values of d ≤ 10, 420. 134

5.7 Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9] for

k = 1, 000, 000, some values of d ≤ 97, 750. 135

5.8 Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9] for

d = 10p, p ∈ [2, 4]. 136

viii

Chapter 1

Introduction and Background

Real, applied mathematical problems often require us to organize a finite set according

to some constraints. Combinatorial designs allow us to satisfy given constraints by

carefully arranging the elements of a set into subsets.

Consider the example of a quality control engineer working for an electronics

manufacturer. Suppose he must ensure that his company produces reliable computers.

The company builds the computers to various specifications, out of components from

many different manufacturers. At the very least, he must detect whether there are

problems with a given computer.

There may be a single dysfunctional component, or several. Worse still, there may

be components which are not individually problematic, but interact in unexpected,

erroneous ways with one or more other components. Ideally, our engineer should be

able to efficiently detect all such problems, and locate the specific faulty components

and troublesome interactions. Such a task can be accomplished with particular kinds

of combinatorial designs called locating and detecting arrays [14] and error locating

arrays [32].

The goal of this thesis is to efficiently create error locating arrays for a given

testing problem The introductory example of manufacturing electronics is but one of

1

1. Introduction and Background 2

many areas of applications. There are numerous others, including software testing,

pharmaceutical development, agriculture, material engineering, and analysis of gene

interactions. More details and references for specific applications can be found in a

survey by Colbourn [12].

This chapter is organized as follows. In Section 1.1, we describe the testing

problem to which we will apply error locating arrays. Our combinatorial design of

choice, the error locating array, has several ancestors, some of which are described

in Sections 1.2 and 1.3. Next, we motivate the need for stronger arrays in Section

1.4. We then review graph theory in Section 1.5, and we conclude the introductory

chapter with an overview of the thesis in Section 1.6.

1.1 The Testing Problem

Companies with high quality standards must test their products thoroughly before

releasing them to be sold. Such products are typically composed of many components,

or factors, and each factor may have different options. In the introductory example

of a computer, one factor is the CPU, and the options are the different specific types

of CPUs available.

We typically define the options for a given factor with an alphabet whose entries

are integers. For convenience, we shorten the notation of a set of consecutive integers

by denoting [a, a+ b] = {a, a+1, ..., a+ b}, where a and b are integers, and b ≥ 0. We

use the following common convention for alphabets, and we also define strings over

alphabets in anticipation of the key definition which follows this one.

Definition 1.1.1 A g-alphabet is a finite set of g symbols. By convention, this set

is assumed to be [0, g − 1]. If g = 2, we have a binary alphabet.

A string over a g-alphabet is a finite sequence S = a1a2...an whose characters

ai are symbols from the g-alphabet. We say that the length of S is n. A sequence

1. Introduction and Background 3

S ′ = ai1ai2 ...aim is a subsequence of S if, for all j < k ≤ m ≤ n, we have ij < ik.

We call S ′ a substring of S if ij+1 = ij + 1 for all j ∈ [1,m− 1].

If we append string T = b1b2...bm to the end of string S = a1a2...an, we say that

we concatenate S and T to make a new string ST = a1a2...anb1b2...bm. Let c > 0

be an integer. We denote c copies of string S concatenated together by Sc.

Now that we have a way to describe options for each component in a system, we

formally define the problem of testing a system. For convenience, we use the definition

from Maltais [31]. Throughout the combinatorial design and testing literature, tests

are often defined in terms of tuples. However, we define them as strings for the sake

of neater presentation.

Definition 1.1.2 A testing problem is a system with k components, called factors,

which are labeled by indices in [1, k]. The ith factor has gi potential options, called

values (and sometimes called levels). We use a gi-alphabet to denote the possible

values of factor i. For the sake of convenience, we denote such a testing problem as

TP (k, (g1, g2, ..., gk)). We shorten this notation to TP (k, g) if we have a constant-size

alphabet (i.e. g1 = g2 = ... = gk = g).

A test associated with a TP (k, (g1, g2, ..., gk)) is a string T = T1T2...Tk of length

k, where the ith factor has value Ti ∈ [0, gi − 1]. An array associated with a

TP (k, (g1, g2, ..., gk)) is an N × k array A whose rows (indexed 1 to N) are tests

associated with the same TP (k, (g1, g2, ..., gk)).

A subtest of a test T with respect to the index set A = {a1, a2, ..., at} ⊆ [1, k],

denoted TA, is the subsequence Ta1Ta2 ...Tat of T . If we wish to specify that the length

of TA is t, we call TA a t-subtest. Two tests T, T ′ are disjoint if, for each i ∈ [1, k],

we have Ti ̸= T ′
i . More generally, two subtests TA, T

′
A are disjoint with respect to

A if, for each i ∈ A, we have Ti ̸= T ′
i .

We show one example of a desktop computer testing problem in Table 1.1. In

this case, a test is the choice of one CPU, one motherboard, one RAM chip, one hard

1. Introduction and Background 4

Factors Values

1=CPU 0=AMD
1=Intel

2=Motherboard 0=Asus
1=Biostar
2=EVGA
3=Intel

3=RAM 0=Corsair
1=Crucial
2=Kingston
3=OCZ

4=Hard Drive 0=Hitachi
1=Seagate
2=Toshiba
3=Western Digital

5=Video Card 0=Diamond
1=Nvidia
2=MSI
3=Sapphire
4=Xfx
5=Zotac

Table 1.1: A desktop computer testing problem.

drive, and one video card. Note that there are many ways to test such a system. We

could run several common pieces of commercial software on each machine for an hour

each. Alternatively, we could run one piece of software on several different operating

systems. Clearly, tests can differ by the requirements of the product’s users, and even

by the context of the testing problem. We consider a simple testing model applied to

a certain system where each test can have only one of two results: pass or fail.

Definition 1.1.3 If a test T contains a subtest corresponding to a faulty component

or a faulty combination of components, we say that T is a failing test. Otherwise,

we say that T is a passing test.

1. Introduction and Background 5

Ideally, we should be able to conduct enough tests to locate all faulty parts and

all faulty combinations of parts in the system. However, for the sake of pragmatism,

we are often required to find a compromise between testing many configurations of

components and not conducting too many tests.

For example, consider a computer manufacturer building desktop computers with

components given in Table 1.1. This is a TP (5, (2, 4, 4, 4, 6)). On one hand, we would

only need max{gi} = 6 tests to know whether any individual components are faulty.

However, a combination of certain components, such as a Biostar motherboard with

a Zotac video card, may cause system instability, even if the individual components

are not faulty. Such faults are called interaction faults (see [12] and [41]).

If we conduct enough tests to collectively cover every possible choice for each

t-subset of factors, up to an integer t ≤ k, we know whether there are any faults

caused by so-called t-way interactions, defined below. We use the following definition

from [31].

Definition 1.1.4 [31] Consider a TP (k, (g1, g2, ..., gk)), and let t ∈ [1, k] be a pos-

itive integer. A t-way interaction (also called a strength-t interaction) is

a set of values assigned to t distinct factors. We denote such an interaction by

I = {(f1, af1), (f2, af2), ..., (ft, aft)} where, for every 1 ≤ i ≤ t, each fi ∈ [1, k] is

distinct, and each afi ∈ [0, gfi − 1].

We say that a test T = T1T2...Tk covers interaction I if Tfi = afi for each

i ∈ [1, t], and we sometimes represent interaction I as a t-subtest T{f1,f2,...,ft} =

Tf1Tf2 ...Tft. If T covers I and f1, f2, ..., ft ∈ D ⊂ [1, k], then we say that the subtest

TD also covers I.

A test (or subtest) S avoids I if S does not cover I. We call 1-way and 2-

way interactions pointwise and pairwise interactions, respectively. An interaction

which causes a test to fail is called a faulty interaction, which we sometimes refer

to as an error.

1. Introduction and Background 6

Existing research indicates that pairwise testing is highly effective for most appli-

cations (see [7, 15, 26]). However, Kuhn et al. [27] show that higher-strength testing,

with t ∈ [4, 6], is needed for truly robust fault detection in certain situations: their

empirical results indicate that 4-way testing is needed to detect at least 95% of faults

in the applications they tested, and 6-way testing is needed to detect all faults.

We note here that there are two main testing methodologies: nonadaptive, and

adaptive, which we define below. We focus on the former method throughout Chap-

ters 1 and 2.

Definition 1.1.5 If a testing method constructs each test without any knowledge of

results from any other tests, it is a nonadaptive testing method. Otherwise, it is an

adaptive testing method.

In the next section, we introduce combinatorial designs which cover all t-way

interactions. Such designs are arrays whose rows represent corresponding tests.

1.2 Covering Arrays

A covering array (CA) is a type of combinatorial design which, given a parameter t,

covers each t-way interaction at least once. More formally, we define a covering array

as follows.

Definition 1.2.1 A covering array C is an N × k array with entries from a g-

alphabet, such that each possible t-way interaction I of a testing problem TP (k, g)

occurs as a subtest of some row of C. The parameters N, t, k, and g are the size,

strength, number of factors, and order, respectively. We denote such an array

by CA(N ; t, k, g).

Notice that a CA(N ; t, k, g) always exists for a testing problem TP (k, g) since we

can always construct a test suite composed of all k-tuples of a g-alphabet. However,

1. Introduction and Background 7

we wish to minimize the number of tests, so we present some results on the minimum

size N for which a CA(N ; t, k, g) can exist.

Definition 1.2.2 The minimum integer N for which a CA(N ; t, k, g) exists is called

the covering array number, which we denote by CAN(t, k, g). A covering array

of size N = CAN(t, k, g) is called optimal.

Regrettably, not much is known about the exact values of covering array numbers.

However, some general bounds can be easily inferred. First, for any A ⊆ [1, k] such

that |A| = t, a CA(N ; t, k, g) must include each of the gt possible t-subtests that are

indexed by the set A at least once. Therefore,

gt ≤ CAN(t, k, g).

Likewise, any covering array of strength t also covers all (t − 1)-subtests, and

any covering array with alphabet g clearly covers all (g − 1)t subtests created from

a (g − 1)-alphabet. Furthermore, we can create a covering array on k − 1 factors by

simply removing one column. Hence, we get the following inequalities.

CAN(t− 1, k, g) ≤ CAN(t, k, g)

CAN(t, k − 1, g) ≤ CAN(t, k, g)

CAN(t, k, g − 1) ≤ CAN(t, k, g)

Fortunately, the exact covering array number is known for pairwise interactions

and binary (g = 2) alphabets. Katona [24] and Kleitman and Spencer [25] indepen-

dently discovered and proved the following bound; see [33, Section 3.4] for a proof.

1. Introduction and Background 8

Theorem 1.2.3 Let k be a positive integer. Then:

CAN(2, k, 2) = min

{
N :

(
N − 1

⌈N/2⌉

)
≥ k

}
.

The matrix construction associated with the above bound is well-known and

relatively simple. Let S be the set of all distinct binary N -tuples such that each tuple

has a zero in the first position, and exactly ⌈N/2⌉ ones. It is easy to see that any

k-subset of S forms a CA(N ; 2, k, 2).

Following Definition 1.2.1, an N × k array A is a CA(N ; 2, k, 2) if any N × 2

subarray includes 00, 01, 10, and 11 as rows. Let A be an N × k array whose columns

correspond to distinct elements of S, and consider an N × 2 subarray B. Every tuple

in S begins with 0, so 00 is a row of B. More than half of the remaining N − 1

positions in each column of B have 1 as an entry, so 11 is a row of B as well. The

columns of B are distinct, and have the same number of ones, so 01 and 10 are also

rows of B. Therefore B is a CA(N ; 2, 2, 2). Clearly k = |S| =
(
N−1
⌈N/2⌉

)
, so A contains

a CA(N ; 2, k′, 2) for any k′ ≤
(
N−1
⌈N/2⌉

)
.

Example 1.2.4 By Theorem 1.2.3, an optimal CA(2, k, 2) has four rows when k ∈

[2, 3], five rows when k = 4, and six rows when k ∈ [5, 10].

Consider the following arrays. It is easy to see that A is an optimal CA(2, 3, 2),

and any 4× 2 submatrix of A′ is an optimal CA(2, 2, 2). Similarly, A′ is an optimal

CA(2, 4, 2). Finally, A′′ is an optimal CA(2, 10, 2), and any 6× k′ submatrix of A′′ is

an optimal CA(2, k′, 2) for k′ ∈ [5, 9].

1. Introduction and Background 9

A =

0 0 0

0 1 1

1 0 1

1 1 0

 A′ =

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

A′′ =

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1

0 1 1 1 0 0 0 1 1 1

1 0 1 1 0 1 1 0 0 1

1 1 0 1 1 0 1 0 1 0

1 1 1 0 1 1 0 1 0 0

Furthermore, CAN(2, k, 2) is asymptotically logarithmic in k, as shown below.

Theorem 1.2.5 As k →∞, we have

CAN(2, k, 2) ∼ log k.

Proof: Consider an optimal CA(N ; 2, k, 2). By Theorem 1.2.3, N is the smallest

integer such that
(
N−1
⌈N/2⌉

)
≥ k. Therefore,

(
N − 2

⌈(N − 1)/2⌉

)
< k ≤

(
N − 1

⌈N/2⌉

)
.

Asymptotically, N ∼ N ± 1, so we may assume that N is even, without loss

of generality. Then the preceding inequality becomes
(
N−2
N/2

)
< k ≤

(
N−1
N/2

)
. A few

calculations reveal that

lim
N→∞

(
N−1
N/2

)(
N−2
N/2

) = lim
N→∞

2(N − 1)

N − 2
= 2.

Therefore, as N → ∞, we have 1
2

(
N−1
N/2

)
< k ≤

(
N−1
N/2

)
. We conclude that, as

N → ∞, we have k ∼ c
(
N−1
N/2

)
for some real number 0.5 < c ≤ 1. A few further

simplifications to the binomial coefficient
(
N−1
N/2

)
give us:

k ∼ c

(
N − 1

N/2

)
=

c

2

N !

(N/2)!2
.

1. Introduction and Background 10

Recall the famous Stirling Formula (due to James Stirling (1692 - 1770) - see [18]

for more information): n! ∼ nne−n
√
2πn as n → ∞. We apply this formula to each

factorial in the previous equation. After several obvious simplifications, we have:

N !(
N/2

)
!
2 ∼

2N+1

√
2πN

.

Therefore, k ∼ c 2N√
2πN

as N → ∞. We then take the logarithm (base 2) of each

side, and further simplify using the well-known properties of logarithms:

log2 k ∼ N − log2
√
N + log2(c/

√
2π).

Finally, we notice that

N − log2
√
N + log2(c/

√
2π) = N

(
1− log2

√
N

N
+

log2(c/
√
2π)

N

)
= N

(
1 + o(1)

)
.

Hence log2 k ∼ N as N →∞. Furthermore, k →∞ if and only if N →∞, since(
N−2
N/2

)
< k ≤

(
N−1
N/2

)
. We conclude that N ∼ log2 k when k →∞.

We also know of a more general asymptotic bound for pairwise testing with an

alphabet of fixed, constant size greater than two. A result of Gargano, Körner, and

Vaccaro [20] has been applied in the context of covering arrays [12] to obtain the

following result.

Theorem 1.2.6 [20, 12] Let g > 2 be a positive integer. Then, as k →∞, we have

CAN(2, k, g) ∼ g

2
log k.

Two more general bounds on the covering array number are also known. First,

we have a bound restricted only to binary alphabets.

1. Introduction and Background 11

Theorem 1.2.7 [2, 12, 36, 37] Let t and k be positive integers. Then:

CAN(t, k, 2) ≤ 2ttO(log t) log k.

Next, we have a completely general bound, due to Godbole, Skipper, and Sunley.

In [21], they study random selection, using a uniform distribution, of each entry in an

N × k array from a g-alphabet. They conclude that, for N large enough with respect

to t, k, and g, their random array has a nonzero probability of being a CA(N ; t, k, g).

The general bound given below follows from their results.

Theorem 1.2.8 [21] Let t, k, and g ≥ 2 be positive integers, and let w = gt

gt−1
. Then:

CAN(t, k, g) ≤ (t− 1)

logw
(1 + o(1)) log k.

For a more thorough treatment of covering arrays and their associated bounds

and constructions, see Colbourn’s comprehensive survey [12]. For a more recent

survey on binary covering arrays in particular, see Lawrence et al. [28]

1.3 Mixed Covering Arrays

In many real testing problems, some factors will have more or fewer values than

others. For this reason, we briefly introduce the mixed covering array (MCA), which

is a more general version of a covering array.

Definition 1.3.1 A mixed covering array C is an N × k array where entries

in the ith column are from a gi-alphabet, such that each possible t-way interaction I

of a testing problem TP (k, (g1, g2, ..., gk)) occurs as a subtest of some row of C. The

parameters N, t, and k are the size, strength, and number of factors, respectively.

We denote such an array by MCA(N ; t, k, (g1, g2, ..., gk)).

1. Introduction and Background 12

Example 1.3.2 The following is an example of a small mixed covering array, taken

from [14]. It is an MCA(11; 2, 6, (2, 3, 3, 3, 3, 3)).

A =

0 0 0 0 0 0

1 0 1 2 2 1

0 1 0 1 2 2

0 2 1 0 1 2

0 2 2 1 0 1

0 1 2 2 1 0

1 0 2 1 1 2

1 2 0 2 1 1

1 1 2 0 2 1

1 1 1 2 0 2

1 2 1 1 2 0

We know some results about the minimum number of tests for which a covering

array exists. Similarly, we wish to know some results regarding the corresponding

minimum for mixed covering arrays.

Definition 1.3.3 For a given set of parameters t, k, g1, g2, ..., gk, the mixed cover-

ing array number is the minimum integer N for which an MCA(N ; t, k, (g1, g2, ...,

gk)) exists. We denote it by MCAN(t, k, (g1, g2, ..., gk)). An MCA of size N =

MCAN(t, k, (g1, g2, ..., gk)) is called optimal.

We notice that, if we rearrange columns in an MCA, we get another MCA with

the same parameters, possibly with a reordered alphabet tuple. Reorder the factors so

that g1 ≥ g2 ≥ ... ≥ gk, and let g1, g2, ..., gt be the t largest alphabet sizes. Within the

first t columns, there are
∏t

i=1 gi possible tuples, so we get one simple lower bound:

1. Introduction and Background 13

t∏
i=1

gi ≤MCAN(t, k, (g1, g2, ..., gk))

As with CAs, any MCA of strength t covers all (t − 1)-subtests, and any MCA

with alphabets g1, g2, ..., gk covers all subtests created from alphabets g′1, g
′
2, ..., g

′
k,

where g′i ≤ gi for all i ∈ [1, k]. Furthermore, we can create an MCA on k − 1 factors

by simply removing one column. Hence, we get the following inequalities.

MCAN(t− 1, k, (g1, g2, ..., gk)) ≤MCAN(t, k, (g1, g2, ..., gk))

MCAN(t, k − 1, (g1, g2, ..., gk−1)) ≤MCAN(t, k, (g1, g2, ..., gk))

MCAN(t, k, (g′1, g
′
2, ..., g

′
k)) ≤MCAN(t, k, (g1, g2, ..., gk))

Furthermore, MCAs are related to CAs in the following fundamental ways. A

CA of order g1 is an MCA(N ; t, k, (g1, g1, ..., g1)), and covers all tests that an MCA

with alphabets g1, g2, ..., gk would cover since g1 = max[gk, g1]. Similarly, an MCA

with alphabets g1, g2, ..., gk covers all tests that a CA of order gk would cover, since

such a CA is an MCA(N ; t, k, (gk, gk, ..., gk)) and gk = min[gk, g1]. Therefore,

CAN(t, k, gk) ≤MCAN(t, k, (g1, g2, ..., gk)) ≤ CAN(t, k, g1).

More bounds and constructions for MCAs can be found in [12, 13, 35].

1.4 Motivation for Stronger Arrays

Any company which wants to release a high-quality product on the market must be

able to determine if any of the product’s components or interactions are faulty. The

company must then identify and repair the faulty components and interactions. For

products with many components, and/or many options per component, one failing

1. Introduction and Background 14

test in a covering array may not give us enough information about the faulty inter-

actions. We notice that CAs and MCAs cover all interactions up to a given strength

t, and can tell us if such errors exist, but they do not necessarily identify the errors,

as we explain below.

Example 1.4.1 Consider A, the MCA given in the preceding example. Suppose that

all tests pass, except for the ninth one. Every pointwise interaction is covered by a

passing test, so we can conclude that there are no strength-1 errors. However, there

are six strength-2 interactions which are covered only by the ninth test T = 112021.

They are:

I1 = {(1, 1), (4, 0)}

I2 = {(2, 1), (4, 0)}

I3 = {(2, 1), (6, 1)}

I4 = {(3, 2), (4, 0)}

I5 = {(3, 2), (5, 2)}

I6 = {(4, 0), (6, 1)}

Test T could fail due to any combination of one or more of the above interactions,

so there are anywhere between one and six errors of strength two. In this case, the

results of the tests in A do not give us enough information to identify all of the errors,

so we need more tests to determine exactly which interactions are faulty.

In Chapter 2, we introduce some arrays which help us identify certain errors,

namely (d, t)-locating arrays, due to Colbourn and McClary [14]. We also introduce

other arrays which, in addition to identifying up to a certain number of errors up to

to a certain strength, also determine whether there are any as-yet unidentified errors.

Such arrays are called (d, t)-detecting arrays (due to Colbourn and McClary [14]) and

1. Introduction and Background 15

error locating arrays (due to Mart́ınez et al. [32]). First, we need to review some

graph theory since error locating arrays are defined in terms of graphs.

1.5 Graph Theory

We review here some graph terminology, and only those aspects of graph theory that

we need in later chapters. We mostly adhere to definitions and notation from the

most recent edition of Bondy and Murty [3]. For the sake of brevity, we introduce

only the type of graph we need.

Definition 1.5.1 A finite simple graph G with loops allowed is an ordered

pair
(
V (G), E(G)

)
of finite sets. The first set, V (G) ̸= ϕ, is called the vertex set,

and its elements are called vertices. The second set, E(G), is called the edge set,

and its elements are called edges. Edges are subsets of V (G) of cardinality 1 (loops)

or 2 (links), and their elements are called the end(s) (or endpoint(s)) of the edge.

If e = {u, v} is an edge, then u and v are called adjacent vertices, and we say that e

is incident with each of u, v, and vice-versa. We denote the number of vertices and

edges of a graph G by |V (G)| and |E(G)|, respectively, or simply by |V | and |E| when

the context is clear.

In a given graph G, the degree of a vertex v is the number of edges for which v

is an end, where each loop counts as two edges. We denote this quantity by dG(v). A

vertex whose degree is zero is called isolated. The minimum and maximum degrees

of G are denoted by δ(G) and ∆(G), respectively. Two adjacent vertices are called

neighbours. The set of all vertices adjacent to v is called the neighbourhood of

v, and is denoted NG(v).

Graphs can be represented as matrices. There are two standard matrix represen-

tations of a graph: one that describes which of its edges are incident with particular

vertices, and another which describes which vertices are adjacent to each other.

1. Introduction and Background 16

Definition 1.5.2 Let G = (V,E) be a graph such that n = |V | and m = |E|. The

incidence matrix of G is the n×m matrix whose entry in row i, column j is the

number of times that vertex i is incident with edge j. The adjacency matrix of G

is the n× n matrix whose entry in row i, column j is the number of edges which join

vertex i with vertex j (note that a loop counts as two edges here).

If two graphs G,H satisfy V (G) = V (H) and E(G) = E(H), we write G = H,

and we call them identical. A graph H which satisfies V (H) ⊆ V (G) and E(H) ⊆

E(G) is called a subgraph of G, and we denote this relationship by H ⊆ G. We call

H a proper subgraph of G, denoted H ⊂ G, if H ⊆ G, but H ̸= G.

Now, let G be a graph. If V ′ ⊆ V (G), we define the subgraph of G induced

by V ′ (denoted G[V ′]) as follows: the vertex set of G[V ′] is V ′, and the edge set of

G[V ′] is E ′ ⊆ E(G) where E ′ is the set of all edges e ∈ E such that both ends of e

are in V ′. If E ′′ ⊆ E(G), we define the subgraph of G induced by E ′′ (denoted

G[E ′′]) as follows: the edge set of G[E ′′] is E ′′, and the vertex set of G[E ′′] is the set

of ends of edges in E ′′.

If V ′′ ⊆ V (G), we denote the graph G[V (G)− V ′′], obtained by deleting from G

all vertices in V ′′ and all edges incident to at least one vertex in V ′′, simply as G−V ′′.

If V = {v}, we write G−v. If E ′′′ ⊆ G, we denote the graph G[E(G)−E ′′′], obtained

by first deleting from G all edges in E ′′′ and then deleting all isolated vertices, simply

as G− E ′′′. If E ′′′ = {e}, we write G− e.

A proper k-colouring of G is an assignment of colours c ∈ [1, k] to the vertices

of G such that no two adjacent vertices are assigned the same colour. Vertices that

are assigned the same colour are said to be in the same colour class. A graph G

is k-partite (bipartite if k = 2) if its vertex set can be partitioned into k subsets

called parts, such that no edge has both ends in any one subset. A k-partite graph

is called equipartite if all parts are of equal size, and any graph that has a proper

k-colouring is necessarily k-partite, and its colour classes correspond to the k parts.

1. Introduction and Background 17

If a k-partite graph contains every possible edge from each part to every other, we

call it a complete k-partite graph. If such a graph has parts of sizes g1, g2, ..., gk,

we denote it by K(g1,g2,...,gk). If g1 = g2 = ... = gk = g, then the graph is equipartite,

and we simply write Kk,g. We make use of k-partite graphs in Chapter 3.

Hypergraphs are more general versions of graphs. We define them as follows.

Definition 1.5.3 A finite simple hypergraph H is an ordered pair
(
V (H), E(H)

)
of finite sets. The first set, V (H) ̸= ϕ, is called the vertex set, and its elements are

called vertices. The second set, E(H), is called the edge set (or hyperedge set),

and its elements are called edges (or hyperedges). Edges are nonempty subsets of

V (H), and for the sake of consistency, we refer to the elements of an edge as the

end(s) of the edge. We denote the number of vertices and edges of a hypergraph

H by |V (H)| and |E(H)|, respectively, or simply by |V | and |E| when the context is

clear.

We now give an overview of the thesis.

1.6 Overview

The rest of this thesis is structured as follows.

In Chapter 2, we introduce arrays which determine more detailed information

about errors than CAs and MCAs, namely (d, t)- locating and detecting arrays [14]

and error locating arrays (ELAs) [32]. We also summarize existing results for error

locating arrays with binary alphabets. We give assumptions and upper bounds on

the number of tests required in both the adaptive and nonadaptive cases.

In Chapter 3, we give new adaptive algorithms for error location in testing prob-

lems with a binary alphabet. First, we give an algorithm that generates a set of

tests that, for each system with at most two errors of strengths up to two, contains a

passing test if one exists, and otherwise determines that a passing test does not exist.

1. Introduction and Background 18

We then give a second algorithm which, if the preceding algorithm returns a passing

test, generates further tests which allow it to identify and return the set of all errors

in either the given system or in an equivalent one.

In Chapter 4, we introduce combinatorial group testing (CGT), and we summa-

rize the current results for CGT algorithms. We show the relation between CGT and

error locating arrays with so-called safe values, as found in [32].

In Chapter 5, we give the first adaptive CGT algorithm that can identify, among

a given set of k items, all faulty interactions involving up to three items. We analyze

its performance, and we compare it to current-best nonadaptive method that can

identify faulty interactions involving up to three items. We also give the first adaptive

ELA-building algorithm that can identify all faulty interactions involving up to three

items when safe values are known.

In Chapter 6, we conclude by summarizing our main results, their importance,

and avenues for future research.

Chapter 2

Arrays for Error Determination

So far, we have concerned ourselves with determining whether faulty interactions

occur. However, we desire more information about faulty interactions. In this chapter,

we introduce a few kinds of stronger arrays, following some necessary terminology.

2.1 Locating and Detecting Arrays

Consider a testing problem concerned with building products out of components.

We must determine if there are any faulty interactions and, if so, identify all such

interactions before the products can be sold on the market. We use locating arrays

for this task. Furthermore, even if we locate some faults, there may be more faulty

interactions we are unaware of. We need to detect whether there are more faulty

interactions which we haven’t located, and for this, we use detecting arrays.

The entire contents of this section regarding locating and detecting arrays are

due to Colbourn and McClary [14]. We introduce the arrays here, beginning with

some notation and prerequisite definitions.

Let I be a strength-t interaction in a TP (k, (g1, g2, ..., gk)), as defined in Defini-

tion 1.1.4, and let A be an N × k array. Define ρ(A, I) as the set of all rows of A

19

2. Arrays for Error Determination 20

which cover interaction I. More generally, we define the set of all rows covering the

interactions in a set I as ρ(A, I) = ∪I∈Iρ(A, I).

Now, suppose T is a t-way interaction, and that S ⊂ T is an interaction of

lower strength such that ρ(A, S) ⊆ ρ(A, T). In this case, if T is faulty, then we

cannot determine whether or not S is also faulty. We can, in practice, locate only

independent faults (defined below) unless we know beforehand the strengths of the

faults. This leads us to the following useful definition.

Definition 2.1.1 Within a given testing problem, a set I of interactions is inde-

pendent if, for all I ∈ I, there is no J ∈ I such that J ⊂ I.

In the following definition, let It be the set of all t-way interactions in the given

TP (k, (g1, g2, ..., gk)), and let It be the set of all interactions of strengths t or less.

Definition 2.1.2 Let A be an array associated with a TP (k, (g1, g2, ..., gk)). Then A

is a (d, t)-locating array if it satisfies

ρ(A, T1) = ρ(A, T2) ⇐⇒ T1 = T2

whenever T1, T2 ⊆ It and |T1| = d = |T2|. We also say that A locates d errors, each

of strength t.

Similarly, A is a (d, t̂)-locating array if it satisfies

ρ(A, T1) = ρ(A, T2) ⇐⇒ T1 = T2

whenever T1, T2 ⊆ It and |T1| = d = |T2|. We also say that A locates d errors, each

of strength up to t.

Furthermore, A is a (d, t)-locating array if it satisfies

ρ(A, T1) = ρ(A, T2) ⇐⇒ T1 = T2

2. Arrays for Error Determination 21

whenever T1, T2 ⊆ It are independent and |T1| = d = |T2|. We also say that A locates

d independent errors, each of strength up to t.

If we relax the above definitions so that |T1| ≤ d and |T2| ≤ d rather than requiring

|T1| = d = |T2|, then A is a (d, t)-locating array which locates d or fewer errors of

strength t, a (d, t̂)-locating array which locates d or fewer errors of strengths up to

t, or a (d, t)-locating array which locates d or fewer independent errors of strengths

up to t.

From a (d, t)-locating array (or one of its variations) we may be able to infer

the existence of some faulty interactions of strength greater than t, given the results

of some tests. However, we cannot make guarantees about interactions of strength

t′ > t. However, if an array for a testing problem is (d, t)-detecting (as defined below),

then we can know whether there are more than d faulty t-way interactions.

Definition 2.1.3 Let A be an array associated with a TP (k, (g1, g2, ..., gk)), and let

T be a set of d interactions of strength t in the given testing problem. Then A is a

(d, t)-detecting array if it satisfies

ρ(A, T) ⊆ ρ(A, T) ⇐⇒ T ∈ T

whenever T ⊆ It, |T | = d, and T ∈ It. If this is the case, we also say that A detects

whether there are more than d errors, each of strength t.

Now, let T is a set of d interactions of strengths up to t. Then A is a (d, t̂)-

detecting array if it satisfies

ρ(A, T) ⊆ ρ(A, T) ⇐⇒ T ∈ T

whenever T ⊆ It, |T | = d, and T ∈ It. If this is the case, we also say that A detects

whether there are more than d errors, each of strengths at most t.

2. Arrays for Error Determination 22

Finally, let T be a set of d independent interactions of strengths up to t. Then

A is a (d, t)-detecting array if it satisfies

ρ(A, T) ⊆ ρ(A, T) ⇐⇒ T ∈ T

whenever T ⊆ It, |T | = d, T ∈ It, and T ∪ T is independent. If this is the case, we

also say that A detects whether there are more than d independent errors, each of

strength up to t.

If we relax the above definitions so that T is a set of at most d interactions,

then A is a (d, t)-detecting array, a (d, t̂)-detecting array, or a (d, t)-detecting

array, respectively.

We now give some examples to further clarify the above definitions.

Example 2.1.4 We apply the following two arrays from [14] to a TP (6, (2, 3, 3, 3, 3, 3)).

A =

0 0 0 0 0 0

0 0 1 2 2 1

0 1 0 1 2 2

1 2 1 0 1 2

1 2 2 1 0 1

1 1 2 2 1 0

A′ =

0 0 0 0 0 0

0 0 1 2 2 1

0 1 0 1 2 2

1 2 1 0 1 2

1 2 2 1 0 1

1 1 2 2 1 0

0 2 2 0 1 1

1 0 0 1 2 2

We begin by associating the (1, 1)-locating array A (d = 1 and t = 1) with our

given testing problem. Given any 1-way interaction (f, v), no other 1-way interaction

occurs in exactly the same set of rows. For instance, let T1 = {(1, 0)}, T2 = {(2, 0)},

and Ti = {Ti} for i = 1, 2. Now notice that:

ρ(A, T1) = {1, 2, 3} ̸= {1, 2} = ρ(A, T2)

2. Arrays for Error Determination 23

However, A is not (1, 1)-detecting. We see that ρ(A, T2) ⊆ ρ(A, T1) but T2 ̸∈ T1.

Fortunately, we can associate a (1, 1)-detecting array A′ with our given testing

problem by appending two additional rows to A. For instance, we see that ρ(A′, T1) =

{1, 2, 3, 7} = ρ(A′, T1) and ρ(A′, T2) = {1, 2, 8} = ρ(A′, T2), so we have:

ρ(A′, T1) ̸⊆ ρ(A′, T2) and ρ(A′, T2) ̸⊆ ρ(A′, T1).

To further show that A′ is indeed (1, 1)-detecting, we would need to verify that for

any two strength-1 interactions T and T ′, we have ρ(A′, T) ⊆ ρ(A′, T ′) ⇐⇒ T = T ′.

However, A′ is not (2, 1)-locating. Let T3 =
{
{(1, 1)}, {(2, 2)}

}
and T4 =

{
{(3, 2)}

}
.

Then notice that:

ρ(A′, T4) = {5, 6, 7} ⊆ {4, 5, 6, 7, 8} = ρ(A′, T3), but T4 ̸∈ T3.

If the tests corresponding to rows 4, 5, 6, 7, and 8 all fail when applied to a

system with two strength-1 errors, then we cannot determine whether the error set is{
{(1, 1)}, {(2, 2)}

}
, or

{
{(1, 1)}, {(3, 2)}

}
.

For a much richer set of examples of locating and detecting arrays, refer to Col-

bourn and McClary [14]. We now summarize their known results regarding locating

and detecting arrays. First, we count the number of possible interactions of particular

sizes.

The number of possible t-way interactions is given by

τt =
∑

I⊆[1,k],|I|=t

(∏
i∈I

gi

)
.

The total number of possible s-way interactions, for all s ∈ [1, t], is given by

γt =
t∑

s=1

τs.

2. Arrays for Error Determination 24

The known relationships between detecting and locating properties of an array

are given in Figure 2.1. The symbol + denotes the assumption that d < τt, and ∗

denotes the assumption that d < γt.

Figure 2.1: Relationships between detecting and locating arrays [14].

For example, consider a (d, t)-detecting array A for d < τt. Then A is also a

(d, t)-detecting array, and vice-versa, as given in Figure 2.1.

If we wish to construct a detecting array, we can sometimes do so by constructing

a covering array of higher strength.

Theorem 2.1.5 [14] Let d < τt. Then every CA(N ; t+d, k, g) with d < g is a (d, t)-

detecting array. More generally, for d < gk ≤ gk−1 ≤ ... ≤ g1, every MCA(N ; t +

d, k, (g1, g2, ..., gk)) is a (d, t)-detecting array.

Similarly, every (d, t)-detecting array (with all factors from the same alphabet)

is also a covering array.

Theorem 2.1.6 [14] Every (d, t)-detecting array is a CA(N ; t+ 1, k, d+ 1).

Colbourn and McClary also give a table of bounds for parameters of detecting

and locating arrays, and associated necessary and sufficient conditions governing their

existence. We reproduce that table here, as Table 2.1, with factors rearranged to

match our order of alphabet sizes: g1 ≥ g2 ≥ ... ≥ gk.

2. Arrays for Error Determination 25

Type of Array Constraint

(d, t)- locating d < min(gk + 1, gk−1) or d = τt if k > t
d ≤ τt if k = t

detecting d < gk or d = τt if k > t
d ≤ τt if k = t

(d, t)- locating d < min(gk + 1, gk−1) if k > t
any d if k = t

detecting d < gk if k > t
any d if k = t

(d, t)- locating d < min(gk + 1, gk−1) or d = τt
detecting d < gk or d = τt

(d, t)- locating d < gk
detecting d < gk

(d, t̂)- locating d ∈ {0, 1, γt}
detecting d ∈ {0, γt}

(d, t̂)- locating d ∈ {0, 1}
detecting d = 0

Table 2.1: Existence constraints for detecting and locating arrays [14].

We notice the severe restrictions on the number of errors we can locate or detect.

For instance, consider (d, t)- detecting and locating arrays. In the context of a testing

problem whose smallest alphabet is binary, such arrays only exist if d = 1!

For more results concerning detecting and locating arrays, see [14].

2.2 Error Locating Arrays

We recall that detecting and locating arrays may not exist if d is too large relative

gk, the size of the smallest alphabet. Clearly, we need combinatorial designs which

2. Arrays for Error Determination 26

exist for larger values of d relative to gk. In this section, we give definitions, notation,

and properties of a new combinatorial design, called the error locating array, from

Mart́ınez et al. [32]. This type of array determines whether all errors in a system can

be identified, and, if so, it identifies all of them, up to a certain strength. This does

depend, however, on some assumptions regarding the structure of the errors, which

we define in terms of graphs.

Suppose we want to model a system with a graph. First, a simple graph with

loops allowed (as in Definition 1.5.1) can be used to model a system with faulty indi-

vidual components (modeled by loops) and with faulty pairwise interactions (modeled

by edges). In the context of a testing problem, components of the same type cannot

interact, because they represent different values of the same factor. For example,

an Asus motherboard cannot interact with an Intel motherboard, because a desktop

computer contains only one or the other. For this reason, we model a testing prob-

lem using a multipartite graph, where each part represents a type of component, and

contains vertices representing options (values) for that component. We also need to

consider faulty interactions of strength higher than 2, so instead of modeling a testing

problem with a graph, we use a hypergraph.

Definition 2.2.1 [32] Let Ht,(g1,g2,...,gk) denote a k-partite hypergraph with k parts

of sizes g1, g2, ..., gk, respectively, and hyperedges of cardinality t. Its vertex set is

{vi,ai : i ∈ [1, k] and ai ∈ [0, gi − 1]}. Replace t by t to allow edges of cardinalities

up to t, and simplify the notation to Ht,k,g or Ht,k,g when all factors (parts) have the

(alphabet) size g = g1 = g2 = ... = gk. We associate with each TP (k, (g1, g2, ..., gk)) an

error hypergraph H of the form Ht,(g1,g2,...,gk) such that the ith part of H corresponds

to the ith factor of the TP
(
with vertices labeled by the (factor, value) pairs (i, ai),

ai ∈ [0, gi − 1]
)
, and each edge eI = {vi,ai : (i, ai) ∈ I} of H corresponds to a faulty

interaction I in the testing problem.

2. Arrays for Error Determination 27

A test T = T1T2...Tk associated with our given TP avoids H if, for all D ⊆ [1, k],

we have {vi,Ti
: i ∈ D} ̸∈ E(H). An interaction I is called relevant to H if I contains

no proper subset J ⊂ I such that eJ ∈ E(H). If t ≤ 2, then we have an error graph

G of the form G(g1,g2,...,gk), or simply Gk,g = H2,k,g if g = g1 = g2 = ... = gk.

Our goal is to establish the existence of arrays that can determine whether each

relevant interaction is faulty or not.

Definition 2.2.2 Let H be a hypergraph of the form Ht,(g1,g2,...,gk) associated with

a TP (k, (g1, g2, ..., gk)). A t-way interaction I = {(f1, a1), (f2, a2), ..., (ft, at)} and

its corresponding edge eI are locatable with respect to H if there exists a test

T = T1T2...Tk with Tfi = ai for all (fi, ai) ∈ I that avoids

{
H − eI if eI ∈ E(H)

H otherwise.

We say that such a test T locates interaction I (and edge eI) with respect

to H. A hypergraph H is called t-locatable if every t-way interaction is locatable

with respect to H. More generally, a hypergraph H, with E(H) independent (in the

sense of independent interactions, as in Definition 2.1.1), is called t-locatable if,

for all s ∈ [1, t], every relevant s-way interaction is locatable with respect to H. For

simplicity, we call an interaction (and its corresponding edge) locatable when the

context is clear.

Now that locatability is defined for interactions and hypergraphs, we define error

locating arrays.

Definition 2.2.3 Let H be a hypergraph of the form Ht,(g1,g2,...,gk) associated with a

TP (k, (g1, g2, ..., gk)). An error locating array of fixed strength t for H is an

N × k array A where each column i has symbols from a gi-alphabet, such that every

t-way interaction I (where I is locatable with respect to H) is located with respect to

H by at least one test T that is a row of A. We denote this by ELA(N ; t,H).

2. Arrays for Error Determination 28

Note that one array A may be an ELA(N ; t,H) as well as an ELA(N ; t,H ′)

for distinct hypergraphs H and H ′. We also notice that, following the two preceding

definitions, the next two statements are equivalent for a given hypergraph H.

1. An ELA with strength t exists for H.

2. H is t-locatable.

Definition 2.2.4 Let H be a class of hypergraphs of the form Ht,(g1,g2,...,gk), each of

which is associated with the same TP (k, (g1, g2, ..., gk)). Then an ELA (N ; t,H) is

an array that is an ELA(N ; t,H) for all H ∈ H.

These definitions can be further generalized for hypergraphs whose edges have

varied cardinalities (representing errors of varying strengths in the associated testing

problem).

Definition 2.2.5 Let H be a hypergraph of the form Ht,(g1,g2,...,gk)
associated with a

TP (k, (g1, g2, ..., gk)). An error locating array of full strength up to t for H

is an N × k array A where each column i has symbols from a gi-alphabet, such that

every relevant s-way interaction I with s ∈ [1, t] (where I is locatable with respect to

H) is located with respect to H by at least one test T that is a row of A. We denote

this by ELA(N ; t,H). Given a class H of hypergraphs of the form Ht,(g1,g2,...,gk),

an ELA(N ; t,H) is an array that is an ELA(N ; t,H) for all H ∈ H. When our

hypergraph is simply a graph G, we simplify the notation as follows. Let G(g1,g2,...,gk)

and ELA(N ;G) denote H2,(g1,g2,...,gk)
and ELA(N ; 2, G), respectively. We refer to a

2-locatable graph as locatable.

For a given hypergraph H, the following two statements are equivalent.

1. An ELA with full strength up to t exists for H.

2. H is t-locatable.

As with CAs and MCAs, we wish to minimize the number of tests, so we define

the minimum size N for which an ELA(N ; t,H) can exist.

2. Arrays for Error Determination 29

Definition 2.2.6 Suppose that an ELA(N ; t,H) exists for a given TP (k, (g1, g2, ..., gk))

whose associated hypergraph is H. If there is no ELA(N ′; t,H) such that N ′ < N ,

then we call N the error locating array number, which we denote by ELAN(t,H).

An error locating array of size N = ELAN(t,H) is called optimal. We define the

ELAN for hypergraphs with edges of cardinality up to t by replacing t by t in the above

definition. We denote the ELAN for a graph G by ELAN(G) (with the assumption

that t ≤ 2, since loops are allowed, by 1.5.1).

For results concerning error locating array numbers, see Danziger et al. [16]. We

now give an example of an ELA in a case where no (d, t)-detecting array exists.

Example 2.2.7 Consider the following home theatre testing problem, given in Ta-

ble 2.2. Some errors could occur with such a setup. For example, suppose that images

from our Xbox do not display properly on our Sylvania TV. In this case, interaction

I1 = {(1, 3), (2, 1)} is faulty. If this was our only error, we could identify it using a

(1, 2)-detecting array.

Factors Values

1=Game System 0=Sega Dreamcast
1=Sony PlayStation 2
2=Nintendo GameCube
3=Microsoft Xbox

2=TV 0=Samsung
1=Sylvania

3=Sound System 0=LG
1=Philips

4=Universal Remote 0=Philips
1=Zenith

Table 2.2: A home theatre testing problem.

Suppose that we have two additional errors: the audio from our Dreamcast

sounds odd when played through our Philips sound system, and not all buttons on

2. Arrays for Error Determination 30

our Zenith universal remote work with our Philips sound system. Then interactions

I2 = {(1, 0), (3, 1)} and I3 = {(3, 1), (4, 1)} are also errors. For the home theatre

testing problem described here, the faulty (pairwise) interactions are represented by

the edges in a G(4,2,2,2) which is given in Figure 2.2.

Figure 2.2: A G(4,2,2,2) for the home theatre testing problem from Table 2.2.

No (3, 2)-detecting array exists since d = 3 ≥ gk = 2, but we can construct an

ELA. In particular, the array on Page 31 is an ELA(11;G). The eleven rows represent

tests of the system, and results of each test are given. Errors and their corresponding

failing test results are marked in bold in the array.

Notice that the graph in Figure 2.2 has no loops and not many edges because

there are no faulty single components and not many faulty 2-way interactions. Also,

notice that each nonfaulty pairwise interaction (and hence, each pointwise interaction)

occurs in some passing test, and that the only 2-way interactions not covered by any

passing test are I1, I2, and I3 as described above, and each one occurs in a distinct

failing test. We conclude that the array is an ELA(G).

2. Arrays for Error Determination 31

test 1

test 2

test 3

test 4

test 5

test 6

test 7

test 8

test 9

test 10

test 11

0 0 1 0

1 1 1 1

3 1 0 0

0 0 0 0

0 1 0 1

1 0 1 0

1 1 0 1

2 0 0 1

2 1 1 0

3 0 0 1

3 0 1 0

fail

fail

fail

pass

pass

pass

pass

pass

pass

pass

pass

We remark here that tests 4 to 9 collectively cover all nonfaulty pairwise interac-

tions between factors 1 and 2 except for the interactions containing (1, 3), and tests

10 and 11 collectively cover all nonfaulty pairwise interactions containing (1, 3), so

the above ELA is optimal, and ELAN(G) = 11.

Mart́ınez et al. [32] have proven the following relationship between ELAs and

detecting arrays.

Theorem 2.2.8 [32] Fix d, k, and t ≤ k, and gi ≥ 2 for i ∈ [1, k]. Let Hd
t,(g1,g2,...,gk)

be the class of hypergraphs H of the form Ht,(g1,g2,...,gk) with |E(H)| ≤ d. Then, A is

an ELA(N ; t,Hd
t,(g1,g2,...,gk)

) if and only if A is a (d, t)-detecting array.

More generally, they prove that the same relationship holds if we replace t by t,

and restrict ourselves to the hypergraphsH ∈ Hd
t,(g1,g2,...,gk)

withE(H) independent (in

the sense of Definition 2.1.1). They also give necessary conditions for an ELA(N ;G)

to exist, i.e. for a graph G to be locatable. In particular, they show that, for a

(multipartite) graph G to be locatable, it cannot have two vertices u, v in distinct

2. Arrays for Error Determination 32

Figure 2.3: Structures which prevent the location of errors [32].

parts such that all vertices in a third part are contained in N(u)∪N(v). We see this

in Figure 2.3, where dashes indicate a nonlocatable pairwise interaction in each case.

Theorem 2.2.9 [32] Let G be a G(g1,g2,...,gk) with k ≥ 3.

1. If there exist a vertex vi,ai ∈ V (G) and a part (factor) j ∈ [1, k]\{i} such that

{vi,ai , vj,x} ∈ E(G) for all x ∈ [0, gj − 1], then G is not locatable.

2. If there exist vertices vi,ai , vs,as ∈ V (G) with i ̸= s and a factor j ∈ [1, k]\{i, s}

such that for all x ∈ [0, gj − 1] we have
{
{vi,ai , vj,x}, {vs,as , vj,x}

}
∩E(G) ̸= ∅, then G

is not locatable.

The conditions given in the preceding theorem can be prevented by the existence

of at least one vertex in each part (factor) which is not an end of an edge. In the

context of testing, the values of such vertices are called safe values, which we formally

define here.

2. Arrays for Error Determination 33

Definition 2.2.10 Let H be an Ht,(g1,g2,...,gk) or an Ht,(g1,g2,...,gk) (associated with a

TP (k, (g1, g2, ..., gk))) whose parts are V1, V2, ..., Vk of cardinalities g1, g2, ..., gk, re-

spectively. Then H has safe values if for each i ∈ [1, k] there exists a vertex vi,si ∈ Vi

such that vi,si is not contained in any hyperedge. We call the values s1, s2, ..., sk safe

values (for factors 1, 2, ..., k, respectively) for H.

Mart́ınez et al. [32] have shown that a hypergraph is locatable if it has safe values

.

Theorem 2.2.11 Let H be an Ht,(g1,g2,...,gk) such that E(H) is independent (in the

sense of Definition 2.1.1). If H has safe values, then H is t-locatable (refer to Defi-

nition 2.2.2).

Furthermore, the following theorems allow many errors to be located, based on

the hypergraph structure. If a given hypergraph has safe values, then we can construct

an ELA which locates up to d errors of strengths up to t via an MCA of strength

t+ d.

Theorem 2.2.12 [32] Fix d, k, t, g1, g2, ..., gk such that t+d ≤ k. Let SH denote the

class of hypergraphs of the form Ht,(g1,g2,...,gk) which have safe values and at most d

hyperedges. Let SH denote the class of hypergraphs H of the form Ht,(g1,g2,...,gk) such

that H has safe values, E(H) is independent (in the sense of Definition 2.1.1), and

|E(H)| ≤ d. Then, every MCA(N ; t+ d, k, (g1, g2, ..., gk)) is also an ELA(N ; t,SH)

and an ELA(N ; t,SH).

We notice that, if t is small relative to k, an MCA(N ; t + d, k, (g1, g2, ..., gk))

may be an ELA(N ; t,SH) even for hypergraphs H ∈ SH that have many edges

(which represent equally many errors in the testing problem associated with H).

More specifically, since d ≤ k − t, we can have d grow linearly with k. For reasons

that will be made apparent later, we prefer to avoid this sort of growth of d relative

to k.

2. Arrays for Error Determination 34

Pragmatically speaking, we often cannot assume that a given hypergraph has safe

values. However, we can construct an ELA which locates up to d errors of strengths

up to t, for a given hypergraph H, as long as H is locatable, by using an MCA of

strength t(d+ 1).

Theorem 2.2.13 [32] Fix d, k, t, g1, g2, ..., gk such that t(d + 1) ≤ k. Let H denote

the class of hypergraphs of the form Ht,(g1,g2,...,gk) with at most d hyperedges. Let H

denote the class of hypergraphs H of the form Ht,(g1,g2,...,gk) which have E(H) inde-

pendent (in the sense of Definition 2.1.1) and |E(H)| ≤ d. Let LH and LH be the

sets of t-locatable and t-locatable hypergraphs in H and H, respectively. Let A be

an MCA(N ; t(d + 1), k, (g1, g2, ..., gk)). Then A is also an ELA(N ; t,LH) and an

ELA(N ; t,LH). Moreover, if H ∈ H ∪ H, then H is t-locatable if every relevant

s-way interaction (for s ∈ [1, t]) is locatable by a row (test) of A.

We notice that here, d may also grow linearly with respect to k, for a fixed t,

since d ≤ k
t
− 1. So, given a large enough k, an MCA(N ; t(d + 1), k, (g1, g2, ..., gk))

can still locate plenty of errors. For instance, if we (reasonably) assume that all faulty

interactions are of strength at most t = 6, then there exists an ELA for a system

with 600 factors that locates up to 99 errors! The only problem is that the number

of tests (i.e. rows) may be too large. Fortunately, as we observe next, if we fix d, t,

and g, then the size N of an ELA grows in proportion to log k.

Theorem 2.2.14 [32] Fix g and t, and let H(t, k, d) be any set of hypergraphs of

the form Ht,(g1,g2,...,gk)
, with at most d hyperedges, where gi ≤ g for all i ∈ [1, k], and

satisfying the extra conditions given below. Then,

1. if all hypergraphs in H(k, d) are t-locatable and t(d+1) ≤ k, then there exists

an ELA(N ; t,H(t, k, d)) for N ∈ O(dgtd log k); and

2. if all hypergraphs in H(k, d) have safe values and t+ d ≤ k, then there exists

an ELA(N ; t,H(t, k, d)) for N ∈ O(dgd log k).

2. Arrays for Error Determination 35

We notice potential problems if d grows too quickly relative to k. If we fix g and

t, and we have d = ck for some constant c < 1, then our ELA has N ∈ O(dgctk log k)

if H is locatable, and N ∈ O(dgck log k) if H has safe values. In either case, the

number of tests N is exponential in k. Since we wish to apply our ELAs to the

problem of locating errors in large systems with many factors, we clearly prefer to

avoid this.

Mart́ınez et al. [32] note that such bounds apply to nonadaptive testing, where

we create an ELA all at once, without allowing results of some tests to affect the

choice of subsequent tests.

In the next section, we give upper bounds on the size of an ELA for fixed g = t = 2

for the purpose of later comparison with the size of an ELA which is adaptively

generated by our algorithm in Chapter 3.

2.3 Nonadaptive Location of Errors for Binary Al-

phabets

In Chapter 3, we give a new algorithm which adaptively locates up to 2 errors of

strengths at most 2, given a binary alphabet. We give here some upper bounds on

the size of an ELA, given g = t = 2.

Recall that, by Theorem 2.2.12, every CA is also an ELA of lower strength,

for graphs with safe values. By applying Theorem 1.2.7, we get the following upper

bound.

Corollary 2.3.1 Fix d and k so that 2 + d ≤ k. Let SG be any set of graphs G

of the form H2,k,2 which have safe values, E(G) independent (in the sense of Defini-

tion 2.1.1), and |E(G)| ≤ d. Then:

ELAN(SG) ≤ 22+d(2 + d)O(log d) log k.

2. Arrays for Error Determination 36

Proof: Let A be an optimal CA(N ; 2 + d, k, 2) and notice that A is also an

ELA(N ; 2,SG), by Theorem 2.2.12. By Theorem 2.2.14, we have

N = CAN(2 + d, k, 2) ≤ 22+d(2 + d)O(log d) log k.

Similarly, by Theorem 2.2.13, every CA is also an ELA of lower strength for

locatable graphs with independent edge sets. We apply Theorem 1.2.7 again to get

the following upper bound.

Corollary 2.3.2 Fix d and k so that 2(d + 1) ≤ k. Let G be any set of graphs G of

the form H2,k,2 such that E(G) is independent (in the sense of Definition 2.1.1), and

|E(G)| ≤ d. Let LG be any set of locatable graphs in G. Then:

ELAN(LG) ≤ 22(d+1)
(
2(d+ 1)

)O(log d)
log k.

Proof: Let A be an optimal CA(N ; 2(d + 1), k, 2) and notice that A is also an

ELA(N ; 2,LG), by Theorem 2.2.12. By Theorem 1.2.7, we have

N = CAN(2(d+ 1), k, 2) ≤ 22(d+1)
(
2(d+ 1)

)O(log d)
log k.

Following Theorem 2.2.14, we get the following asymptotics.

2. Arrays for Error Determination 37

Corollary 2.3.3 Fix d and k. Let H(2, k, d) be any set of graphs of the form H2,k,2

which satisfies the extra conditions given below, such that E(G) is independent (in

the sense of Definition 2.1.1) and |E(G)| ≤ d. Then,

1. if all graphs in H(2, k, d) are locatable, and 2(d+ 1) ≤ k, then there exists an

ELA(N ;H(2, k, d)) for N ∈ O(d 22d log k); and

2. if all graphs in H(2, k, d) have safe values and 2 + d ≤ k, then there exists an

ELA(N ;H(2, k, d)) for N ∈ O(d 2d log k).

Proof: This follows directly from Theorem 2.2.14, after substituting g = t = 2.

Chapter 3

Robust Error Location for Binary

Alphabets

In this chapter, we describe algorithms which can be applied only to testing problems

whose errors have strengths at most two, so we refer to 2-locatable interactions,

graphs, etc. as simply locatable, following the convention given in Definition 2.2.2.

Let G be a Gk,2 associated with a TP (k, 2) whose relevant interactions are all

assumed to be locatable with respect to G. Mart́ınez et al. [32] give an algorithm

called DiscoverEdges which constructs a strength-2 ELA for G without knowledge

of safe values. Their algorithm also identifies and returns the set of all errors in

the given testing problem. DiscoverEdges begins by finding a passing test via

a random selection process. When applied to a TP (k, 2) with at most 2 errors,

DiscoverEdges has an expected running time of at most 2
(
1 + o(1)

)
(log k)2 +

O(log k) tests.

In this chapter, we give a new, completely deterministic algorithm which adap-

tively constructs an ELA(N ; 2, G), and does not require the assumption that all

relevant interactions be locatable. When the sequence of tests (constructed by the

algorithm) is applied to a testing problem, they collectively either identify all relevant

38

3. Robust Error Location for Binary Alphabets 39

faulty interactions, or determine that we have a certain structure of nonlocatable er-

rors. The algorithm has a worst-case running time of at most 2
(
1 + o(1)

)
(log k)2 +

O(log k) tests - this is the same as the average running time of the algorithm in [32],

whose worst-case running time would require more than the expected number of tests.

We begin by giving a characterization of locatable graphs with at most two edges,

which represent testing problems with binary alphabets and at most two errors of

strengths up to two. This characterization is a simplification of the more general

characterization of locatable graphs with binary alphabets found in [32].

3.1 A Characterization of Locatable Gk,2 Graphs

with d ≤ 2 Edges

Consider graphs of the form Gk,2 = H2,k,2. Mart́ınez et al. [32] characterize these

graphs as either locatable or nonlocatable. They first notice that any graph of the

form Gk,2 with fewer than two edges is locatable. Next, they notice that some graphs

with two edges are nonlocatable, and that any nonlocatable graph with more than

two edges must contain a nonlocatable subgraph with exactly two edges.

Figure 3.1: Locatable versus nonlocatable Gk,2 graphs with parts (vertical
pairs of vertices) corresponding to factors w, x, y, and/or z [32].

3. Robust Error Location for Binary Alphabets 40

Figure 3.1, reproduced from [32], shows four types of graph structures (called

type-a, type-b, type-c, and type-d, respectively), each of which causes certain

edges to be nonlocatable. Examples of nonlocatable edges are indicated by dotted

lines in the above figure. Mart́ınez et al. [32] give the following theorem.

Theorem 3.1.1 [32] Let G be a graph of the form Gk,2 such that E(G) is independent

(in the sense of Definition 2.1.1). Then G is not 2-locatable if and only if it contains

a subgraph of type-a, type-b, type-c, or type-d as given in Figure 3.1.

We are concerned only with locating up to two errors, so we give a simpler

characterization as a corollary. When we are unable to locate the errors in some

nonlocatable graph G, the next-best thing would be to identify at least one vertex

per pair of nonlocatable edges of G. We begin with an example which illustrates the

concept of equivalence of a strength-1 error with a certain pair of strength-2 errors.

Consider a TP (k, 2) whose associated error graph G (see definition 2.2.1) con-

tains a type-a nonlocatable subgraph G′, as depicted in Figure 3.1, and let
{
{(x, l),

(y, 0)}, {(x, l), (y, 1)}
}
be the set of faulty interactions corresponding to the edges of

G′. Then every test T such that Tx = l will fail. Now consider a second TP (k, 2)

whose error graph H contains a loop corresponding to the 1-way interaction {(x, l)},

and notice that every test T such that Tx = l will also fail for this system. These

facts lead us to the following definition.

Definition 3.1.2 Let G1 and G2 be two graphs of the form Gk,2 such that V (G1) =

V (G2). Let I1 and I2 be the sets of failing interactions corresponding to the edge sets

E1 = E(G1) and E2 = E(G2), respectively. Let S be the exhaustive test suite composed

of all 2k tests on k factors. We say that G1 and G2 are location-equivalent graphs

if each test in S yields the same pass/fail result for G2 as for G1. If G1 and G2 are

location-equivalent, we also say that E1 and E2 are location-equivalent edge sets,

and that I1 and I2 are location-equivalent interaction sets.

3. Robust Error Location for Binary Alphabets 41

We also notice that certain graphs are “more nonlocatable than others” because

they cause every test to fail. Furthermore, some graphs are “less nonlocatable than

others” because they contain edges which can be located. We describe these graphs

in the following definition.

Definition 3.1.3 Consider a TP (k, 2) applied to a system whose error graph G is

of the form Gk,2. We call G strongly nonlocatable if it is location-equivalent to a

graph H such that V (G) = V (H) and K2,2 ⊆ H. An interaction I
(
and its corre-

sponding edge or nonedge eI ∈ E(G)∪E(G)
)
is strongly locatable with respect to

G if there exists a test that locates I and covers only interactions which are locatable

with respect to G.

We get the following corollary to Theorem 3.1.1, as a consequence of the preceding

two definitions.

Corollary 3.1.4 Consider a TP (k, 2) applied to a system whose error graph G is of

the form Gk,2, has two edges, and has a subgraph of type-a, type-b, type-c, or type-d

as given in Figure 3.2.

1. If G contains a type-a (induced) subgraph G′ with edges corresponding to

interactions I1 = {(x, 1), (y, 0)} and I2 = {(x, 1), (y, 1)}, then the location-equivalent

subgraph G′′, whose only edge is a loop corresponding to interaction I1,2 = {(x, 1)}, is

locatable.

2. If G contains a type-b (induced) subgraph, then every edge of G is strongly

locatable.

3. If G contains a type-c (induced) subgraph whose edges correspond to inter-

actions I1 = {(x, 0), (y, 0)} and I2 = {(x, 1)}, then the location-equivalent subgraph

(whose edges are loops corresponding to interactions I1′ = {(x, 1)} and I2′ = {(y, 0)})

is locatable.

4. If G contains a type-d subgraph, then G is strongly nonlocatable.

3. Robust Error Location for Binary Alphabets 42

Figure 3.2: Nonlocatable Gk,2 graphs with two edges (top row), and their
location-equivalents (bottom row).

Proof: Let C be a CA(4; 2, 3, 2) whose rows are tests 000, 011, 101, and 110.

1. Suppose G contains a type-a induced subgraph G′. Let G′′ be as defined in

the statement of this corollary. G′′ has only a single edge, so it must be 2-locatable by

[32]. By the paragraph preceding Definition 3.1.2, G′ and G′′ are location-equivalent.

Observe that G′′ has safe values, by Definition 2.2.10. Hence by Theorem 2.2.12, any

CA(N ; 1 + 1, k, 2), including C, is an ELA(N ; 1, G′′). Therefore G′′ is locatable.

2. Suppose G contains a type-b induced subgraph G′ with edges correspond-

ing to the interactions I1 = {(x, 1), (y, 1)} and I2 = {(y, 0), (z, 0)}. Then the only

nonlocatable interaction with respect to G is I∗ = {(x, 1), (z, 0)}. The tests 111 and

000 both avoid I∗, and they locate I1 and I2, respectively. Hence every edge of G is

strongly locatable.

3. Suppose G contains a type-c induced subgraph whose edges represent inter-

actions I1 = {(x, 1)} and I2 = {(x, 0), (y, 0)}. First replace the loop corresponding to

I1 by a location-equivalent (nonlocatable) pair of edges whose corresponding interac-

tions are I1′ = {(x, 1), (y, 0)} and I1′′ = {(x, 1), (y, 1)}. Then notice that there are

3. Robust Error Location for Binary Alphabets 43

now two nonlocatable pairs of interactions, {I1′ , I1′′} and {I1′ , I2}, and replace each

corresponding nonlocatable pair of edges by a location-equivalent loop. Denote by G′

the resulting graph whose edges are loops which represent interactions {(x, 1)} and

{(y, 0)}, and notice that G′ is location-equivalent to G. Let C ′ be an array containing

each row in C, plus rows 100 and 010. Then C ′ is an ELA(6; 1, G′).

4. Suppose G contains a type-d subgraph. Then every test will fail, so the graph

is location-equivalent to K2,2. Therefore, it is strongly nonlocatable.

In summary, the preceding corollary says that if G is a graph with at most two

edges and no type-d induced subgraph, then we can locate the edges of either G or

G′, where G′ is location-equivalent to G. In the next section we give an algorithm

which, when applied to a TP (k, 2) whose associated error graph is G, generates a set

of tests for the given system, one of which is guaranteed to pass.

3.2 Finding a Passing Test, Binary Alphabet

In this section, we give an algorithm which finds a passing test for any TP (k, 2) whose

associated graph G has at most two edges, and contains no type-d subgraph. The

purpose is to simplify this chapter’s main algorithm, which is given in Section 3.3.

We begin with a definition.

Definition 3.2.1 Consider a TP (k, 2) with k ≥ 2, let t be an integer such that

t ≤ k, and let s = s1s2...st be a string. An s-error is a strength-t faulty interaction

I = {(i1, s1), (i2, s2), ..., (it, st)} for some factors i1, i2, ..., it. We say that the type of

error I is s, and that an element (ij, sj) of I is an end of the s-error I, or simply

an sj-end of I.

3. Robust Error Location for Binary Alphabets 44

Notice that for a TP (k, 2) whose errors are of strength at most two we can have

0-errors, 00-errors, 1-errors, 11-errors, and 01-errors (which can also be called 10-

errors). If we have a passing test T , we can relabel the (factor, value) pairs in our

testing problem so that T = 0k. As a result of this relabeling, the only possible error

types are 1, 11, and 01. This chapter’s main algorithm is a case-by-case analysis of a

TP (k, 2) with at most two errors of strengths up to two. The algorithm depends on

error types present in the given system, and it is greatly simplified by the fact that

there are only three types of errors possible (once a passing test is found).

We now present the following theorem which guarantees the existence of a passing

test for a TP (k, 2) if and only if its associated error graph has at most two edges of

strengths up to two and contains no type-d subgraph.

Theorem 3.2.2 Consider a TP (k, 2) whose associated error graph G has at most

2 edges, and E(G) is independent (in the sense of Definition 2.1.1). There exists a

passing test for the TP (k, 2) if and only if G contains no type-d subgraph.

Proof: First, suppose that G contains a type-d subgraph. Then G is strongly

nonlocatable, by Corollary 3.1.4. Therefore, no passing test exists for the system

associated with G, by Theorem 3.1.1.

Conversely, suppose that G contains no type-d subgraph. Then, by Theo-

rem 3.1.1, it is either locatable or it contains a (nonlocatable) subgraph of type-a,

type-b, or type-c. If G is locatable, then a passing test exists for the system associ-

ated with G, as a consequence of being locatable (see Definition 2.2.2). Otherwise,

we may assume that G contains a subgraph of type-a, type-b, or type-c, such that

the vertices of G have been relabeled to match Figure 3.2. In this case, we may also

assume that k ≥ 3.

Let T be a test for our given testing problem such that S = SxSySz = 010 is a

subtest of T . Notice that S does not cover any edge depicted in a graph of type-a,

type-b, or type-c in Figure 3.2. Therefore T is a passing test.

3. Robust Error Location for Binary Alphabets 45

Now, consider a pair [T, T ′] = [0k, 1k] of tests. If either test passes, then we have a

passing test. Otherwise, we have a disjoint pair of failing tests (see Definition 1.1.1).

We notice below that, in general, no interaction can be simultaneously covered by a

pair of disjoint tests (or even a pair of disjoint subtests).

Lemma 3.2.3 Consider a testing problem for which [T, T ′] is a pair of disjoint tests.

No interaction can be covered by both T and T ′. Furthermore, if T and T ′ are both

failing tests, then each covers a distinct faulty interaction.

Proof: This follows directly from Definition 1.1.1.

Since we restrict ourselves to systems with binary alphabets, tests which are

disjoint are also complementary in the following way.

Definition 3.2.4 The complement of the binary character x ∈ [0, 1] is x =

(x+ 1)(mod2).

Let T = T1T2...Tk be a test applied to a TP (k, 2) (hence Ti ∈ [0, 1] for all i ∈

[1, k]). The complement of the test T is T = T1 T2...Tk. We call a pair of tests

p = [T, T] complementary, and we say that p is a failing pair of tests if T and T

both fail.

We exploit Lemma 3.2.3 and Definition 3.2.4 in the following way. The comple-

mentary pair of tests p = [0k, 1k] determines the error types for a TP (k, 2) with d ≤ 2

errors.

Lemma 3.2.5 Consider a TP (k, 2) with at most two errors of strengths up to 2, and

let p = [0k, 1k] be a failing pair of tests. Then there is a unique error which causes

0k to fail, and it is either a 0-error or a 00-error. Similarly, there is a unique error

which causes 1k to fail, and it is either a 1-error or a 11-error.

3. Robust Error Location for Binary Alphabets 46

Proof: Since both 0k and 1k fail, and we have at most two errors of strengths

at most 2, it follows that only a 0-error or a 00-error could cause the test 0k to fail.

Similarly, only a 1-error or a 11-error could cause 1k to fail.

We introduce here some terminology regarding a set of factors associated with

either an error or part of an error. When we focus on finding an error that has at

least some of its factors in the set D ⊆ [1, k], we call D an inspection set. We also

define here what it means for an error to be either within or across an inspection set.

Definition 3.2.6 Consider a TP (k, 2) whose associated error graph G has an in-

dependent edge set (in the sense of Definition 2.1.1), and let e = {(f1, v1), (f2, v2),

..., (ft, vt)} be an error (see Definition 1.1.4) whose associated factor set is E =

{f1, f2, ..., ft}. We say that e (and its associated edge in G) is within a set D ⊆ [1, k]

if E ⊆ D. Let B1, B2, ..., Bt be disjoint sets such that B1 ∪ B2 ∪ ... ∪ Bt = D. We

say that [B1, B2, ..., Bt] is a partition of D, and we call B1, B2, ..., Bt the parts of

D. An error e (and its associated edge in G) is across the partition if E ∩ Bi ̸= ∅

for at least two values of i ∈ [1, t].

Notice that we can easily transform a system with k factors into a system with

k′ > k factors by adding k′ − k “dummy” factors which do not affect the results of

tests. For the rest of this chapter, we assume without loss of generality that k = 2z

for some integer z ≥ 1 since this assumption greatly simplifies our analysis.

Now, suppose that 0k and 1k are failing tests. Then we have two errors, and

Lemma 3.2.5 gives some information about them. As we shall see below, a sequence of

pairs of complementary failing tests gives us precise information about the inspection

sets containing the factors associated with the errors.

3. Robust Error Location for Binary Alphabets 47

Theorem 3.2.7 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) with at

most two errors of strengths up to 2. Let j be an integer such that 1 ≤ j ≤ z + 1,

and for every integer i ∈ [1, j] let mi = 2i−2. Define a sequence of pairs p1, p2, ..., pj

of tests as follows: pi = [T (i), T (i)] such that T (i) =

 0k if i = 1

(0k/2mi1k/2mi)mi if i > 1

If all pairs of tests p1, p2, ..., pj fail, then there are two errors in our TP (k, 2),

each within the same inspection set D of cardinality |D| = k/2mj, such that the

subtest T (j)D = 0k/2mj or T (j)D = 1k/2mj (see Definition 1.1.1).

Proof: We use induction on j, with the restriction that j ∈ [1, z + 1] since no

inspection set can have cardinality less than 1. By Lemma 3.2.5, there are two errors:

an error e of type 0 or 00, and another error e′ of type 1 or 11.

First, consider the base case with j = 1. The errors are clearly within the same

inspection set of size k/2m1 = k.

Suppose that, for some integer j ∈ [1, z], if all pairs of tests p1, p2, ..., pj fail,

then there are two errors in our TP (k, 2), each within the same inspection set D of

cardinality |D| = k/2mj, such that the subtest T (j)D = 0k/2mj or T (j)D = 1k/2mj .

Consider the failing pair of tests pj+1 = [T (j+1), T (j + 1)] such that T (j+1) =

(0k/4mj1k/4mj)2mj . Suppose without loss of generality that e causes T (j) to fail, and

e′ causes T (j) to fail. Then:

T (j)D = 0k/2mj .

T (j)D = 1k/2mj .

By Lemma 3.2.3, e must also cause one of T (j + 1), T (j + 1) to fail. Suppose

without loss of generality that e causes T (j + 1) to fail, and notice that:

T (j + 1)D = 0k/4mj1k/4mj .

T (j + 1)D = 1k/4mj0k/4mj .

3. Robust Error Location for Binary Alphabets 48

Let [B,C] be a partition ofD such that T (j+1)B = 0k/4mj and T (j+1)C = 1k/4mj .

Clearly e must be within B. Furthermore, T (j + 1) is a failing test, so it must cover

e′, by Lemma 3.2.3. Test T (j + 1) has value 1 for all factors in B and value 0 for

all factors in C, therefore e′ must be within B. Hence, both errors are within the

inspection set B of cardinality k/4mj = k/2m(j+1)−2, and T (j + 1)B = 0k/2m(j+1)−2 .

Next we notice that if the sequence of failing pairs of tests is long enough, then

both errors must be within a very small inspection set. For the following corollary, if

both errors are of strength 2, then we know the factors corresponding to the errors

once we find the inspection set.

Corollary 3.2.8 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) with

two errors of strengths at most 2. Suppose that pairs of tests p1, p2, ..., pz (as defined

in Theorem 3.2.7) all fail. Then both errors are within the same inspection set D =

{i, i+ 1} of cardinality 2, where i ∈ [1, k − 1] is an odd integer.

Proof: This follows directly from Theorem 3.2.7 since k/2mz = k/2log2 k−1 = 2.

Next we notice that if we maximize the number of pairs of failing tests then we

get either a pair of strength-1 errors corresponding to a type-d (strongly nonlocatable)

graph or a passing test.

Corollary 3.2.9 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

error graph G has two edges representing errors of strengths at most 2. Suppose

pairs of tests p1, p2, ..., pz (as defined in Theorem 3.2.7) all fail. If the pair of tests

pz+1 = [(01)k/2, (10)k/2] fails, then the errors correspond to loops in the same part

of G, and G contains a type-d strongly nonlocatable subgraph. Otherwise, one of

(01)k/2, (10)k/2 is a passing test.

3. Robust Error Location for Binary Alphabets 49

Proof: Following Theorem 3.2.7, if pz+1 fails, then we have two errors within the

same inspection set D of cardinality k/2m = k/2z = 1, so let D = {d}. Following

Lemma 3.2.5, D contains a 0-error and a 1-error, both corresponding to the same

factor d, and they are represented in the graph G by a pair of loops corresponding to

a type-d subgraph.

Algorithm 3.1 on Page 51 contains two versions of a method for finding a passing

test, and we refer to these versions of FindPassingTest as Version 1 and Version

2 on Page 51. We first show that Version 1 correctly returns null if it is given

a testing problem whose associated error graph contains a (strongly nonlocatable)

type-d subgraph, and returns a passing test otherwise.

Theorem 3.2.10 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

associated error graph G has d ≤ 2 edges. Then Version 1 of FindPassingTest (see

Algorithm 3.1) returns null if G contains a type-d (strongly nonlocatable) subgraph,

and it returns a passing test otherwise.

Proof: This follows directly from Theorem 3.2.7 and its corollaries.

We also give a second, more general version of FindPassingTest which detects

the presence of errors corresponding to a type-a nonlocatable subgraph, under certain

assumptions relevant to the algorithm presented in the next section. We show here

the correctness of FindPassingTest, Version 2.

Theorem 3.2.11 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

associated error graph G has d ≤ 2 edges. Suppose that 0k is a passing test, and at

most one interaction I∗ of type 1 or 10 (see Definition 3.2.1) is faulty. Let I∗ =

{(a, 1)} if it is a 1-error, otherwise let I∗ = {(a, 1), (b, 0)}, where a, b ∈ [1, k].

3. Robust Error Location for Binary Alphabets 50

Construct a TP (k + 1, 2) from our TP (k, 2) by introducing a (k + 1)th dummy

factor whose corresponding alphabet is {0}, such that {(k + 1, 0)} ̸⊆ I for any faulty

interaction I in the TP (k + 1, 2). Let X = [k + 1] \ {a}. If we fix T ′
a = 1 for all

tests T ′ conducted by Version 2 of FindPassingTest, then it returns null if {(a, 1)}

corresponds to a loop or a degree-2 vertex in a type-a nonlocatable subgraph of G, or

a passing test otherwise.

Proof: A passing test (0k) exists, therefore G does not contain a type-d strongly

nonlocatable subgraph. Notice that each test generated by the algorithm covers

{(a, 1)}. By Theorem 3.2.7 applied to the set X, if the algorithm does not find a new

passing test
(
covering {(a, 1)}

)
, then we have two errors in X, each within the same

inspection set {x} (such that x ∈ X) of cardinality 1. These errors either correspond

to a pair of loops in a type-d subgraph of G, or else the seemingly faulty interactions

{(x, 0)} and {(x, 1)} are each an end of a distinct strength-2 error such that every

test generated by the algorithm covers at least one of those strength-2 errors. The

former possibility contradicts the fact that a passing test exists.

The latter is only satisfied by the pair of errors
{
{(a, 1), (x, 0)}, {(a, 1), (x, 1)}

}
,

therefore we have either a type-a nonlocatable subgraph G′ whose edges correspond

to the set of errors
{
{(a, 1), (x, 0)}, {(a, 1), (x, 1)}

}
, or a location-equivalent subgraph

containing a loop corresponding to interaction {(a, 1)} (see Definition 3.1.2).

3. Robust Error Location for Binary Alphabets 51

Algorithm 3.1 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose
associated error graph G has at most two edges (and E(G) is independent, in the sense
of Definition 2.1.1). Applied to a TP (k, 2), this algorithm checks complementary pairs
of tests according to Theorem 3.2.7.

◃ Version 1: By Theorem 3.2.10, this returns null if G contains a strongly
◃ nonlocatable type-d subgraph and it returns a passing test otherwise.
procedure FindPassingTest(k)

j ← 1
m← 1/2
◃ Check pairs of tests from Theorem 3.2.7.
while j ≤ log2 k + 1 do

T ←
{

0k if j = 1
(0k/2m1k/2m)m otherwise

for S ∈ {T, T} do
if Test(S) = pass then return S

j ← j + 1
m← 2m

return null

◃ Version 2: Suppose our system has a set X of k = 2z factors, one of which is a
◃ dummy factor, plus a factor a ̸∈ X such that all tests run by this algorithm fix
◃ T ′

a = 1. Under the assumptions of Theorem 3.2.11, this algorithm returns null if
◃ {(a, 1)} corresponds to either a loop or a degree-2 vertex in a type-a nonlocatable
◃ subgraph, and it returns a passing test otherwise.
procedure FindPassingTest(X, k)

Let X = {x1, x2, ..., xk} such that x1 ≤ x2 ≤ ... ≤ xk. Rearrange the k + 1
factors so that xi = i for all i ∈ [1, k], making a the (k + 1)st factor. This
allows compact notation for each test T ′ conducted on our TP (k + 1, 2).
j ← 1
m← 1/2
while j ≤ log2 k + 1 do

T ←
{

0k if j = 1
(0k/2m1k/2m)m otherwise

for T ′ ∈ {T1, T1} do
if Test(T ′) = pass then

Reverse the earlier rearrangement of the k + 1 factors.
return T ′

j ← j + 1
m← 2m

Reverse the earlier rearrangement of the k + 1 factors.
return null

3. Robust Error Location for Binary Alphabets 52

Next, we give the worst-case running time of both versions of Algorithm 3.1.

Lemma 3.2.12 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose as-

sociated error graph G has at most two edges. Then each version of FindPassingTest

given in Algorithm 3.1 executes at most 2(log2 k + 1) tests.

Proof: Each version of FindPassingTest clearly conducts only the tests within

its while loop: there are two complementary tests in each iteration, and at most

log2 k + 1 iterations.

In the next section, we give an algorithm which applies FindPassingTest to

determine whether errors corresponding to a nonlocatable subgraph are present in a

given TP (k, 2).

3.3 Strength-2 Error Location for Gk,2 Graphs with

At Most Two Edges

In this section, we give an algorithm called LocateAllErrors which does the

following when applied to a TP (k, 2) whose associated error graphG has up to 2 edges.

If G contains a type-d (strongly nonlocatable) subgraph, then LocateAllErrors

(given as Algorithm 3.3 on Page 64) exits after printing a warning message regarding

the presence of a strongly nonlocatable type-d subgraph (which would cause every

test to fail). Otherwise, the algorithm adaptively builds a strength-2 ELA for either

G or a location-equivalent graph G′, and it returns a set E of all errors corresponding

to the edges in either G or G′ (see Definition 3.1.2).

Recall that Mart́ınez et al. also give an algorithm that constructs a strength-2

ELA for G without knowledge of safe values. Their algorithm, DiscoverEdges

(see [32]), begins by finding a passing test via a random selection process, and subse-

3. Robust Error Location for Binary Alphabets 53

quently identifies and returns the set of all errors in the given testing problem, under

the assumption that all relevant interactions are locatable. Within their algorithm,

Mart́ınez et al. give an auxiliary binary search procedure called SearchEndPoint,

which they use to efficiently identify the edges of G, one endpoint at a time. We

reproduce their procedure, adapted to our notation, as Algorithm 3.2.

Algorithm 3.2 [32] Under the assumptions of Lemma 3.3.1, this auxiliary procedure
returns the set of factors in D corresponding to the errors either covered by the failing
test T or covered by neither T nor T .

procedure SearchEndPoint(T,D)
if |D| = 1 then return D
else

◃ Complement opposing halves of D as follows:
Partition D into [B,C] such that |C| ≤ |B| ≤ |C|+ 1.
V ′′ ← V ′ ← ∅
Define T ′ by: T ′

f ←
{

Tf if f ∈ C
Tf otherwise

Define T ′′ by: T ′′
f ←

{
Tf if f ∈ B
Tf otherwise

if Test(T ′) = fail then V ′ ← SearchEndPoint(T ′, B)

if Test(T ′′) = fail then V ′′ ← SearchEndPoint(T ′′, C)

return V ′ ∪ V ′′

Let T be a failing test, and let [D,D′] be a partition of [1, k]. In the following

lemma, we give conditions on the use of SearchEndPoint(T,D), and we show that

it identifies and returns the set of factors in D which correspond to strength-1 errors

covered by TD, strength-2 errors across [D,D′] and covered by T , or strength-2 errors

within D and covered by neither T nor T (i.e. errors of the form {(d1, v1), (d2, v2)},

where Td1 = v1, Td2 = v2, and d1, d2 ∈ D.

3. Robust Error Location for Binary Alphabets 54

Lemma 3.3.1 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

associated error graph G has up to 2 edges representing relevant errors of strengths

at most 2. Let T = T1T2...Tk be a failing test for G, and let [D,D′] be a partition of

[1, k] such that the following three conditions are satisfied:

1. No errors are covered by TD′, i.e. {vf ′,Tf ′
, vg′,Tg′

} ̸∈ E(G) for all f ′, g′ ∈ D′.

2. No errors are covered by TD, i.e. {vf,Tf
, vg,Tg

} ̸∈ E(G) for all f, g ∈ D.

3. No errors across [D,D′] are covered by the test S = TDTD′, i.e. {vf,Tf
, vf ′,Tf ′

} ̸∈

E(G) for all f ∈ D, f ′ ∈ D′.

Let R be the set of factors f ∈ [1, k] that are returned by SearchEndPoint(T,D)

(see Algorithm 3.2). Then:

(a) If there exist f ∈ D, f ′ ∈ D′ such that {vf,Tf
, vf ′,Tf ′} ∈ E(G), then f ∈ R.

(b) If there exists l ∈ D such that {vl,Tl
, vl,Tl

} ∈ E(G), then l ∈ R.

(c) If f ∈ R, then there exists g ∈ [1, k] such that {vf,Tf
, vg,T ∗

g
} ∈ E(G), where

T ∗
g =

 Tg if g ∈ D′ or g = f ∈ D

Tg if g ∈ D and g ̸= f

Proof: We begin by proving the following claim:

C: Suppose that T and [D,D′] satisfy conditions 1 - 3. Let [B,C] be a partition

of D, and let T ′ be the corresponding test defined in SearchEndPoint(T,D). If

[B,B′] is a partition of B, then T ′ and [B,B′] satisfy conditions 1 - 3.

We first show how T ′ and [B,B′] satisfy condition 1: no errors are covered by

T ′
B′ . Let g′, h′ ∈ B′, and note that [C,D′] is a partition of B′. If g′, h′ ∈ C ⊂ D, then

by condition 2 of this lemma with respect to T and [D,D′], we have

{vg′,T ′
g′
, vh′,T ′

h′
} = {vg′,Tg′

, vh′,Th′
} ̸∈ E(G).

If g′, h′ ∈ D′, then by condition 1 of this lemma with respect to T and [D,D′],

3. Robust Error Location for Binary Alphabets 55

we have

{vg′,T ′
g′
, vh′,T ′

h′
} = {vg′,Tg′ , vh′,Th′} ̸∈ E(G).

If g′ ∈ C ⊂ D and h′ ∈ D′, then by condition 3 of this lemma with respect to T

and [D,D′], we have

{vg′,T ′
g′
, vh′,T ′

h′
} = {vg′,Tg′

, vh′,Th′} ̸∈ E(G).

Hence T ′ and [B,B′] satisfy condition 1.

Next, we show that T ′ and [B,B′] satisfy condition 2: no errors are covered by

T ′
B. Notice that T ′

B = TB, B ⊂ D, and TB is a subtest of TD. Therefore T ′
B is a

subtest of TD, which covers no errors, by condition 2 of this lemma with respect to

T and [D,D′].

Finally, we show that T ′ and [B,B′] satisfy condition 3: no errors across [D,D′]

are covered by the test S = TDTD′ , i.e. {vb,T ′
b
, vb′,T ′

b′
} ̸∈ E(G) for all b ∈ B, b′ ∈ B′.

Take any b ∈ B ⊂ D and b′ ∈ B′. Note that either b′ ∈ C or b′ ∈ D′, since [C,D′] is

a partition of B′. If b′ ∈ C ⊂ D, then by condition 2 of this lemma with respect to

T and [D,D′], we have

{vb,T ′
b
, vb′,T ′

b′
} = {vb,Tb

, vb′,Tb′
} ̸∈ E(G).

If b′ ∈ D′, then by condition 3 (with respect to T and [D,D′]), we have

{vb,T ′
b
, vb′,T ′

b′
} = {vb,Tb

, vb′,Tb′
} ̸∈ E(G).

Hence T ′ and [B,B′] satisfy condition 3 as well.

Now that we have proven our claim C, we prove that each of (a), (b), and (c)

holds for T and [D,D′], when conditions 1 - 3 are satisfied by T and [D,D′]. In each

case, we proceed by induction on |D|.

3. Robust Error Location for Binary Alphabets 56

To prove (a): Suppose that |D| = 1, and T and [D,D′] satisfy conditions 1 - 3.

Take any f ∈ D, f ′ ∈ D′ such that {vf,Tf
, vf ′,Tf ′} ∈ E(G). We see that the algorithm

returns R = D = {f} since |D| = 1. Hence (a) holds when |D| = 1.

Assume that for some integer w ≥ 2, if |D| < w and T and [D,D′] satisfy

conditions 1 - 3, then (a) holds.

Suppose that |D| = w, and T and [D,D′] satisfy conditions 1 - 3. Take any

f ∈ D, f ′ ∈ D′ such that {vf,Tf
, vf ′,Tf ′

} ∈ E(G). Let B and C be as defined in

SearchEndPoint(T,D). Notice that f ∈ B or f ∈ C since [B,C] is a partition

of D. Without loss of generality, assume that f ∈ B (since the case where f ∈ C

is symmetrical), and let B′ = [1, k] \ B. Since f ∈ B ⊂ D and f ′ ∈ D′, the test T ′

defined in SearchEndPoint(T,D) is a failing test. Let R′ be the set returned by

SearchEndPoint(T ′, B).

By our claim C above, T ′ and [B,B′] satisfy conditions 1 - 3. Then (a) holds

for T ′ and [B,B′], by the induction hypothesis, since |B| < w. Therefore f ∈ R′. It

is easy to see (from the algorithm) that R′ ⊆ R. We conclude that f ∈ R; that is,

statement (a) holds for T and [D,D′].

To prove (b): Suppose that |D| = 1, and T and [D,D′] satisfy conditions 1 - 3.

Take any l ∈ D such that {vl,Tl
, vl,Tl

} ∈ E(G). Since |D| = 1, the algorithm returns

R = D = {l}.

Assume that for some integer w ≥ 2, if |D| < w and T and [D,D′] satisfy

conditions 1 - 3, then (b) holds.

Suppose that |D| = w, and T and [D,D′] satisfy conditions 1 - 3. Take any

l ∈ D such that {vl,Tl
, vl,Tl

} ∈ E(G). Then either l ∈ B or l ∈ C; again, assume

that l ∈ B, without loss of generality. Let B′ = [1, k] \ B. Since l ∈ B ⊂ D, the

test T ′ defined in SearchEndPoint is a failing test. Let R′ be the set returned by

SearchEndPoint(T ′, B).

By our claim C above, T ′ and [B,B′] satisfy conditions 1 - 3. Then (b) holds for

T ′ and [B,B′], by the induction hypothesis, since |B| < w. Therefore l ∈ R′ ⊆ R;

3. Robust Error Location for Binary Alphabets 57

that is, statement (b) holds for T and [D,D′].

To prove (c): Suppose that |D| = 1, and T and [D,D′] satisfy conditions 1 - 3.

Take any f ∈ R. We see that the algorithm returns R = D = {f} since |D| = 1.

Since T is a failing test and condition 1 holds, any error covered by T must be either

a strength-1 error within D or a strength-2 error across [D,D′]. That is, there exists

g ∈ [1, k] such that {vf,Tf
, vg,Tg} ∈ E(G) for either g = f ∈ D or g ∈ D′. Therefore

(c) holds for |D| = 1.

Now, assume that for some integer w ≥ 2, if |D| < w and T and [D,D′] satisfy

conditions 1 - 3, then (c) holds.

Suppose that |D| = w, and T and [D,D′] satisfy conditions 1 - 3. Take any

f ∈ R (as returned by Algorithm 3.2). Consider the sets B,C, V ′, and V ′′, and the

tests T ′ and T ′′ as they are computed in SearchEndPoint(T,D). It is not difficult

to see (e.g. by induction) that V ′ ⊂ B and V ′′ ⊂ C, and of course, f ∈ V ′ or

f ∈ V ′′. Without loss of generality, assume that f ∈ V ′ (since the case where f ∈ V ′′

is symmetrical). Then T ′ is a failing test, and SearchEndPoint(T ′, B) returns f .

By our claim C above, T ′ and [B,B′] satisfy conditions 1 - 3. Then (c) holds for

T ′ and [B,B′], by the induction hypothesis, since |B| < w. Therefore there exists

g ∈ [1, k] such that {vf,T ′
f
, vg,T ′∗

g
} ∈ E(G), where

T ′∗
g =

 T ′
g if g ∈ B′ or g = f ∈ B

T ′
g if g ∈ B and g ̸= f

If g ∈ B′, then T ′∗
g = T ′

g, and either g ∈ C ⊂ D or g ∈ D′, since [C,D′] is a

partition of B′. In the former case, we have

{vf,Tf
, vg,Tg

} = {vf,T ′
f
, vg,T ′

g
} = {vf,T ′

f
, vg,T ′∗

g
} ∈ E(G), where f, g ∈ D and g ̸= f.

3. Robust Error Location for Binary Alphabets 58

In the latter case, we have

{vf,Tf
, vg,Tg} = {vf,T ′

f
, vg,T ′

g
} = {vf,T ′

f
, vg,T ′∗

g
} ∈ E(G), where g ∈ D′.

If g ̸∈ B′, suppose first that g = f ∈ B ⊂ D, so T ′∗
g = T ′

g and

{vf,Tf
, vf,Tf

} = {vf,T ′
f
, vf,T ′

f
} = {vf,T ′

f
, vf,T ′∗

f
} ∈ E(G).

Now, suppose that g ∈ B and g ̸= f . Then T ∗
g = T ′

g and

{vf,Tf
, vg,Tg

} = {vf,T ′
f
, vg,T ′

g
} = {vf,T ′

f
, vg,T ′∗

g
} ∈ E(G), where g ∈ D and g ̸= f.

Hence there exists g ∈ [1, k] such that {vf,Tf
, vg,Tg} ∈ E(G) if g ∈ D′ or

g = f ∈ D, or {vf,Tf
, vg,Tg

} ∈ E(G) if g ∈ D, g ̸= f ; that is, statement (c) holds

for T and [D,D′].

We now summarize the three main steps of this chapter’s primary algorithm,

LocateAllErrors (given as Algorithm 3.3), which we apply to a TP (k, 2) whose

error graph is G.

Step 0: This step improves upon Step 0 of DiscoverEdges given in [32], which

assumes that all errors are locatable, and finds a passing test by a random selection

process. We run Version 1 of the procedure FindPassingTest, which either finds

a passing test, or determines that G contains a type-d nonlocatable subgraph (see

Theorem 3.2.10). If FindPassingTest successfully finds a passing test P , we relabel

P as 0k so that any error in our given TP (k, 2) is either a 1-error (corresponding to

a loop in G), a 10-error, or a 11-error. If this procedure does not find a passing

test, then it returns a warning message about the presence of a strongly nonlocatable

type-d subgraph.

3. Robust Error Location for Binary Alphabets 59

Two of the three error types mentioned above may be easily mixed-up, so we

introduce the following convention to prevent confusion between 1-errors and 11-

errors.

Definition 3.3.2 Suppose we have applied Algorithm 3.3 to a TP (k, 2), and a passing

test P was successfully found in Step 0 (and the factor values were relabeled so that

P = 0k). Let f ∈ [1, k]. In this context, we say that a 1-error {(f, 1)} (if it exists) is

a loop at factor f .

Step 1: This is the same as Step 1 of DiscoverEdges given in [32]. We assume

that 0k is a passing test, and we find the set A of all loops and 1-ends of 10-errors.

More precisely, we determine the set

A =

{
f ∈ [1, k] : {vf,1, vf,1} ∈ E(G) or ∃j ∈ [1, k] such that {vf,1, vj,0} ∈ E(G)

}

.

Step 2: We have three possible error-types: loops, 10-errors, and 11-errors. This

step determines whether loops or 11-errors are present in our TP (k, 2) by checking

the result of the test 1k. Any loop or 11-error would cause this test to fail, therefore

if 1k passes, then our testing problem has only 10-errors. We refer to this situation

as Case 0 of Algorithm 3.3. Otherwise, there is at least one error which is either a

loop or a 11-error. We refer to this as Case 1 of Algorithm 3.3.

We sometimes need to conduct a test which does both of the following:

1. Avoids all interactions containing {(a, 1)} for some known factor a ∈ [1, k].

2. For all factors f ∈ [1, k] \ {a}, covers the interaction {(f, 1)}.

For this reason, we introduce the following notation.

3. Robust Error Location for Binary Alphabets 60

Definition 3.3.3 In the context of a TP (k, 2), the test T (a) is defined by

T
(a)
f =

 0 if f = a

1 otherwise

Occasionally, we also need to use its complement, T (a), which covers {(a, 1)}

while avoiding {(f, 1)} for all factors f ∈ [1, k] \ {a}.

Algorithm 3.3 is a case-by-case algorithm. We use the following lemma to define

its first level of subcases.

Lemma 3.3.4 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

associated error graph G has d ≤ 2 edges corresponding to relevant interactions. Let

A =
{
f ∈ [1, k] : {vf,1, vf,1} ∈ E(G) or ∃j ∈ [1, k] such that {vf,1, vj,0} ∈ E(G)

}
,

and assume that 0k is a passing test. Then |A| ∈ [0, 2].

Proof: Elements of A either correspond to loops or 1-ends of distinct 10-errors,

so 0 ≤ |A| ≤ d ≤ 2.

3. Robust Error Location for Binary Alphabets 61

As a result of the preceding lemma, we can index our subcases of Case 0 and Case

1 by the values of |A|. This fact, combined with whether 1k is a passing test (Case 0)

or a failing test (Case 1), yields Subcases 0.0, 0.1, 0.2, 1.0, 1.1, and 1.2, which are

outlined in the table on Page 62. Note that the aforementioned table contains five

pairs of equivalent subcases. Equivalences (1), (2), and (3) can be seen by swapping

a with b, since a, b ∈ A in subcases 0.2 and 1.2. Equivalences (4) and (5) can be seen

by swapping b with c, since b, c ∈ A′ = [1, k] \ A.

(1) Subcases 0.2.2 and 0.2.3. The former occurs when T (a) is a failing test and

T (b) is a passing test within subcase 0.2 (see Algorithm 3.4 on Page 67). The latter

occurs when T (a) is a passing test and T (b) is a passing test within subcase 0.2.

(2) Subcases 1.2.1 and 1.2.2. The former occurs when T (b) is a passing test within

subcase 1.2 (see Algorithm 3.5 on Page 70). The latter occurs when T (a) is a passing

test within subcase 1.2.

(3) The first and third graphs in subcase 1.2.3. There is no set of tests which can

distinguish between any of the three (location-equivalent) graphs in subcase 1.2.3.

However, we note that exactly three distinct error graphs are possible.

(4) Subcases 1.1.0.2 and 1.1.0.3. Each can occur within subcase 1.1.0, if the

call to FindPassingTest within A1No11inAprime returns a passing test P (see

Algorithm 3.7 on Page 74). The former occurs when T (b) is a failing test, and the

latter occurs when T (b) is a passing test.

(5) Subcases 1.1.1.2 and 1.1.1.3. The former occurs when, within subcase 1.1.1,

T (b) is a failing test and T (c) is a passing test (again, see Algorithm 3.7). The latter

occurs when T (b) is a passing test and T (c) is a failing test.

The reader may notice that two subcases seem to be missing from within sub-

case 1.1: those with error sets
{
{(a, l)}, {(a, l), (b, 0)}

}
and

{
{(a, l)}, {(a, l), (b, 1)}

}
,

respectively. However, we concern ourselves only with error graphs whose edge sets

are independent (in the sense of Definition 2.1.1).

3. Robust Error Location for Binary Alphabets 62

3. Robust Error Location for Binary Alphabets 63

Next we prove that the procedure LocateAllErrors (given as Algorithm 3.3

on Page 64) correctly determines whether G contains a type-d (strongly nonlocatable)

subgraph, and if G contains no such subgraph, then LocateAllErrors identifies

and returns the set E of errors which correspond to the edges of either G or a graph

G′ which is location-equivalent to G.

Theorem 3.3.5 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

associated error graph G has d ≤ 2 edges (and E(G) is independent, in the sense of

Definition 2.1.1).

Assume the correctness of the two main subprocedures of LocateAllErrors,

namely No11sNorLoops and Has11sOrLoops (to be proven in Lemmas 3.3.6

and 3.3.8, respectively). The former procedure corresponds to Case 0, and is given as

Algorithm 3.4 on Page 67. The latter procedure corresponds to Case 1, and is given

as Algorithm 3.5 on Page 70.

Then LocateAllErrors either determines that G contains a type-d strongly

nonlocatable subgraph (and prints a warning message), or it returns the set E of all

errors corresponding to the edges of either G or a graph G′ which is location-equivalent

to G.

Proof: Step 0 is correct as a result of Theorem 3.2.10.

If P ̸= null when Step 0 concludes, then the following conditions are satisfied:

0k is a passing test
(
due to the relabeling of some (factor, value) pairs in Step 0

)
,

and G contains no strongly nonlocatable type-d subgraph. In particular, after Step

0 concludes, every error present in our TP (k, 2) is either a 1-error (loop), a 10-error,

or a 11-error.

We now show that Step 1 correctly computes the set

A =
{
f ∈ [1, k] : {vf,1, vf,1} ∈ E(G) or ∃j ∈ [1, k] such that {vf,1, vj,0} ∈ E(G)

}
.

3. Robust Error Location for Binary Alphabets 64

Algorithm 3.3 Under the assumptions of Theorem 3.3.5, LocateAllErrors does
the following when applied to a TP (k, 2) whose associated (unknown) error graph is
G:
If G contains a type-d (strongly nonlocatable) subgraph, then this algorithm prints a
warning message and exits. Otherwise, it returns the set E of all errors corresponding
to the edges in either G or location-equivalent graph G′.

procedure LocateAllErrors(k)
◃ Step 0: Find a passing test P , if possible, and relabel the v ∈ V (G) so that

P = 0k:
P ← FindPassingTest(k)
if P = null then print “Warning! Strongly nonlocatable subgraph” and exit
else

S ← ∅
for each factor f such that Pf = 1 do

S ← S ∪ {f}, and swap labels (f, 0) and (f, 1).

◃ Step 1: Discover the factors corresponding to loops and 1-ends of 10-errors.
C ← BinaryCA(k)
Let T [i] denote the ith test (row) of C, where i ∈ [1, N] is an integer.
A← ∅, and i← 1
while |A| < 2 and i < N do

if Test(T [i]) = fail then
A← A ∪ SearchEndPoint(T [i], B) where B = {f : T [i]f = 1}

i← i+ 1

◃ Step 2: Determine if there is at least one loop or 11-error.
if Test(1k) = pass then E ← No11sNorLoops(A, k) ◃ —————[Case 0]
else E ← Has11sOrLoops(A, k) ◃——————————————–[Case 1]

for each factor f ∈ S do swap labels (f, 0) and (f, 1).

return E

◃ Construct an optimal CA(N ; 2, k, 2) (see Theorems 1.2.3 and 1.2.5).
procedure BinaryCA(k)

N ← min
{
N :

(
N−1
⌈N/2⌉

)
≥ k

}
Let S be the set of all distinct binary N -tuples such that each tuple has a zero
in its first position, and exactly ⌈N/2⌉ ones.
Let C be a matrix whose columns are the elements of S.
return C.

3. Robust Error Location for Binary Alphabets 65

Step 1 begins by building a strength-2 binary covering array C via the subprocedure

BinaryCA. Each failing test corresponding to a row of C covers at least one error

in our TP (k, 2), and by Definition 1.2.1, every interaction of strength up to 2 (and

hence, every edge of G) is covered by at least one row of C. In particular, every loop

and 10-error is covered by at least one failing test which is a row of C.

Let T be a failing test corresponding to a row of C, and let [B,B′] be a partition

of [1, k] such that B = {f : Tf = 1}. Then all three conditions of Lemma 3.3.1 are

satisfied by T and [B,B′] since TBTB′ = 0k, which is a passing test (and hence, covers

no errors - see Step 0).

By part (a) of Lemma 3.3.1, if there exist f ∈ B, f ′ ∈ B′ such that {vf,1, vf ′,0} ∈

E(G), then f is returned by SearchEndPoint(T,B). Similarly, by part (b) of

Lemma 3.3.1, if there exists l ∈ B such that {vl,1, vl,1} ∈ E(G), then l is returned

by SearchEndPoint(T,B). Therefore SearchEndPoint(T,B) returns the set of

factors in B which are also in A.

Note that multiple calls to SearchEndPoint may find the same factor mul-

tiple times, and SearchEndPoint(T,B) may return the empty set if T covers

only 11-errors. However, LocateAllErrors does not need to check for more ele-

ments of A if at any point |A| = 2, by Lemma 3.3.4. As long as A contains fewer

than two elements, and there are still failing tests T which are rows of C, we run

SearchEndPoint(T,B), where B = {f : Tf = 1}. Therefore, after Step 1, the fol-

lowing conditions are satisfied: 0k is a passing test and A = {f ∈ [1, k] : {vf,1, vf,1} ∈

E(G) or ∃j ∈ [1, k] such that {vf,1, vj,0} ∈ E(G)}.

If 1k is also a passing test, then the preconditions of No11sNorLoops are

satisfied (see Lemma 3.3.6). By the correctness of No11sNorLoops under these

assumptions (to be proven in Lemma 3.3.6), it returns the set E of all errors.

Otherwise, 1k is a failing test, in which case the preconditions ofHas11sOrLoops

are satisfied (see Lemma 3.3.8). By the correctness of Has11sOrLoops under these

assumptions (to be proven in Lemma 3.3.8), it returns the set E of all errors, or a

3. Robust Error Location for Binary Alphabets 66

location-equivalent set of errors.

Recall that some (factor, value) pairs were relabeled in Step 0. This algorithm

concludes Step 2 by restoring the original labels for each (factor, value) pair that was

changed in Step 0. Therefore the set E returned by LocateAllErrors(k) corre-

sponds to the set of edges of either G or a graph G′ which is location-equivalent to G.

We now proceed to prove that the procedure No11sNorLoops correctly returns

the set E of all errors (corresponding to Case 0) if its preconditions are satisfied.

Lemma 3.3.6 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

associated error graph G has d ≤ 2 edges. Let A =
{
f ∈ [1, k] : {vf,1, vf,1} ∈ E(G)

or ∃j ∈ [1, k] such that {vf,1, vj,0} ∈ E(G)
}
. Assume that 0k and 1k are passing tests

(i.e. we are in Case 0).

Then the procedure No11sNorLoops(A, k) (given as Algorithm 3.4) correctly

identifies and returns the set of all errors in the given TP (k, 2).

Proof: Since 1k is a passing test, our TP (k, 2) has only 10-errors, and the 1-ends

of these errors must be elements of A. Recall that |A| ∈ [0, 2], by Lemma 3.3.4.

We now prove that for each subcase (see the table on Page 62), the procedure

No11sNorLoops correctly identifies and returns the set E of all errors in the given

TP (k, 2).

Subcase 0.0: We haveA = ∅, therefore there are no errors, andNo11sNorLoops

clearly returns ∅.

Subcase 0.1: We have |A| = 1, so let A = {a} and let A′ = [1, k] \ A. There

are up to two 10-errors across the partition [A,A′] of [1, k], each sharing (a, 1) as

the common 1-end. The test T (a) has value 1 for factor a, and value 0 for all

other factors, therefore it covers (all of) the 10-errors. Let R be the set returned

by SearchEndPoint(T (a), A′).

3. Robust Error Location for Binary Alphabets 67

Algorithm 3.4 Under the assumptions of Lemma 3.3.6, No11sNorLoops (when
applied to a TP (k, 2) whose associated error graph is G) returns the set E of all errors
(which are 10-errors) corresponding to the edges in G.

procedure No11sNorLoops(A, k) ◃ ———————————————[Case 0]
E ← ∅ ◃ ————————————————————-[Subcase 0.0: A = ∅]
A′ ← [1, k] \ A
if A ̸= ∅ then

Let a ∈ A.
if |A| = 1 then ◃ ——————————————————–[Subcase 0.1]

◃ Up to two errors sharing a common 1-end.
B ← SearchEndPoint(T (a), A′)
for b ∈ B do

E ← E ∪ {(a, 1), (b, 0)}
else ◃ ———————————————————————–[Subcase 0.2]

◃ Two errors, possibly in an ‘X’ formation.
Let A = {a, b}.
E ← Locate01(a, b) ∪ Locate01(b, a)

return E

◃ Under the assumptions of Lemma 3.3.6 and Subcase 0.2, let A = {x, y},
◃ where (y, 1) is the 1-end of a 10-error whose 0-end is either (x, 0) or within A′.
procedure Locate01(x, y)

A′ ← [1, k] \ {x, y}
if Test(T (x)) = fail then

e← {(x, 0), (y, 1)}
else
{c} ← SearchEndPoint(T (y), A′)
e← {(y, 1), (c, 0)}

return {e}

3. Robust Error Location for Binary Alphabets 68

In subcase 0.1.1, the only error is e = {(a, 1), (b, 0)} for some b ∈ A′. We apply

Lemma 3.3.1 with respect to T (a) and the partition [A′, A] of [1, k]. Since b ∈ A′, we

have b ∈ R. Furthermore, since e is the only error, we have R = {b}.

In subcase 0.1.2, the only errors are e1 = {(a, 1), (b1, 0)} and e2 = {(a, 1), (b2, 0)}

for some b1, b2 ∈ A′. Again, we apply Lemma 3.3.1 with respect to T (a) and the

partition [A′, A] of [1, k]. Since b1, b2 ∈ A′, we have b1, b2 ∈ R. Furthermore, since e1

and e2 are the only errors, we have R = {b1, b2}.

In either subcase, the for-loop matches each 0-end to the common 1-end, and

stores each error in E, which No11sNorLoops returns.

Subcase 0.2: We have |A| = 2, so let A = {a, b}. Then for each of the two 10-

errors, the 0-end is either within A = {a, b} or not, therefore there are four subcases

(0.2.1, 0.2.2, 0.2.3, and 0.2.4) of Subcase 0.2, and they are depicted in the table on

Page 62.

We now look at the two calls to the auxiliary subprocedure Locate01. Sup-

pose that T (x) fails in both calls to Locate01. Then T (a) and T (b) are both fail-

ing tests which cover the 10-errors {(a, 0), (b, 1)} and {(a, 1), (b, 0)}, respectively,

and we are in Subcase 0.2.1. In this case, No11sNorLoops returns the set E ={
{(a, 0), (b, 1)}, {(b, 0), (a, 1)}

}
.

Next, notice the symmetry between Subcases 0.2.2 and 0.2.3 (refer to the table

on Page 62): if we relabel the factors a, b in Subcase 0.2.2 as b, a, then we get Subcase

0.2.3. The two cases are equivalent by symmetry; the former occurs when T (x) fails

in only the first call to Locate01, and the latter occurs when T (x) fails in only the

second call to Locate01.

Without loss of generality, suppose that T (x) fails in only the first call to Locate01.

Then T (a) is a failing test, and the first call to Locate01 returns a set containing

one 10-error, e = {(a, 0), (b, 1)}. Additionally, T (b) is a passing test, therefore the

other 10-error is e′ = {(a, 1), (c, 0)} for some c ∈ A′, and we are in Subcase 0.2.2.

We apply Lemma 3.3.1 with respect to T (b) and [A′, A] Let R be the set returned by

3. Robust Error Location for Binary Alphabets 69

SearchEndPoint(T (b), A′). Since c ∈ A′, we have c ∈ R. Furthermore, since e and

e′ are the only errors, and a, b ̸∈ A′, the set R contains neither a nor b (i.e. R = {c}).

In this case, No11sNorLoops returns the set E =
{
{(a, 0), (b, 1)}, {(a, 1), (c, 0)}

}
for the appropriate factor c ∈ A′.

Now, suppose that T (x) passes in both calls to Locate01 (i.e. T (a) and T (b) are

both passing tests). Therefore there is no 0-end at either of a, b, so the 10-errors are

e = {(a, 1), (c1, 0)} and e′ = {(b, 1), (c2, 0)} for some factors c1, c2 ∈ A′, and we are in

Subcase 0.2.4. Note that the (failing) tests T (a) and T (b) cover e and e′, respectively.

We first apply Lemma 3.3.1 with respect to T (a) and [A′, A]. Let R be the

set returned by SearchEndPoint(T (a), A′). Since c1 ∈ A′, we also have c1 ∈ R.

Furthermore, since e is the only error satisfying statement (c) of Lemma 3.3.1, we in

fact have R = {c1}.

Next, we apply Lemma 3.3.1 with respect to T (b) and [A′, A]. This is equivalent

to the preceding application of this lemma, by symmetry. Hence, R = {c2} is returned

by SearchEndPoint(T (b), A′).

Therefore, in Subcase 0.2, the procedure No11sNorLoops returns the set

E =
{
{(a, 1), (c1, 0)}, {(b, 1), (c2, 0)}

}
.

Our main procedure for Case 1, Has11sOrLoops, has subprocedures related to

its subcases. When we are in Subcase 1.0 or Subcase 1.1.1, we have a set D such that

every error within D is a 11-error, and we use the subprocedure called Locate11s

(see Algorithm 3.6). It is a simplified version of LocateErrorsInTest from [32].

We briefly describe how it works here, however we omit its proof of correctness since

Chapter 5 contains a proof of correctness for a more generalized, higher-strength

version of LocateErrorsInTest, called LocateTriple (see Lemma 5.1.6 and

Algorithm 5.3).

Locate11s is a recursive procedure. In the base case where |D| = 2, it returns

3. Robust Error Location for Binary Alphabets 70

Algorithm 3.5 Under the assumptions of Lemma 3.3.8, this procedure (when applied
to a TP (k, 2) whose associated error graph is G) returns the set E of all errors
corresponding to the edges in either G or a location-equivalent graph G′.

procedure Has11sOrLoops(A, k) ◃ ———————————————[Case 1]
E ← ∅
A′ ← [1, k] \ A
if A = ∅ then ◃—————————————————————[Subcase 1.0]

◃ Only 11-errors are possible.
E ← Locate11s(A′, k)

else
if |A| = 1 then ◃ ——————————————————–[Subcase 1.1]

Let A = {a}.
◃ There may be a 11-error.
if Test(T (a)) = pass then

E ← A1No11inAprime(a, k) ◃————————-[Subcase 1.1.0]
else

E ← A1Locate11inAprime(a, k) ◃ ——————[Subcase 1.1.1]

else ◃ ———————————————————————-[Subcase 1.2]
Let A = {a, b}.
◃ At least one of {(a, 1)}, {(b, 1)} is a loop. If there are not two loops,
◃ then there is a 1-end of a 10-error at the factor which does not
◃ correspond to a loop. Tests T (a), T (b) cannot both pass, since 1k failed.
if Test(T (b)) = pass then

E ← A2No11inAprime(a, b, k) ◃ ———————-[Subcase 1.2.1]
else

if Test(T (a)) = pass then
E ← A2No11inAprime(b, a, k) ◃——————[Subcase 1.2.2]

else
◃ A loop at each of a, b, or a location-equivalent subgraph.
E ←

{
{(a, 1)}, {(b, 1)}

}
◃ —————————–[Subcase 1.2.3]

return E

3. Robust Error Location for Binary Alphabets 71

a 11-error whose factors constitute D. Otherwise, it partitions D into approximate

halves B and C, and defines tests T and T ′, each of which has 1s in one (approximate)

half of D, and 0s elsewhere. If one of T, T ′ fails, then there is a 11-error within either

B or C, respectively, and the procedure is called recursively.

At any given step, Locate11s determines whether there may be errors across

the partition [B,C] of D. If neither B nor C contain an error, then there are either

one or two 11-errors across [B,C], in which case Locate11s calls the subprocedure

LocateOneOrTwo11sAcross. This subprocedure first calls SearchEndPoint

to identify the ends in B of the 11-errors across [B,C]. For each end identified in B,

another call to SearchEndPoint identifies its matching end in C.

If B contains one error, and C does not, then there may be one error across

[B,C]. In this case, Locate11s calls the subprocedure LocateOne11Across.

The case where C contains one error (and B does not) is symmetrical. All tests

conducted by LocateOne11Across avoid the error e = {(b1, 1), (b2, 1)} within B.

The first test, T , fails if {(b1, 1), (c, 1)} is an error, for some c ∈ C. In this case,

this subprocedure identifies c via one call to SearchEndPoint. The second test,

T ′, fails if {(b, 1), (c, 1)} is an error, for some b ∈ B \ {b1}, c ∈ C. In this case, this

subprocedure identifies b and c via two calls to SearchEndPoint. If both T and

T ′ pass, then there is no error across [B,C], in which case LocateOne11Across

returns the empty set.

The following lemma summarizes how Locate11s functions for the two subcases

in which it is called by our main algorithm.

Lemma 3.3.7 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

associated graph G has d ≤ 2 edges representing errors of strength at most 2. Assume

that 0k is a passing test and 1k is a failing test. Let A = {f ∈ [1, k] : {vf,1, vf,1} ∈

E(G) or ∃j ∈ [1, k] such that {vf,1, vj,0} ∈ E(G)} and let D = [1, k] \ A.

1. If G has neither loops nor 10-errors (Subcase 1.0), then Locate11s(D, k)

3. Robust Error Location for Binary Alphabets 72

identifies and returns the set of all errors in the given TP (k, 2).

2. If there is exactly one 11-error within D and exactly one error e of the form

{(a, 1)} or {(a, 1), (g, 0)} for a ∈ A, g ∈ D (Subcase 1.1.1), then Locate11s(D, k)

identifies and returns the set containing the only 11-error e′ which is within D.

Proof: 1. In Subcase 1.0, every error is a 11-error within D = [1, k].

2. In Subcase 1.1.1, every test T conducted within Locate11s(D, k) avoids e

by setting Ta = 0, therefore T fails if and only if it covers e′.

Now that we can identify 11-errors whenever they are the only errors in a set D,

we prove the correctness of the main procedure for Case 1, Has11sOrLoops (see

Algorithm 3.5 on Page 70).

Lemma 3.3.8 Let k = 2z for some integer z ≥ 1, and consider a TP (k, 2) whose

associated error graph G has d ≤ 2 edges (and E(G) is independent, in the sense

of Definition 2.1.1). Assume that 0k is a passing test, 1k is a failing test, and let

A = {f ∈ [1, k] : {vf,1, vf,1} ∈ E(G) or ∃j ∈ [1, k] such that {vf,1, vj,0} ∈ E(G)}.

Then the procedure Has11sOrLoops(A, k) returns the set E of all errors cor-

responding to the edges of either G or a graph G′ which is location-equivalent to G

(see Corollary 3.1.4).

Proof: Since 1k is a failing test, our TP (k, 2) has at least one error that is either

a loop or a 11-error. Therefore we are in Case 1. We now prove that for each subcase

(see the table on Page 62), the procedure Has11sOrLoops correctly identifies and

returns the set E of all errors corresponding to the edges of either G or a graph G′

which is location-equivalent to G

Subcase 1.0: We have |A| = 0, so there are neither loops nor 1-ends of 10-errors.

Therefore, only 11-errors are present in this TP (k, 2), and by Lemma 3.3.7, they are

returned by one call to Locate11s.

3. Robust Error Location for Binary Alphabets 73

Algorithm 3.6 Under the assumptions of Lemma 3.3.7, this procedure does the
following: if we are in Subcase 1.0, then Locate11s returns the set of all errors (one
or two 11-errors), and if we are in Subcase 1.1.1, then Locate11s returns the set
containing the only 11-error, which is within D.

procedure Locate11s(D, k) ◃ ——————-[Subcase 1.0] or [Subcase 1.1.1]
E ← E ′ ← E ′′ ← ∅
if |D| = 2 then Let D = {b, c}, and E ← {(b, 1), (c, 1)}.
else

Partition D as [B,C] such that |C| ≤ |B| ≤ |C|+ 1.

Define T by: Tf ←
{

1 if f ∈ B
0 otherwise

Define T ′ by: T ′
f ←

{
1 if f ∈ C
0 otherwise

if Test(T) = fail then E ← Locate11s(B, k)

if Test(T ′) = fail then E ′ ← Locate11s(C, k)

if E = ∅ = E ′ then E ′′ ← LocateOneOrTwo11sAcross(B,C, k)

if |E| = 1 and E ′ = ∅ then E ′′ ← LocateOne11Across(E,B,C, k)

if E = ∅ and |E ′| = 1 then E ′′ ← LocateOne11Across(E ′, C,B, k)

return E ∪ E ′ ∪ E ′′

◃ Precondition: only 11-errors across [B,C] are present in the given TP (k, 2).
◃ This subprocedure of Locate11s returns the set containing those 11-errors.
procedure LocateOneOrTwo11sAcross(B,C, k)

V ← SearchEndPoint(1k, B), and E ′′ ← ∅
for b ∈ V do

Define T by: Tf ←
{

1 if f ∈ {b} ∪ C
0 otherwise

V ′ ← SearchEndPoint(T,C)
for c ∈ V ′ do E ′′ ← E ′′ ∪ {(b, 1), (c, 1)}

return E ′′

◃ Precondition: E contains a 11-error which is within B. If there is a 11-error
◃ across [B,C], then this subprocedure returns the set containing that 11-error.
procedure LocateOne11Across(E,B,C, k)

Let E =
{
{(b1, 1), (b2, 1)}

}
. ◃ Avoid E, check for an error across [B,C].

Define T by: Tf ←
{

1 if f ∈ {b1} ∪ C
0 otherwise

if Test(T) = fail then
{c} ← SearchEndPoint(T,C), then return {(b1, 1), (c, 1)}.

else

Define T ′ by: T ′
f ←

{
1 if f ∈ B ∪ C \ {b1}
0 otherwise

if Test(T ′) = fail then
{c} ← SearchEndPoint(T ′, C)
{b} ← SearchEndPoint(T ′, B), then return {(b, 1), (c, 1)}.

else return ∅

3. Robust Error Location for Binary Alphabets 74

Algorithm 3.7 Under the assumptions of Lemma 3.3.8, the following subprocedures
for Case 1 have the following preconditions: A1No11inAprime requires that A =
{a} and T (a) is a passing test, A1Locate11inAprime requires that A = {a} and
T (a) is a failing test, and A2No11inAprime requires that A = {a, b} and T (b) is a
passing test. Each subprocedure returns the set E of all errors corresponding to edges
of either G or a location-equivalent graph G′.

procedureA1No11inAprime(a, k) ◃———————————–[Subcase 1.1.0]
For each test T within the following call to FindPassingTest, we fix Ta = 1
and we index all subsequent tests by the set X of factors, where factor k + 1
is a dummy factor whose values do not influence results.
X ← [1, k + 1] \ {a}.
P ← FindPassingTest(X, k)
if P = null then E ← {(a, 1)} ◃————————————[Subcase 1.1.0.1]
else

◃ Two errors: a 10-error and a 11-error.

Define T ′ by: T ′
f ←

{
0 if f = a
Pf otherwise

{b, c} ← SearchEndPoint(T ′, A′), where A′ = X \ {k + 1}.
if Test(T (b)) = fail then

e11 ← {(a, 1), (b, 1)} ◃ —————————————–[Subcase 1.1.0.2]
e10 ← {(a, 1), (c, 0)}

else
e11 ← {(a, 1), (c, 1)} ◃ —————————————–[Subcase 1.1.0.3]
e10 ← {(a, 1), (b, 0)}

E ← {e11, e10}
return E

procedureA1Locate11inAprime(a, k) ◃—————————-[Subcase 1.1.1]
A′ ← [1, k] \ {a}
◃ Every test T conducted within Locate11s(A′, k), has Ta = 0 since a ̸∈ A′.
{e11} ← Locate11s(A′, k), and let e11 = {(b, 1), (c, 1)}.
if Test(T (b)) = fail then

if Test(T (c)) = fail then e1 ← {(a, 1)} ◃ ——————-[Subcase 1.1.1.1]
else e1 ← {(a, 1), (b, 0)} ◃—————————————-[Subcase 1.1.1.2]

else
if Test(T (c)) = fail then e1 ← {(a, 1), (c, 0)} ◃ ———–[Subcase 1.1.1.3]
else
{d} ← SearchEndPoint(T (a), A′ \ {b, c})
e1 ← {(a, 1), (d, 0)} ◃ —————————————–[Subcase 1.1.1.4]

return {e11, e1}

procedure A2No11inAprime(a, b, k) ◃ —–[Subcase 1.2.1] or [Subcase 1.2.2]
A′ ← [1, k] \ {a, b}, and let e1 = {(b, 1)}.
{c} ← SearchEndPoint(T (a), A′), and e10 ← {(a, 1), (c, 0)}
return{e10, e1}

3. Robust Error Location for Binary Alphabets 75

Subcase 1.1: We have |A| = 1, so let A = {a}. There is at least one error which

is either a loop {(a, 1)} or a 10-error {(a, 1), (g, 0)} for some factor g ∈ A′ = [1, k]\A.

If the test T (a) passes, then there are no 11-errors within A′, since T
(a)
f = 1 for all

factors f ∈ A′. This is case 1.1.0., whose correctness is given below. Otherwise, T (a)

necessarily fails due to a 11-error within A′ (by the definition of T (a)). This is Subcase

1.1.1., whose correctness is also given below.

We remark here that there are two subcases of Subcase 1.1 that we do not

consider, since we assume that the edge set of G is independent (in the sense of the

corresponding interactions - see Definition 2.1.1: E =
{
{(a, 1)}, {(a, 1), (b, 0)}

}
and

E =
{
{(a, 1)}, {(a, 1), (b, 1)}

}
.

Subcase 1.1.0: The procedure A1No11inAprime first determines whether we

have a loop {(a, 1)} or a location-equivalent type-a subgraph whose edges correspond

to a pair of nonlocatable errors of the form
{
{(a, 1), (x, 0)}, {(a, 1), (x, 1)}

}
.

For each test T within this procedure’s call to FindPassingTest, we fix Ta =

1 and we index all subsequent tests by the set X of factors, where factor k + 1

is a dummy factor whose values do not influence results. By Theorem 3.2.11, the

procedure FindPassingTest (Version 2) returns either null, or it returns a passing

test P .

In the former case, {(a, 1)} is either a loop or a 1-end common to a pair of

nonlocatable errors corresponding to a type-a nonlocatable subgraph, so we are in

Subcase 1.1.0.1. Therefore, E = {(a, 1)} returned by A1No11inAprime is correct.

In the latter case, we know that {(a, 1)} is not a loop and |A| = 1, so {(a, 1)} is

the 1-end of the only 10-error present, e = {(a, 1), (b, 0)} for some factor b ∈ A′. We

also know that the test 1k failed, but there is no 11-error in A′ = [1, k] \A, therefore

{(a, 1)} is an end of a 11-error, e′ = {(a, 1), (c, 1)} for some factor c ∈ A′, c ̸= b. In

particular, both {(b, 0)} and {(c, 1)} must be covered by the same test T since neither

end was covered by T , because T is a passing test.

Next, notice the symmetry between Subcases 1.1.0.2 and 1.1.0.3 (refer to the

3. Robust Error Location for Binary Alphabets 76

table on Page 62): if we relabel the factors a, b in Subcase 1.1.0.2 as b, a, then we get

Subcase 1.1.0.3. The two subcases are equivalent by symmetry; the former occurs

when T (b) fails, and the latter occurs otherwise.

We apply Lemma 3.3.1 with respect to T ′ and the partition [A′, A] of [1, k]. Let

R be the set returned by SearchEndPoint(T ′, A′), where A′ = X \ {k + 1}. Since

b, c ∈ A′, we also have b, c ∈ R. Furthermore, since e and e′ are the only errors,

and the 1-end (a, 1) is within A (i.e. a ̸∈ A′), the set R does not contain a (i.e.

R = {b, c}).

If T (b) is a failing test, then {(b, 1)} is a 1-end of our 11-error, so {(c, 0)} is the

0-end of our 10-error, and we are in Subcase 1.1.0.2. Otherwise, we are in Subcase

1.1.0.3.

Subcase 1.1.1: Recall that in Subcase 1.1, there is at least one error e of the form

{(a, 1)} or {(a, 1), g, 0)} for some g ∈ A′. We call the procedureA1Locate11inAprime

if T (a) is a failing test, which only occurs if there is a 11-error e11 within A′ = [1, k]\A.

By Lemma 3.3.7, Locate11s(A′, k) returns a set containing e11 = {(b, 1), (c, 1)} for

some factors b, c ∈ A′.

Recall that {(a, 1)} could be a loop or a 1-end of a 10-error, and consider the tests

T (b) and T (c). If both fail, then each test covers an error. However, both tests avoid

e11, and there is no factor f such that T
(b)
f = 0 = T

(c)
f , so the tests cannot both cover a

common 10-error. Hence, {(a, 1)} is a loop, and we are in Subcase 1.1.1.1. Therefore,

A1Locate11inAprime(a, k) correctly returns the set
{
{(a, 1)}, {(b, 1), (c, 1)}

}
It is easy to see that Subcases 1.1.1.2 and 1.1.1.3 are equivalent, by symmetry

(refer to the table on Page 62): if we relabel the factors b, c in Subcase 1.1.1.2 as c, b,

then we get Subcase 1.1.1.3. If T (b) fails and T (c) passes, then {(a, 1)} is not a loop,

and the only factor set to 0 in T (b) is b, so we have a 10-error {(a, 1), (b, 0)}, and

we are in Subcase 1.1.1.2. Therefore, A1Locate11inAprime(a, k) correctly returns

the set
{
{(a, 1), (b, 0)}, {(b, 1), (c, 1)}

}
. However, if T (c) fails and T (b) passes, then we

are in Subcase 1.1.1.3, and A1Locate11inAprime(a, k) correctly returns the set

3. Robust Error Location for Binary Alphabets 77

{
{(a, 1), (c, 0)}, {(b, 1), (c, 1)}

}
If both T (b) and T (c) pass, then {(a, 1)} is not a loop, and we have a 10-error

e1 = {(a, 1), (d, 0)} for some factor d ∈ A′ \ {b, c}. This is Subcase 1.1.1.4, and this

error is covered by the (failing) test T (a).

We apply Lemma 3.3.1 with respect to T (a) and the partition [A′\{b, c}, A∪{b, c}]

of [1, k]. Let R be the set returned by SearchEndPoint(T (a), A′ \ {b, c}). Since

d ∈ A′, we also have d ∈ R. Furthermore, since e11 and e1 are the only errors, and

e11 and the 1-end of e1 are both within A ∪ {b, c} (i.e. a, b, c ̸∈ A′ \ {b, c}), the set R

does not contain a, b, or c (i.e. R = {d}).

Subcase 1.2: We have |A| = 2, so let A = {a, b}, and A′ = [1, k] \ A. There are

no 11-errors, since each of a, b must be either a loop or a 1-end of a 10-error, and the

total number of errors in the given TP (k, 2) is at most 2. Since 1k is a failing test,

at least one of a, b must be a loop. Notice the symmetry between Subcases 1.2.1 and

1.2.2 (refer to the table on Page 62): if we relabel the factors a, b in Subcase 1.2.1 as

b, a, then we get Subcase 1.2.2.

If T (b) passes, then {(a, 1)} is not a loop, therefore e1 = {(b, 1)} is a loop. Further-

more, {(a, 1)} is the 1-end of a 10-error whose 0-end cannot be {(b, 0)}, otherwise T (b)

would have failed. Therefore we are in Subcase 1.2.1, and a call toA2No11inAprime

is performed. The 10-error e10 = {(a, 1), (c, 0)}, for some c ∈ A′, is covered by T (a).

We apply Lemma 3.3.1 with respect to T (a) and the partition [A′, A] of [1, k].

Since c ∈ A′, we also have c ∈ R. Furthermore, since e1 and e10 are the only errors,

and a, b ̸∈ A′, then set R contains neither a nor b (i.e. R = {c}).

Subcase 1.2.2 is, similarly, handled by a call to A2No11inAprime.

However, if both T (a) and T (b) fail, then we are in Subcase 1.2.3, and we have

two loops {(a, 1)} and {(b, 1)}, or a set of errors from a nonlocatable subgraph which

is location-equivalent to G. Note that the first and third graphs depicted in the table

on Page 62 are distinct, but no set of tests can distinguish them from each other or

from a pair of loops at a and b. In this case, Has11sOrLoops correctly returns the

3. Robust Error Location for Binary Alphabets 78

set containing both loops,
{
{(a, 1)}, {(b, 1)}

}

3.4 Algorithm Analysis

In this section, we prove that Algorithm 3.3 conducts at most 4(log2 k)
2 +O(log2 k)

tests. After several auxiliary lemmas, this result is given as Theorem 3.4.9.

Before we give the maximum number of tests conducted by SearchEndPoint,

we need the following auxiliary lemma. Some details in the proof of the following

lemma come from a special case of Theorem 1 on Page 428 of [38].

Lemma 3.4.1 Let Sn be a sequence of integers satisfying

Sn =

 0 if n = 1

2 + S⌈n/2⌉ if n > 1

Then Sn ≤ 2⌈log2 n⌉ for all n ≥ 1.

Proof: Let S(n) = Sn, and let P (z) = S(2z) for any integer z ≥ 0. We first prove

the following claim C.

C: For every integer z ≥ 0, P (z) ≤ 2z.

We proceed by induction on z. If z = 0, then the inequality clearly holds, since

P (0) = S(1) = 0.

Now, suppose that for some integer z ≥ 0, we have P (z) ≤ 2z. Consider P (z+1).

By definition, we have:

P (z + 1) = S(2z+1) = 2 + S(2z) = 2 + P (z).

3. Robust Error Location for Binary Alphabets 79

By the induction hypothesis, P (z) ≤ 2z. Hence

P (z + 1) = 2 + P (z) ≤ 2 + 2z = 2(z + 1).

Therefore claim C holds.

Next, we prove that S(n) ≤ 2⌈log2 n⌉ for all n ∈ Z+.

If there exists an integer z ≥ 0 such that n = 2z, then we are done, by our claim

C above.

Suppose there is no such integer z. Then 2z
′
< n < 2z

′+1 for some integer z′ ≥ 0.

It is easy to see that Sn is a nondecreasing sequence, therefore

S(n) ≤ S(2z
′+1) = P (z′ + 1).

We then apply our claim C to see that P (z′ + 1) ≤ 2(z′ + 1). Finally, we notice

that log2 n < z′ + 1, therefore ⌈log2 n⌉ = z′ + 1. Hence

S(n) ≤ S(2z
′+1) ≤ 2(z′ + 1) = 2⌈log2 n⌉.

Now, consider a call to SearchEndPoint(T,D) in which T covers exactly one

error e (which is within D), and every failing test within recursive subcalls covers

no errors other than e. The maximum number of tests conducted by this call to

SearchEndPoint(T,D) is given by the following lemma.

3. Robust Error Location for Binary Alphabets 80

Lemma 3.4.2 Consider one call to SearchEnd Point(T,D), under the assump-

tions of Lemma 3.3.1. Let B,C, T ′, and T ′′ be as defined in SearchEndPoint(T,D)

(see Algorithm 3.2 on Page 53), and let e be the only error covered by T . If every

failing test defined within this call to SearchEnd Point (including within its recur-

sive subcalls) covers no errors except for e, then SearchEndPoint(T,D) conducts

at most 2⌈log2 n⌉ tests, where n = |D| ≤ k.

Proof: Suppose that the conditions of Lemma 3.3.1 are satisfied, and let e be the

only error covered by T . Suppose that every failing test defined within this call to

SearchEnd Point (including within its recursive subcalls) covers no errors except

for e.

Let n = |D|, and let S(n) be the maximum number of tests conducted by this

call to SearchEndPoint(T,D). It is easy to see that at most one of T ′, T ′′ is a

failing test, since T ′
D and T ′′

D are disjoint, therefore SearchEndPoint(T,D) makes

at most one recursive subcall. Without loss of generality, suppose that T ′ is a failing

test, and SearchEndPoint(T ′, B) is called. Then S(n) satisfies the recurrence re-

lation given in Lemma 3.4.1, with Sn = S(n). Therefore S(n) ≤ 2⌈log2 n⌉.

However, not every call to SearchEndPoint(T,D) will follow the restrictions

given in the preceding lemma. Our given TP (k, 2) has up to two errors, so T may

cover both of those errors. Furthermore, it is possible for the tests T ′ and T ′′ defined

within SearchEndPoint to cover distinct errors e′ and e′′, respectively, even when

T to covers only one of e′, e′′.

Now, consider the set R returned by a call to SearchEndPoint(T,D), and

let f ∈ R. Note that f corresponds to an end (f, v) of some faulty interaction,

and {(f, v)} is covered by TD (i.e. Tf = v and f ∈ D). Consequently, |R| ≤ 2,

by Lemma 3.3.1. This bound on the cardinality of R enables the following lemma

regarding the maximum number of tests conducted by SearchEndPoint.

3. Robust Error Location for Binary Alphabets 81

Lemma 3.4.3 Consider one call to SearchEndPoint(T,D), under the assump-

tions of Lemma 3.3.1. Let B,C, T ′, and T ′′ be as defined in SearchEndPoint(T,D)

(se Algorithm 3.2 on Page 53). The procedure SearchEndPoint(T,D) conducts at

most 4 log2 n+ 2 tests, where n = |D| ≤ k.

Proof: We begin by showing that if SearchEndPoint(T,D) makes two recursive

subcalls SearchEndPoint(T ′, B), SearchEndPoint(T ′′, C), then neither of those

subcalls, nor any subcalls within them make two recursive calls at any given level of

recursion.

Suppose that the conditions of Lemma 3.3.1 are satisfied, and suppose that T ′

and T ′′ are both failing tests. Notice that the two subtests T ′
D, T

′′
D are disjoint,

therefore any error covered by both T ′ and T ′′ is within D′, and also covered by T .

This contradicts assumption 1 of Lemma 3.3.1, so if T ′ and T ′′ are both failing tests,

then each of T ′, T ′′ covers a distinct error. Let e′ and e′′ be the distinct errors covered

by T ′ and T ′′, respectively. Then e′ is either within B or across the partition [B,B′]

of [1, k]. In either case, at least one end {(b, v)} of e′ is within B and covered by T ′,

and thus not covered by T ′′, since T ′′
B = TB = T ′

B. Next, notice that every test T ∗

defined within either SearchEndPoint(T ′′, C) or one of its recursive subcalls also

avoids {(b, v)}, since T ∗
f = Tf for all f ∈ B.

Since at most two errors are present in our given TP (k, 2), every failing test de-

fined within SearchEndPoint(T ′′, C) covers only e′′. Therefore, by Lemma 3.4.2,

SearchEndPoint(T ′′, C) conducts at most 2⌈log2 nC⌉ tests, where nC = |C|. Simi-

larly, T ′ does not cover e′′, nor does any test defined within SearchEndPoint(T ′, B)

(including within its recursive subcalls), therefore SearchEndPoint(T ′, B) con-

ducts at most 2⌈log2 nB⌉ tests, where nB = |B|.

Next, we show that if SearchEndPoint(T,D) does make two recursive calls

at the same level of recursion, then it conducts fewer than 4 log2 n + 2 tests. Let

S(n) be the maximum number of tests conducted by a call to SearchEndPoint

3. Robust Error Location for Binary Alphabets 82

that satisfies the conditions of Lemma 3.4.2, and let V (i) be the maximum number

of tests conducted by SearchEndPoint(T,D) when it makes two recursive calls at

depth i of its search tree.

It is easy to see that V (i) = 2i + 2S
(
⌈ n
2i
⌉
)
, where 1 ≤ i ≤ ⌈log2 n⌉. We apply

Lemma 3.4.2 to get:

V (i) ≤ 2i+ 4

⌈
log2

⌈
n

2i

⌉⌉
.

If n = 2z for some integer z ≥ 1, a few manipulations yield
⌈
log2⌈ n2i ⌉

⌉
= log2 n−i.

Substituting this into the previous inequality, taking into account that i ≥ 1, we get:

V (i) ≤ 4 log2 n− 2i ≤ 4 log2 n− 2.

If n is not a power of two, we have 2z < n < 2z+1. In this case, we have⌈
log2⌈ n2i ⌉

⌉
< log2

(
2z+1

2i

)
= z+1− i. Substituting this into the first inequality, taking

into account that z < log2 n and i ≥ 1, we get:

V (i) < 4 log2 n+ 4− 2i ≤ 4 log2 n+ 2.

We now analyze Locate11s(D, k), a recursive subprocedure ofHas11sOrLoops.

We begin with the case where there is exactly one 11-error within D.

Lemma 3.4.4 Under the assumptions of Lemma 3.3.7, Locate11s(D, k) conducts

at most 4 log2 k tests when there is only one 11-error within D.

Proof: Assume that there is exactly one error within D. Then at most one of

T, T ′ fails at any given level of recursion within Locate11s(D, k).

3. Robust Error Location for Binary Alphabets 83

Suppose that T and T ′ pass at the top level of the search tree. Then E = ∅ = E ′,

and Locate11s calls LocateOneOrTwo11sAcross without making any more

recursive calls. This procedure first identifies one 1-end within B, and then one 1-

end within C, by making a total of two calls to SearchEndPoint, each of which

conducts at most 2 log2 k tests, by Lemma 3.4.2.

Suppose instead that one of T, T ′ fails. Then Locate11s recursively calls itself

one or more times prior to calling one of its subprocedures. Let S(n) be the maximum

number of tests conducted by Locate11s(D, k), where n = |D|, not including tests

conducted by either of its subprocedures.

Since there is exactly one error within D, at most one of T, T ′ can fail at any

given level of recursion, therefore Locate11s calls itself at most once per level of

recursion. Then S(n) satisfies the recurrence relation S(n) = 2 + S
(
⌈n
2
⌉
)
, and by

Lemma 3.4.1, we have S(n) ≤ 2⌈log2 n⌉ ≤ 2 log2 k. Therefore Locate11s(D, k)

conducts at most 2 log2 k tests before it enters a level of recursion where it must do

one of the following:

(a) call LocateOneOrTwo11sAcross, or

(b) recursively call itself again.

We analyze the options with the fewest tests first. If it selects option (a) directly,

then it conducts at most 2 log2 k more tests, as we have already shown. Furthermore,

since it called LocateOneOrTwo11sAcross, we have E = ∅ = E ′, therefore it

does not call LocateOne11Across, and it returns the set E ′′ after conducting a

total of 4 log2 k tests.

If it selects option (b), it can continue until some depth i ≤ log2 k. At this

point, the base case call at depth i returns a set E or E ′ (say E, without loss of

generality) to the previous level i − 1. Then |E| = 1 and E ′ = ∅, and one call to

LocateOne11Across(E,B∗, C∗, k) is made, for some disjoint sets B∗, C∗. How-

ever, there is exactly one error e within D, and it was already found within B∗. Both

tests defined within LocateOne11Across avoid e, therefore each call to this proce-

3. Robust Error Location for Binary Alphabets 84

dure conducts exactly 2 tests when there is no error across [B∗, C∗]. At the (i− 1)th

level of recursion, E ′′ = ∅, so E ∪ E ′ ∪ E ′′ = E is returned to the previous depth

i − 2. At this level, we again have |E| = 1 and E ′ = ∅, so the process of calling

LocateOne11Across can repeat itself once at each level of recursion. The depth

of the search tree is at most log2 k, therefore at most 2 log2 k tests are conducted, in

total, by the calls to LocateOne11Across. Therefore the total number of tests

conducted by Locate11s(D, k) is still 4 log2 k when there is only one 11-error within

D.

We use the preceding result to see the maximum number of tests conducted by

Locate11s(D, k), even when there are two errors within D.

Lemma 3.4.5 Under the assumptions of Lemma 3.3.7, Locate11s(D, k) conducts

at most 2 + 10 log k tests.

Proof: Suppose that T and T ′ both fail. Then Locate11s(D, k) calls both

Locate11s(B, k) and Locate11s(C, k). Since B and C are disjoint, we apply

Lemma 3.4.4 to each instance to see that the total number of tests in this instance is

at most 2 + 2(4 log k) = 2 + 8 log k.

Suppose instead that exactly one of T, T ′ fails at one or more levels of recursion

prior to both failing. Then at most 2 log2 k tests are conducted prior to Locate11s

being ’split’ into two different instances In this case, the total number of tests is at

most 2 + 10 log2 k.

Alternatively, suppose that exactly one of T and T ′ fails (say, T), and one error

is found within B, in at most 4 log2 k tests, and then stored in E. As in proof

of the previous lemma, the depth of the search tree is at most log2 k, therefore

LocateOne11Across is called at most log2 k times. Suppose that a call to this

procedure at depth i in the search tree of Locate11s(D, k) yields a failing test.

3. Robust Error Location for Binary Alphabets 85

Then LocateOne11Across calls SearchEndPoint up to twice, and each call to

SearchEndPoint identifies an end of the error not already stored in E in at most

2 log2 k tests, by Lemma 3.4.2. Then the error-set E∪E ′∪E ′′ returned from depth i to

the previous depth has cardinality two, and no further calls to LocateOne11Across

are made. However, up to log2 k − 1 calls to LocateOne11Across may have been

made prior to the final one, and in each of those calls, two tests were conducted. In

this case, the total number of tests conducted is at most 4 log2 k+4 log2 k+2 log2 k =

10 log2 k.

Therefore, LocateOne11Across conducts at most 2 + 10 log2 k tests.

Next, we analyze the remaining subprocedures for Case 1.

Lemma 3.4.6 Under the assumptions of Lemma 3.3.8, the maximum number of tests

conducted by each of the following is:

A1No11inAprime: 5 + 6 log2 k

A1Locate11inAprime: 2 + 6 log2 k

A2No11inAprime: 2 log2 k.

Proof: A1No11inAprime calls FindPassingTest, which conducts at most

2 log2 k + 2 tests, by Lemma 3.2.12. If there is no passing test, then we proceed no

further. Otherwise, it calls SearchEndPoint once in order to find two endpoints,

which requires at most 4 log2 k + 2 tests. One further test, T (b), is conducted, for a

total of 6 log2 k + 5 tests.

Next, we see thatA1Locate11inAprime calls Locate11s once, to identify the

sole 11-error within D, which requires at most 4 log2 k tests, by Lemma 3.4.4. It then

conducts two further tests T (b), T (c) and potentially calls SearchEndPoint once,

which conducts at most 2 log2 k tests, by Lemma 3.4.2. Therefore at most 2+6 log2 k

tests are conducted by A1Locate11inAprime.

3. Robust Error Location for Binary Alphabets 86

Finally, A2No11inAprime calls SearchEndPoint once to identify one end-

point, thus requiring at most 2 log2 k tests.

We now analyze the number of tests required in Case 1.

Lemma 3.4.7 Under the assumptions of Lemma 3.3.8, at most 2 + 10 log2 k tests

are conducted by the procedure Has11sOrLoops.

Proof: Our procedure for Case 1, Has11sOrLoops, executes only one of its

subprocedures (see Algorithm 3.5).

If A = ∅, then Has11sOrLoops calls Locate11s, which conducts at most

2 + 10 log2 k tests, by Lemma 3.4.5.

Otherwise, if |A| = 1, then this procedure conducts one additional test, and calls

either A1No11inAprime or A1Locate11inAprime. The former conducts at most

5 + 6 log2 k tests, and the latter conducts at most 2 + 6 log2 k tests, by Lemma 3.4.6.

Therefore if |A| = 1, then this procedure conducts at most 6 + 6 log2 k tests.

Finally, if |A| = 2, then this procedure conducts at most two more tests prior to

callingA2No11inAprime, which conducts at most 2 log2 k tests, also by Lemma 3.4.6.

Therefore if |A| = 2, then this procedure conducts at most 2 + 2 log2 k tests.

Clearly the maximum number of tests conducted by this procedure is 2+10 log2 k,

which occurs when A = ∅.

Next, we analyze the number of tests required in Case 0.

Lemma 3.4.8 Under the assumptions of Lemma 3.3.6, at most 2+4 log2 k tests are

conducted by the procedure No11sNorLoops.

3. Robust Error Location for Binary Alphabets 87

Proof: If we are in Subcase 0.1, this procedure identifies up to two endpoints

via one call to SearchEndPoint, which requires at most 4 log2 k + 2 tests, by

Lemma 3.4.3. Otherwise, we are in Subcase 0.2, and we call Locate01 twice, each

time conducting one test, and subsequently calling SearchEndPoint in order to

identify one endpoint, for a total of 1 + 2 log2 k tests, by Lemma 3.4.2. Therefore the

total number of tests conducted is at most 2 + 4 log2 k.

We conclude by analyzing the number of tests executed by the main procedure,

LocateAllErrors.

Theorem 3.4.9 Under the assumptions of Theorem 3.3.5, LocateAllErrors ex-

ecutes at most 2
(
1 + o(1)

)
(log k)2 +O(log k) tests.

Proof: Step 0 calls FindPassingTest, which requires at most 2 log2 k+ 2 tests.

If we find no passing test, the algorithm terminates.

Step 1 calls SearchEndPoint up to
(
1+o(1)

)
log2 k times; that is, at most once

for each row in the covering array C. Several calls may return the same singleton set,

and each iteration of SearchEndPoint in which a singleton set is returned, requires

at most 2 log2 k tests, by Lemma 3.4.2. If at any point, the SearchEndPoint

procedure returns a set containing two factors, we exit the loop and conclude Step

1. The iteration in which this happened would require at most 4 log2 k + 2 tests, by

Lemma 3.4.3. Therefore Step 1 conducts at most 2
(
1 + o(1)

)
(log2 k)

2 + O(log2 k)

tests.

In Step 2, we call either No11sNorLoops or Has11sOrLoops, both of which

conduct O(log k) tests, by Lemmas 3.4.8 and 3.4.7.

We see that the total number of tests conducted by all three steps is at most

2
(
1 + o(1)

)
(log k)2 +O(log k).

3. Robust Error Location for Binary Alphabets 88

To summarize, the performance of LocateAllErrors is nearly identical to the

performance of DiscoverEdges when at most two errors are present. However, our

algorithm has a worst-case runnning time of 2
(
1+o(1)

)
(log k)2+O(log k) tests, which

is the expected running time of the algorithm of Mart́ınez et al. [32]. Furthermore,

our algorithm does not require the assumption that errors are locatable.

Chapter 4

Combinatorial Group Testing and

Error Location with Safe Values

Suppose we have a set of k items, and we wish to identify which items are defective

by testing subsets of items; these subsets are called groups or pools. A negative

pool contains no defective items, and a positive pool contains at least one defective

item. This is known as group testing, and it has been studied since World War II,

when Robert Dorfman and David Rosenblatt developed the field in order to efficiently

screen pools of blood samples for syphilis.

There are two main categories of group testing. In probabilistic group testing

(PGT), defective items follow a particular probability distribution, and the goal is

to minimize the expected number of tests required to identify all defective items.

We focus on combinatorial group testing (CGT), where defective items are not

assumed to follow any particular probability distribution. For consistency with our

earlier terminology, we refer to a negative pool of items as a passing set, and we

refer to a positive pool of items as a failing set.

Now, we discuss a more general CGT problem. A failing set may contain no

defective items; rather, it may fail due to the interaction among (some of) its items.

89

4. Combinatorial Group Testing and Error Location with Safe Values 90

In the context of group testing, we define faulty interactions as follows.

Definition 4.0.10 Let S be a set containing k items, and let S ′ ⊆ S be a failing set,

such that |S ′| = t for some t ∈ [1, k]. If S ′ contains no proper subset S ′′ that also fails,

then S ′ is a faulty interaction (or error) of strength t. If S contains only errors

of strength t, then a CGT algorithm which correctly returns all faulty interactions in

S is a strength-t CGT algorithm. Similarly, if S contains errors of strengths up

to t, then a CGT algorithm which correctly returns all faulty interactions in S is a

strength-t CGT algorithm.

Our goal is to identify all faulty interactions in a given set while minimizing the

number of tests required.

In this chapter, we summarize existing results for combinatorial group testing.

The algorithms which conduct the fewest tests relative to k, for strengths 1 and up

to 2, are adaptive (see Definition 1.1.5). At this time of writing, the only known

adaptive algorithm for a strength greater than two is Algorithm 5.1, which is a new

strength-3 CGT algorithm.

We briefly summarize the nonadaptive method which conducts the fewest tests

relative to k. In Chapter 5, we compare our new algorithm to the aforementioned

nonadaptive method. We remark here on a key advantage of an adaptive algorithm

over a nonadaptive one: the latter requires knowledge of an upper bound on the

number of faulty interactions, while the former does not!

For a book that covers nonadaptive testing, variations on the testing problem,

and the history of group testing, see Du and Hwang [17].

In addition to summarizing relevant group testing algorithms, we show how these

methods can be applied to a testing problem when safe values are known. In Sec-

tion 4.1, we show how group testing can be applied to a testing problem where all

errors are of strength 1. In Section 4.2, we give an adaptive algorithm for combinato-

rial group testing where all faulty interactions have strength at most 2. In Section 4.3,

4. Combinatorial Group Testing and Error Location with Safe Values 91

we show how the strength-2 CGT algorithm can be applied to testing problems where

each faulty interaction has strength up to 2. The algorithms presented in Sections 4.2

and 4.3 are adapted to our notation; the original versions are due to Mart́ınez et

al. [32].

4.1 Pointwise Group Testing and Strength-1 ELAs

with Safe Values

Consider a set S containing k items, one of which is defective. It is well-known that

we can easily identify the defective item in at most ⌈log2 k⌉ tests by using a simple

binary search, which is sometimes referred to as binary splitting in the group testing

literature.

More generally, suppose that S contains d defective items. We can identify them

in at most d⌈log2 k⌉ tests by conducting d binary searches, where each binary search

identifies one defective item, which we subsequently remove from S. We note here

that this process can be used even if d is not known in advance because S will be a

passing set once all of its defective items have been removed.

We now show how a strength-1 CGT algorithm can be used to adaptively build

a strength-1 ELA for the graph associated with a testing problem that has safe val-

ues (see Definition 2.2.10). Consider a TP
(
k, (g1, g2, ..., gk)

)
which has safe values

s1, s2, ..., sk and contains only strength-1 errors. Suppose that T is a failing test. Then

identifying all strength-1 errors covered by T is equivalent to identifying all defective

items in the set S = {(f, Tf) : f ∈ [1, k]}. Furthermore, if we know that all defective

items are in a subset S ′ ⊆ S such that S ′ = {(f, Tf) : f ∈ A} for some A ⊆ [1, k],

4. Combinatorial Group Testing and Error Location with Safe Values 92

then those items are also covered by the test T ′ defined by

T ′
f =

 Tf if f ∈ A

sf otherwise

Therefore, if there are d′ strength-1 errors covered by T , they can be identified

by at most d′⌈log2 k⌉ tests, via d′ iterations of a binary search procedure.

Conversely, if we have a set of k items, finding the defective ones among them is

equivalent to identifying the strength-1 errors in a TP (k, 2), where each item corre-

sponds to a pair (f, 1) for f ∈ [1, k], T = 1k is a failing test, and s1 = s2 = ... = sk = 0

are safe values.

We remark here that, given any TP
(
k, (g1, g2, ..., gk

)
with safe values, we can

relabel values in each factor so that s1 = s2 = ... = sk = 0, without loss of generality.

This leads us to the following definition.

Definition 4.1.1 Let T be a test that can be applied to a TP
(
k, (g1, g2, ..., gk)

)
. The

unique set CT = {f ∈ [1, k] : Tf ̸= 0} is called the set (of factors) corresponding

to T .

Given a set of factors A ⊆ [1, k] and a test T such that A ⊆ CT , the following

procedure is used to translate between the two testing contexts, CGT and ELAs with

Safe Values, by matching the factor-set A to a test T ′ such that CT ′ = A.

Algorithm 4.1 Precondition: T is a test for a TP
(
k, (g1, g2, ..., gk)

)
which has safe

values s1 = s2 = ... = sk = 0, and A ⊆ CT ⊆ [1, k].
This procedure matches the set A to a test T ′ such that A = CT ′ ; it returns fail if T ′

fails, and it returns pass, otherwise.

procedure TestSet(A, T)

return Test(T ′) where T ′ is defined by: T ′
f ←

{
Tf if f ∈ A
0 otherwise

4. Combinatorial Group Testing and Error Location with Safe Values 93

Now, consider a TP
(
k, (g1, g2, ..., gk)

)
with safe values s1 = s2 = ... = sk = 0, and

let g = max{g1, g2, ..., gk}. We can build a set of g − 1 tests such that every possible

strength-1 error in the TP
(
k, (g1, g2, ..., gk)

)
is covered by exactly one of those tests.

Indeed, consider the test T (i), i ∈ [1, g − 1], defined by

T (i)f =

 i if i ≤ gf − 1

0 otherwise

It is easy to see that the strength-1 interaction {(f, v)}, with f ∈ [1, k] and

v ∈ [1, gf − 1], is covered by T (v). Therefore, we can identify all errors in our given

testing problem by running the procedure equivalent to CGT for each test T (i),

i ∈ [1, g − 1]. The pseudocode for strength-1 error location with safe values via

strength-1 CGT is given as Algorithm 4.2 on Page 95.

We now analyze the maximum number of tests conducted by Algorithm 4.2.

Theorem 4.1.2 Let k ≥ 2, and gi ≥ 2 for all i ∈ [1, k]. Consider a TP
(
k, (g1, g2, ..., gk)

)
that has safe values s1, s2, ..., sk and contains only strength-1 errors. Let g = max{g1, g2, ..., gk}

be fixed, and let d be the number of errors present.

Then ErrorLocateWithSafeValues
(
k, (s1, s2, ..., sk), (g1, g2, ..., gk)

)
conducts

at most g − 1 + d⌈log2 k⌉ tests.

Proof: Let di be the number of errors covered by the test T (i), i ∈ [1, g − 1]

defined within Algorithm 4.2. By construction, the sets of errors covered by each test

are disjoint from each other, so d =
∑g−1

i=1 di.

By the discussion preceding this theorem, LocateErrorsInSet
(
A, T (i)

)
con-

ducts one test T (i), plus di⌈log2 k⌉ tests whenever T (i) is a failing test.

Hence, the total number of tests conducted over all g−1 iterations of the for-loop

4. Combinatorial Group Testing and Error Location with Safe Values 94

in ErrorLocateWithSafeValues is at most

g−1∑
i=1

(
di⌈log2 k⌉+ 1

)
= d⌈log2 k⌉+ g − 1.

4.2 Pairwise Group Testing

In this section, we consider group testing with faulty interactions of strengths up to

2. Note that the following definition is applicable to faulty interactions of strengths

up to any fixed integer t.

Definition 4.2.1 We say that an error (or faulty interaction) e is within a set of

factors A ⊆ [1, k] if, for all (f, v) ∈ e, we have f ∈ A. Let A1, A2, ..., At be pairwise

disjoint sets such that ∪t
i=1Ai = A. We say that [A1, A2, ..., At] is a partition of

A, and we call A1, A2, ..., At the parts of the partition. We say that an error e′ is

across the partition [A1, A2, ..., At] if @i ∈ [1, t] such that e′ is within Ai, but e
′ is

within a union of two or more distinct parts of [A1, A2, ..., At].

In [1], Andreae studied the problem of searching for a single strength-2 faulty

interaction, in the context of searching for a specific edge e in a graph. Let G be a

graph with k vertices and m edges. Andreae showed that at most ⌈2 log2 m⌉ tests

are required to identify e. Since m ≤
(
k
2

)
, at most ⌈4 log2 k⌉ tests are required if the

edges of G are unknown.

More recently, Bouvel et al. [4] conducted a survey on graph reconstruction

algorithms. They analyzed particular classes of graphs, and determined that at most

k log2 k tests are required to identify all of the unknown edges in a Hamiltonian cycle.

4. Combinatorial Group Testing and Error Location with Safe Values 95

Algorithm 4.2 [32] Precondition: TP
(
k, (g1, g2, ..., gk)

)
has safe values s1, s2, ..., sk

(k ≥ 2 is an integer), every error has strength 1, and g = max{g1, g2, ..., gk} is fixed.
This algorithm returns the set E of all errors in our TP

(
k, (g1, g2, ..., gk)

)
.

procedure ErrorLocateWithSafeValues(k, (s1, s2, ..., sk), (g1, g2, ..., gk))
◃ Relabel values in each factor so that s1 = s2 = ... = sk = 0.
S ← ∅
for each factor f ∈ [1, k] such that sf ̸= 0 do

S ← S ∪ {f}, and swap labels (f, 0) and (f, sf).

Define T (i) by T (i)f =

{
i if i ≤ gf − 1
0 otherwise

◃ Identify the defective items via CGT.
E ← ∅, and let g = max{g1, g2, ..., gk}.
for i← 1 to g − 1 do

E ′ ← LocateErrorsInSet
(
CT (i), T (i)

)
for f ∈ E ′ do E ← E ∪

{
{(f, T (i)f)}

}
◃ Restore the original labels to every factor whose label we previously changed.
for f ∈ S do swap labels (f, 0) and (f, sf).

return E

◃ Precondition: All errors covered by T are elements of
{
{(f, Tf)} : f ∈ A ⊆ CT

}
.

◃ This procedure returns the set
{
f ∈ A : {(f, Tf)} is an error

}
.

procedure LocateErrorsInSet(A, T)
if TestSet(A, T) = fail then

[a,X]← BinarySearch(A, T)
return {a} ∪ LocateErrorsInSet

(
A \ ({a} ∪X), T

)
else return ∅

◃ Precondition: T is a failing test, and D ⊆ CT .
◃ This procedure returns one factor a corresponding to a defective item (a, Ta), and
◃ a set X of factors corresponding to nondefective items.
procedure BinarySearch(D,T)

X ← ∅
while |D| > 1 do

Partition D as evenly as possible into parts D′, D′′.
if TestSet(D′, T) = fail then D ← D′

else X ← X ∪D′, and D ← D′′

Let D = {a}
return [a,X].

4. Combinatorial Group Testing and Error Location with Safe Values 96

Their goal was to reconstruct an unknown graph G(V,E) by discovering its edges via

a process called graph testing, which we define (more generally) below.

Definition 4.2.2 Hypergraph Testing: Given a hypergraph H(V,E), a test con-

ducted on a subset V ′ ⊆ V fails if H[V ′] contains a hyperedge, and passes otherwise.

If H is simply a graph (i.e. for every e ∈ E, |e| ≤ 2), we simply refer to this process

as Graph Testing.

It is easy to see that hypergraph testing is equivalent to combinatorial group

testing; vertices correspond to items, and hyperedges of cardinality t correspond to

faulty interactions of strength t.

In [32], Mart́ınez et al. give an adaptive, strength-2 ELA-building algorithm

for a TP
(
k, (g1, g2, ..., gk)

)
which has safe values s1, s2, ..., sk, supposing that no error

in the given system is of strength greater than two, and there are at most d errors.

We observe that their algorithm consists of two strength-2 algorithms: a CGT al-

gorithm that requires O
(
d log2 k + d2

)
tests, and an ELA-building algorithm that

iteratively applies the aforementioned CGT algorithm O(log2 k) times, requiring a

total of O
(
d(log2 k)

2 + d2 log2 k
)
tests.

In this section, we present their CGT algorithm, LocateErrorsInTest [32,

Section 5], adapted to our notation. Our version, called LocateErrorsInSet, is

presented here as Algorithm 4.3. Let T be a test applied to a TP
(
k, (g1, g2, ..., gk)

)
that has safe values, and errors of strength up to 2. LocateErrorsInSet(A, T)

requires that A ⊆ CT (see Definition 4.1.1). Since the test T remains fixed within

LocateErrorsInSet(A, T), there is a one-to-one correspondence between the fac-

tors f ∈ A and the items (f, Tf) covered by T . Therefore, in the context of Com-

binatorial Group Testing, items can be labeled by their factors directly, and the

distinction between an item-set and a factor-set becomes unimportant. However, for

the sake of notational consistency, we describe this algorithm (and, in Chapter 5, its

strength-3 generalization, Algorithm 5.1) as if it is being applied in the context of a

4. Combinatorial Group Testing and Error Location with Safe Values 97

TP
(
k, (g1, g2, ..., gk)

)
.

When T is a failing test, LocateErrorsInSet(A, T) works as follows. If A =

{a}, then {(a, Ta)} is a strength-1 error. Otherwise |A| ≥ 2, and we partition A as

evenly as possible into two sets A′ and A′′. Since the strength of each error covered by

T is at most two, every error is either within one of A′, A′′, or is across the partition

[A′, A′′].

If either A′ or A′′ is a set of factors corresponding to a failing set of items, we

recursively call LocateErrorsInSet to identify the error sets E ′ and E ′′ of errors

within A′ and A′′, respectively. We then call AcrossLocate in order to identify

every error across [A′, A′′] while avoiding the errors already found within each of

A′, A′′ (which are already stored in E ′ and E ′′).

By Definition 4.0.10, strength-2 errors cannot contain strength-1 errors as sub-

sets, so AcrossLocate begins by considering only subsets B′ ⊆ A′ and B′′ ⊆ A′′

such that each of B′, B′′ contains all factors in A′, A′′ except for those that corre-

spond to strength-1 errors. It then further partitions each of B′, B′′ such that no

error is contained within any part of either B′ or B′′, that is, every error within B′

is across the partition [B′
1, B

′
2, . . . , B

′
c′], and every error within B′′ is across the parti-

tion [B′′
1 , B

′′
2 , . . . , B

′′
c′′]. These partitions can be determined in the following way. Let

G = (V, E) be a graph such that V = [1, k] and every edge in E is a set of factors

corresponding to an error. Then a proper colouring of G[B′] and G[B′′] determines

the partitions mentioned above as follows.

It is well-known that a greedy algorithm can assign a proper
(
∆(H)+1

)
-colouring

to a graph H. Since ∆(H) ≤ d (where d is the maximum number of errors in our

testing problem) for H ∈
{
G[B′], G[B′′]

}
, we have a (d + 1)-colouring of G[B′] with

colour classes B′
1, B

′
2, . . . , B

′
c′ , and a (d + 1)-colouring of G[B′′] with colour classes

B′′
1 , B

′′
2 , . . . , B

′′
c′′ . Clearly, no edges of G[B′] and G[B′′] lie within a colour class, and

c′, c′′ ≤ d+ 1.

4. Combinatorial Group Testing and Error Location with Safe Values 98

Algorithm 4.3 [32] Mart́ınez et al.’s strength-2 CGT algorithm.
Precondition: T is a failing test that covers errors of strengths up to 2, and A ⊆ CT .
Let TestSet(A) = TestSet(A, T). This algorithm returns the set of all factor-sets
corresponding to the errors within A.

procedure LocateErrorsInSet(A, T)
if |A| = 1 then return {A}
else

Partition A into [A′, A′′] as evenly as possible.
if TestSet(A′) = fail then E ′ ← LocateErrorsInSet(A′)

if TestSet(A′′) = fail then E ′′ ← LocateErrorsInSet(A′′)

E ′′′ ← AcrossLocate(A′, A′′, E ′, E ′′)
return E ′ ∪ E ′′ ∪ E ′′′

◃ Precondition: E ′ is the set of all errors within A′, and E ′′ is the set of all
◃ errors within A′′. This subprocedure returns the set E ′′′ of all errors
◃ that are across the partition [A′, A′′] of A′ ∪ A′′.
procedure AcrossLocate(A′, A′′, E ′, E ′′)

Let B′ = A′ \ S ′, where S ′ = {x ∈ A′ : {x} ∈ E ′}.
Partition B′ as [B′

1, B
′
2, . . . , B

′
c′] such that ∀e′ ∈ E ′,∀i ∈ [1, c′],

e′ is not within B′
i .

Let B′′ = A′′ \ S ′′, where S ′′ = {y ∈ A′′ : {y} ∈ E ′′}.
Partition B′′ as [B′′

1 , B
′′
2 , . . . , B

′
c′′] such that ∀e′′ ∈ E ′′,∀j ∈ [1, c′′],

e′′ is not within B′′
j .

E ′′′ ← ∅
for i← 1 to c′ do

for j ← 1 to c′′ do
if TestSet(B′

i ∪B′′
j) = fail then

E ′′′ ← E ′′′ ∪AcrossLocateAux(B′
i, B

′′
j)

return E ′′′

◃ Precondition: TestSet(A ∪B) = fail, neither A nor B has an error within it.
procedure AcrossLocateAux(A,B)

if |A| = |B| = 1 then return {A ∪B}
else

◃ Partition the larger set first.
if |A| ≥ |B| then [C,D]← [A,B]
else [C,D]← [B,A]

E ′ ← E ′′ ← ∅
Partition C into [C ′, C ′′] as evenly as possible.
if TestSet(C ′ ∪D) = fail then E ′ ← AcrossLocateAux(C ′, D)

if TestSet(C ′′ ∪D) = fail then E ′ ← AcrossLocateAux(C ′′, D)

return E ′ ∪ E ′′

4. Combinatorial Group Testing and Error Location with Safe Values 99

No part of either [B′
1, B

′
2, . . . , B

′
c′] or [B′′

1 , B
′′
2 , . . . , B

′′
c′′] contains an error, and

all errors across these partitions are known. Therefore the remaining errors must

be across partitions [B′
i, B

′′
j] of sets B′

i ∪ B′′
j , where i ∈ [1, c′] and j ∈ [1, c′′]. For

each set B′
i ∪ B′′

j corresponding to a failing set of items, we call the procedure

AcrossLocateAux to identify all of the errors that are across [B′
i, B

′′
j].

If B′
i and B′′

j are both singleton sets, then the strength-2 error across [B′
i, B

′′
j]

must correspond to the factor-set B′
i ∪B′′

j , which AcrossLocateAux then returns.

Otherwise we let C and D be the larger and smaller of the given sets, respectively,

and we partition C as evenly as possible into [C ′, C ′′]. Since no errors are within C,

each error within C ∪ D must be across one of the following partitions: [C ′, D] of

C ′ ∪D, or [C ′′, D] of C ′′ ∪D.

If C ′∪D is a set of factors corresponding to a failing set of items, we identify each

of the errors across its partition [C ′, D] by recursively calling AcrossLocateAux.

We proceed similarly if C ′′ ∪D corresponds to a failing set of items; we identify each

of the errors across [C ′′, D] by recursively calling AcrossLocateAux.

We omit the proof of correctness here, since we prove the correctness of a more

generalized version of this algorithm in the next chapter.

In Section 4.1, we gave a strength-1 CGT algorithm which is logarithmic in k

and linear in d. This strength-2 generalization is also logarithmic in k.

Theorem 4.2.3 Algorithm 4.3 performs O
(
d log2 k + d2

)
tests.

For a detailed proof of the above theorem, see [32, Section 5].

4.3 Strength-2 ELAs with Safe Values via CGT

The strength-2 version ofErrorLocateWithSafeValues builds a strength-2 MCA

M (by, for instance, the method of Bryce and Colbourn [5]). By Definition 1.3.1, the

failing tests corresponding to the rows ofM collectively cover all errors in the given

4. Combinatorial Group Testing and Error Location with Safe Values 100

TP
(
k, (g1, g2, ..., gk)

)
. For every such failing test T , the algorithm calls the strength-2

CGT algorithm, LocateErrorsInSet(CT , T), which identifies the errors involving

factors in CT (see Definition 4.1.1).

We remark here on a slight improvement over the original version. Since the

first for-loop of Algorithm 4.4 relabels all safe values to be zeroes, we need an MCA

whose rows collectively cover all strength-2 interactions except for those containing

(f, 0) where f ∈ [1, k]. We possibly reduce the number of tests conducted by the

ErrorLocateWithSafeValues procedure by using an MCA with alphabets of

decreased cardinality. We accomplish this by constructing an MCA
(
N ; 2, k, (g1 −

1, g2−1, ..., gk−1)
)
instead of an MCA

(
N ; 2, k, (g1, g2, ..., gk)

)
, and then for each row

(test) T of the array, we assign the value of gf − 1 to Tf whenever Tf = 0.

Corollary 4.3.1 Let g = max{g1, g2, ..., gk} be fixed. Then Algorithm 4.4 performs

O
(
d(log2 k)

2 + d2 log2 k
)
tests.

Proof: There exists anMCA
(
N ; 2, k, (g1−1, g2−1, ..., gk−1)

)
with N ∼ g−1

2
log2 k

as k → ∞, but this bound is not constructive (see [20, 12]). However, the method

of Bryce and Colbourn [5] builds an MCA
(
N ; 2, k, (g1 − 1, g2 − 1, ..., gk − 1)

)
with

N ≤ 2(g−1)2 ln k+O(1). Since Algorithm 4.4 calls LocateErrorsInSet N times,

and N = O(log2 k), the result follows directly from Theorem 4.2.3.

4.4 Higher-Strength Nonadaptive Group Testing

Higher-strength combinatorial group testing is introduced by Torney in the context

of sets pooling designs [40]. He gives a brief description of a higher-strength CGT

algorithm for the special case when there is only one error. Given a set S of items,

sequentially remove elements of S one-at-a-time, and after each removal, if S becomes

4. Combinatorial Group Testing and Error Location with Safe Values 101

Algorithm 4.4 [32] Adaptation of Mart́ınez et al.’s strength-2 ELA algorithm.
Precondition: TP (k, (g1, g2, ..., gk)) has safe values s1, s2, ..., sk (k ≥ 2), the set of all
errors is independent, each error has strength at most 2, and g = max{g1, g2, ..., gk}
is fixed. This algorithm returns the set E of all errors in the TP

(
k, (g1, g2, ..., gk)

)
.

procedure ErrorLocateWithSafeValues(k, (s1, s2, ..., sk), (g1, g2, ..., gk))
◃ Relabel values in each factor so that s1 = s2 = ... = sk = 0.
S ← ∅
for each factor f ∈ [1, k] such that sf ̸= 0 do

S ← S ∪ {f}, and swap labels (f, 0) and (f, sf).

◃ Identify the defective items via CGT.
E ← ∅, and let g = max{g1, g2, ..., gk}
LetM be an MCA(N ; 2, k, (g1 − 1, g2 − 1, ..., gk − 1)).
Denote the ith row (test) ofM by T (i) = T (i)1T (i)2...T (i)k.
for i← 1 to N do

for all f ∈ [1, k] such that T (i)f = 0 do T (i)f ← gf − 1

if Test
(
T (i)

)
= fail then

E ′ ← LocateErrorsInSet
(
CT (i), T (i)

)
for D ∈ E ′ do E ← E ∪

{
{(f, T (i)f) : f ∈ D}

}
◃ Restore the original labels to every factor whose label we previously changed.
for f ∈ S do swap labels (f, 0) and (f, sf).

return E

4. Combinatorial Group Testing and Error Location with Safe Values 102

a passing set, conclude that the removed item must be involved in the higher-strength

error, replace it in S, and continue. This is a very restrictive case, and some progress

has been made since then.

Higher-strength group testing is often referred to as hypergraph testing (see Defi-

nition 4.2.2) or group testing for complexes, with the latter term being motivated

by applications in molecular and cellular biology (see [40]). Chen et al. have remarked

that, in such applications, a test may correspond to an experiment that occurs over

the course of hours or, worse yet, days [9]. In such situations, nonadaptive testing

has a clear advantage since it allows for tests to be conducted in parallel.

All higher-strength CGT algorithms considered prior to this thesis are nonadap-

tive, and they require advance knowledge of an upper bound on d, the number of

errors in the given set. In [19], Gao et al. describe how to identify all hyperedges in

an unknown hypergraph H containing up to d hyperedges, by constructing a special

type of incidence matrix for H.

Definition 4.4.1 [19] Let H be a hypergraph with k vertices labeled 1, ..., k and at

most d ≥ 1 hyperedges. Let M be a binary matrix with k columns.

We say that M is d(H)-disjunct if for any set of d + 1 potential hyperedges

{e0, e1, ..., ed} (i.e. subsets of [1, k]) of H there exists at least one row (test) T of M

such that Tv = 1 for all v ∈ e0 and Tv = 0 for some v in each of e1, e2, ..., ed.

A d(H)-disjunct matrix forH is used to identify d or fewer hyperedges inH in the

following way: every subset of vertices corresponding to a passing test is a non-edge,

and the remaining maximal subsets of V (H) are all edges (see Definition 4.2.2).

4. Combinatorial Group Testing and Error Location with Safe Values 103

Theorem 4.4.2 [9, Section 3] Let d, k, and t be positive integers, and let H be a

hypergraph with k vertices and at most d hyperedges of cardinalities up to t, such that

d+ t ≤ k. Then there exists a d(H)-disjunct matrix with at most N rows, such that

N <

(
d+ t

t

)t(
d+ t

d

)d
(
1 + (d+ t)

(
1 + ln

(
1 +

k

d+ t

)))

Other bounds on d(H)-disjunct matrices are given in [8, 19], but they are greater

than the above bound when ln k is relatively large with respect to d and t, since each

bound includes a factor of (ln k)t+1 in addition to exponential factors involving d and

t.

Macula and Popyack [30] give a construction of a d(H)-disjunct matrix whose

number of rows is logarithmic in k, and has a factor of tdt. However, their method

is probabilistic, and identifies an expected number (1 − o(1))d faulty interactions of

strengths at most t. Furthermore, they require two additional assumptions on the

structure of the errors: each error has cardinality exactly t, and for any pair of errors

e, e′, |e \ e′| = h for some fixed integer h ∈ [1, t].

In the next chapter, we generalize the strength-2 CGT algorithm of Mart́ınez et

al. [32] (Algorithm 4.3) to strength 3. We show that it identifies all errors in a given

set, without any prior knowledge of the number of errors present. We also show that

it requires fewer tests than the current best nonadaptive method of Chen et al. [9].

We also generalize error location with safe values (Algorithm 4.4) to strength 3.

Chapter 5

Strength-3 Group Testing and

Error Location

In the preceding chapter, we introduced combinatorial group testing (CGT), and we

explained how it can be used to identify all faulty interactions in a given set of k items.

We presented the known adaptive algorithms for pointwise and pairwise combinatorial

group testing, which are logarithmic in k. We also showed how error location with

safe values, as found in Mart́ınez et al. [32], relates to CGT. We then summarized

existing nonadaptive methods for CGT with strengths greater than one; we also

summarized the performance of each algorithm in terms of the maximum number of

tests conducted with respect to k, the number of items in the given set, and d, the

number of faulty interactions among the k items. We note that for strengths greater

than two, the method with the fewest tests with respect to k is the nonadaptive,

disjunct matrix method of Chen et al. (see Theorem 4.4.2).

We begin this chapter by giving a new adaptive algorithm for strength-3 CGT in

Section 5.1. We show that it conducts O
(
d3 ln k

)
tests, fewer than the current best

nonadaptive algorithm of Chen et al. [9], which conducts O
(
d4
(
1+ 3

d

)d
ln
(
k
d

))
tests

when applied to a set containing up to d errors of strength at most 3. In addition,

104

5. Strength-3 Group Testing and Error Location 105

our algorithm, unlike nonadaptive ones, does not require foreknowledge of an upper

bound on d. We give a comprehensive comparison of the two strength-3 CGT methods

in Section 5.4.

In Section 5.3, we generalize the algorithm for error location with safe values to

strength 3. This algorithm adaptively generates a strength-3 ELA for a TP (k, (g1, g2,

..., gk)) that has g = max{g1, g2, ..., gk} fixed, and safe values s1, s2, ..., sk. The ELA

consists of O
(
d3(ln k)2 + ln k

)
tests, where d is the number of faulty interactions

among the items in the TP (k, (g1, g2, ..., gk)).

We remind the reader that in the context of group testing, errors are defined as

failing sets that are minimal with respect to set inclusion (see Definition 4.0.10).

5.1 Combinatorial Group Testing, Strength 3

The new algorithm LocateErrorsInSet (given as Algorithm 5.1) has a structure

similar to the algorithm from Mart́ınez et al. [32] called LocateErrorsInTest.

Given a test T and a set (of factors) A ⊆ CT (see Definition 4.1.1), our algorithm

generates a set of tests which identifies all errors among items associated with factors

in A, assuming that all errors present are of strength at most 3. For brevity, we

sometimes refer to 3-subsets of A as triples.

Algorithm 5.1 works as follows. We store all 3-subsets of A in the set U , and

whenever we identify a triple τ as corresponding to either a passing or failing set of

items, we remove τ from U . At each step, we construct a set (of factors) A′ ⊆ A

which contains many triples from U . Whenever the cardinality of A′ is not a power

of 3, we take the union of A′ with a set X of “dummy factors”, so that |A′| = 3l for

some integer l ≥ 2 for all subsequent tests within this iteration. This process greatly

simplifies our later analysis.

If A′ corresponds to a failing set of items, then the procedure LocateTriple(A′)

identifies a triple τ ⊆ A′ such that at least one error is within τ . Next, we identify the

5. Strength-3 Group Testing and Error Location 106

set E ′ containing all factor-sets corresponding to errors within τ , via the procedure

LocateErrorsInTriple(τ). We then remove from U each triple that corresponds

to an error e ∈ E ′.

If A′ corresponds to a passing set of items, then we remove all 3-subsets of A′

from U . More generally, throughout the algorithm, whenever TestSet(D,T) passes

for some set D of cardinality at least three, we remove each 3-subset of D from U .

The algorithm terminates when all 3-subsets of items corresponding to triples in

A have been tested.

We now proceed to prove the correctness of Algorithm 5.1. We begin with the

subprocedure MaxUnidentifiedTriples(A,U,E), which does the following:

1. It constructs a list M of sets such that every triple in U is a subset of at least

one set in M .

2. No set in M contains a factor-set e ∈ E (those factor-sets correspond to

previously-identified errors).

3. The set R returned by the procedure contains at least as many triples τ ∈ U

as are contained in any other set in M . In particular, R contains at least 1
α
|U | triples

that are also in U , for some α. In order to determine the value of the parameter α,

we first need some results involving antichains, which we define below.

Definition 5.1.1 An antichain is a collection A of subsets of an n-set such that

for all A,B ∈ A with A ̸= B, we have A ̸⊆ B.

We remark here on the relation between Definitions 5.1.1 and 2.1.1. An inde-

pendent set of interactions is clearly an antichain, and an antichain of subsets that

are interactions is an independent set of interactions.

The following lemma has been shown independently by Lubell [29], Mešalkin [34],

and Yamamoto [42], establishing the so-called LYM inequality.

5. Strength-3 Group Testing and Error Location 107

Algorithm 5.1 Precondition: T is a test that may cover errors of strength at most
3, and A ⊆ CT is a set of k ≥ 3 factors. Let TestSet(A) = TestSet(A, T). This
algorithm returns the set
E =

{
(e ⊆ A : TestSet(e) = fail) and (̸ ∃e′ ⊂ e : TestSet(e′) = fail)

}
.

procedure LocateErrorsInSet(A, T)
E ← ∅, and U ← {τ ⊆ A : |τ | = 3}.
◃ While there are triples corresponding to sets (of items) whose pass/fail
◃ results are still unknown, keep testing.
while U ̸= ∅ do

A′ ←MaxUnidentifiedTriples(A,U,E)
if |A′| ̸= 3l for some integer l ≥ 1 then

Let X be a set of “dummy factors” that do not affect test outcomes,
such that A′ ∩X = ∅, |X| < 2|A′|, and |A′ ∪X| = 3l for some l ≥ 2.
A′ ← A′ ∪X

if TestSet(A′) = fail then
τ ← LocateTriple(A′)
E ′ ← LocateErrorsInTriple(τ)
RemoveErrors(U,E ′)
E ← E ∪ E ′

else RemoveNonErrors(U,A′)

return E

◃ Precondition: E is a set of factor-sets corresponding to errors. This subprocedure
◃ removes from U each triple τ that has e ⊆ τ for some e ∈ E.
procedure RemoveErrors(U,E)

for e ∈ E do
for τ ∈ U do

if e ⊆ τ then U ← U \ {τ}

◃ Precondition: P is a factor-set corresponding to a passing set of items, and
◃ |P | ≥ 3. This subprocedure removes each triple contained in P from U .
procedure RemoveNonErrors(U, P)

for every 3-subset τ ⊆ P do U ← U \ {τ}

◃ Precondition: τ is a triple corresponding to a failing set of items. This
◃ subprocedure returns the set E of all subsets of τ that correspond to errors.
procedure LocateErrorsInTriple(τ)

E ← ∅
for a ∈ τ do

if TestSet({a}) = fail then E ← E ∪
{
{a}
}

for each τ ′ ⊆ τ such that |τ ′| = 2 do
if e′ ̸⊂ τ ′ for all e′ ∈ E and TestSet(τ ′) = fail then E ← E ∪ {τ ′}

if E = ∅ then E ← {τ}
return E

5. Strength-3 Group Testing and Error Location 108

Lemma 5.1.2 [29, 34, 42] Let n be a positive integer, and let A be an antichain of

subsets of an n-set. Then, ∑
A∈A

1(
n
|A|

) ≤ 1.

We now use the preceding lemma to prove a generalization of Sperner’s Theo-

rem [39] for the case of antichains with subsets of bounded cardinality.

Theorem 5.1.3 Let l ≤ n be a positive integer, and let A be an antichain of subsets

of an n-set such that |A| ≤ l for all A ∈ A. Then,

|A| ≤

(
n
l

)
if l ≤ ⌈n/2⌉(

n
⌊n/2⌋

)
if l ≥ ⌊n/2⌋.

Proof: Let

C =

(
n
l

)
if l ≤ ⌈n/2⌉(

n
⌊n/2⌋

)
otherwise.

Take any A ∈ A. Clearly
(

n
|A|

)
≤ C. A slight rearrangement of that inequality yields

1
C ≤

1

(n
|A|)

. It is then easy to see that

|A| 1
C
≤
∑
A∈A

1(
n
|A|

) ≤ 1,

where the final inequality comes from Lemma 5.1.2. Thus, |A| ≤ C. For the values

l = ⌊n/2⌋ and ⌈n/2⌉, it is easy to see that
(
n
l

)
=
(

n
⌊n/2⌋

)
=
(

n
⌈n/2⌉

)
, i.e. both formulas

for C coincide, and the proof is complete.

We now prove the correctness of the procedure MaxUnidentifiedTriples.

5. Strength-3 Group Testing and Error Location 109

Lemma 5.1.4 Let A = [1, k] be a set of k ≥ 3 factors. Let U be a set of 3-subsets of

A, and let E be a collection of subsets of A, |E| ≤ d, such that for all e ∈ E,

(1) e corresponds to a failing set of items, |e| ≤ 3, and

(2) for all τ ∈ U , we have e ̸⊆ τ .

Then the procedureMaxUnidentifiedTriples(A,U,E) (given as Algorithm 5.2

on Page 110) correctly returns a factor-set R ⊆ A such that

∣∣{τ ⊆ R : |τ | = 3} ∩ U
∣∣ ≥ 1

α
|U |, where α =

(
3d
3

)
if d ≥ 2

3 otherwise.

Proof: First, suppose that E = ∅. Then R = A, and clearly

∣∣{τ ⊆ R : |τ | = 3} ∩ U
∣∣ = |U | ≥ 1

α
|U |

since α ≥ 1.

Next, consider the case where E ̸= ∅. Let m = |M |, where M is the list

constructed by MaxUnidentifiedTriples(A,U,E). Let Ti be the set of triples

in U covered by M [i], i.e. let

Ti =
{
τ ⊆M [i] : |τ | = 3

}
∩ U, where i ∈ [1,m].

We claim that for each triple τ ∈ U , we have τ ∈ Ti for some i ∈ [1,m].

Take any τ ∈ U , and let S =
∪

e∈E e, as calculated by the algorithm; also, let

τ ′ = τ ∩ S. We can write τ = τ ′ ∪
(
τ ∩ (A \ S)

)
. Observe that |τ ′| ≤ 3.

If |τ ′| = 0, then τ ⊆ A \S, in which case τ ⊆M [i] for all i ∈ [1,m]. Assume now

that 1 ≤ |τ ′| ≤ 3. By the assumption of this lemma, there is no e ∈ E with e ⊆ τ ′, so

the second for-loop will add the elements of a set S ′ ⊇ τ ′ to M [i] for some i ∈ [1,m].

5. Strength-3 Group Testing and Error Location 110

Algorithm 5.2 Under the assumptions of Lemma 5.1.4, this procedure returns a set
of factors R ⊆ A such that

∣∣{τ ⊆ R : |τ | = 3} ∩ U
∣∣ ≥ 1

α
|U | where α =

(
3d
3

)
if d ≥ 2,

and α = 3 otherwise.

procedure MaxUnidentifiedTriples(A,U,E)
◃ Special Case
if E = ∅ then R← A
else

◃ Store in S all factors involved in factor-sets e ∈ E. Then store in M all
◃ subsets S ′ ⊂ S such that |S ′| ∈ [1, 3], S ′ does not contain any e ∈ E, and
◃ S ′ is maximal (w.r.t. set inclusion) among the sets with these properties.
S ← ∅

◃ M will be a list of m sets whose ith set is M [i], where i ≥ 1 is an integer.
m← 0, and let M be the empty list.
for e ∈ E do S ← S ∪ e
for l← 3 down to 1 do

for S ′ ⊆ S such that |S ′| = l do
if
(
̸ ∃i ∈ [1,m] such that S ′ ⊆M [i]

)
and

(
∀e ∈ E, e ̸⊆ S ′) then

m← m+ 1
M [m]← S ′

◃ Take the union of each set in M with the set of all factors not contained
◃ in any factor-set e ∈ E.
for i← 1 to m do

M [i]←M [i] ∪ (A \ S)

◃ Find a set M [i] that has as many triples in common with U as possible.
max← 0
imax ← 1
for i← 1 to m do

j ←
∣∣∣∣{τ ⊆M [i] : |τ | = 3

}
∩ U

∣∣∣∣
if j > max then

max← j
imax ← i

R←M [imax]

return R

5. Strength-3 Group Testing and Error Location 111

The third (main) for-loop will add the elements of A \ S to M [i], so

τ = τ ′ ∪
(
τ ∩ (A \ S)

)
⊆ S ′ ∪

(
A \ S

)
= M [i].

Thus τ ∈ Ti for some i ∈ [1,m], i.e. τ ∈
∪m

i=1 Ti. It then easily follows that∪m
i=1 Ti = U .

Now, let imax be as computed by the algorithm. Then
∣∣Timax

∣∣ ≥ |Ti| for all

i ∈ [1,m]. We conclude that

|U | =

∣∣∣∣∣
m∪
i=1

Ti

∣∣∣∣∣ ≤
m∑
i=1

∣∣Ti∣∣ ≤ m
∣∣Timax

∣∣.
Therefore,

∣∣Timax

∣∣ ≥ 1
m

∣∣U ∣∣.
We conclude the proof by showing that m ≤ α.

Let S ′
i be the set S

′ whose elements are added to M [i] in the body of the second

for-loop, i ∈ [1,m]. Consider S = {S ′
1, S

′
2, ..., S

′
m}. By construction, S is an antichain,

since sets are added to M in non-increasing order of cardinality, and whenever S ′ is

added to M , no proper subset of S ′ is subsequently added to M .

Since E is a collection of factor-sets corresponding to errors, each of which has

strength at most 3, we have |E| ≤ d and hence s = |S| ≤ 3|E| ≤ 3d. Therefore S

is an antichain of subsets of an s-set with s ≤ 3d, such that each S ′
i ∈ S satisfies

|S ′
i| ≤ 3.

By Theorem 5.1.3, we obtain

m ≤

(
s
3

)
if 3 ≤ ⌈s/2⌉(

s
⌊s/2⌋

)
if 3 ≥ ⌊s/2⌋.

If s ≤ 3, then 3 ≥ ⌊s/2⌋ and hence m ≤
(

s
⌊s/2⌋

)
≤ 3. Suppose that d = 1. Then

s ≤ 3 and by the above inequality, m ≤ 3.

Hence assume that d ≥ 2 and s ≥ 4. If s ≥ 5, then m ≤
(
s
3

)
≤
(
3d
3

)
as required.

5. Strength-3 Group Testing and Error Location 112

The remaining case is d ≥ 2, s = 4. Then m ≤
(
4
2

)
= 6 < 20 =

(
6
3

)
≤
(
3d
3

)
.

Hence

m ≤

(
3d
3

)
if d ≥ 2

3 if d ≤ 1.

That is, m ≤ α. Therefore
∣∣{T ⊆ R : |T | = 3} ∩ U

∣∣ = ∣∣Timax

∣∣ ≥ 1
m
|U | ≥ 1

α
|U |.

Next, we prove the correctness of the procedure LocateErrorsInTriple.

Lemma 5.1.5 Let τ be a triple corresponding to a failing set S containing three

items. Then LocateErrorsInTriple(τ) correctly returns the set of all subsets of

τ that correspond to errors in S.

Proof: By Definition 4.0.10, no error can contain an error of lesser strength as a

subset. Any failing singleton subset of S is clearly a strength-1 error; every singleton

subset of S is tested, via its corresponding factor-set, by LocateErrorsInTriple.

Let E be the collection of factor-sets corresponding to errors found after the first

for-loop, and note that E contains every subset of τ that corresponds to a strength-1

in S. The second for-loop tests only those 2-subsets of τ that contain no factor-set

already stored in E; any failing set of items corresponding to a 2-subset τ ′ ⊂ τ is a

strength-2 error, in which case the algorithm stores τ ′ in E.

The set τ itself corresponds to a strength-3 error if and only if no error of lesser

strength corresponds to a proper subset τ ′ ⊂ τ , so E is empty after the two for-loops

in this procedure if and only if τ corresponds to a strength-3 error, in which case we

let E = {τ}.

Therefore LocateErrorsInTriple(τ) correctly returns the set E of all sub-

sets of τ corresponding to errors.

5. Strength-3 Group Testing and Error Location 113

We now proceed to show that LocateTriple(D) finds a 3-subset of D corre-

sponding to a failing set of items.

Lemma 5.1.6 Assume that D is factor-set corresponding to a failing set of items

containing errors of strength at most 3, and |D| = 3l for some integer l ≥ 1. Then

LocateTriple(D) (given in Algorithm 5.3) correctly returns a 3-subset of D that

also corresponds to a failing set of items.

Proof: We proceed by induction on l. First, consider the base case where l = 1.

Then |D| = 3, so LocateTriple(D) returns D, and the thesis holds.

Assume that for some integer l ≥ 1, LocateTriple(B) correctly returns a

failing 3-subset of B, for any failing set B such that |B| = 3l.

Suppose that |D| = 3l+1, and LocateTriple(D) is called. Since |D| ≥ 9, the

“else” block is executed. The procedure first partitions D into thirds [D′, D′′, D′′′].

Any error within D must be within one of D′, D′′, or D′′′, or across the partition

[D′, D′′, D′′′].

If an error is within one of D′, D′′, or D′′′, then we call LocateTriple(D∗),

where D∗ ∈ {D′, D′′, D′′′} is a factor-set of cardinality 3l that corresponds to a failing

set of items. By the induction hypothesis, LocateTriple(D∗) returns a triple τ ⊆

D∗ corresponding to a failing set of items. Since D∗ ⊂ D, the thesis holds.

Otherwise there is an error across the partition [D′, D′′, D′′′], in which case we call

the procedure AcrossLocate, which depends upon three auxiliary subprocedures:

HalveFirstSet, HalveSecondSet, and OneBallPerBin in the following way.

If one of D′ ∪D′′, D′ ∪D′′′, or D′′ ∪D′′′ corresponds to a failing set of items, then we

have a set D∗∗ ∈ {D′ ∪D′′, D′ ∪D′′′, D′′ ∪D′′′} such that |D∗∗| = 2
3
|D| = 2 · 3l. We

refer to this as Case 1.

When D′∪D′′, D′∪D′′′, and D′′∪D′′′ all correspond to passing sets, there must

be at least one strength-3 error within D that has one factor in each of D′, D′′, D′′′,

in which case we call OneBallPerBin(D′, D′′, D′′′). We refer to this as Case 2.

5. Strength-3 Group Testing and Error Location 114

Algorithm 5.3 Precondition for LocateTriple(D): the factor-set D corresponds
to a failing set of items containing errors of strengths at most 3, such that |D| = 3l

for some integer l ≥ 1. This algorithm returns a 3-subset of D that also corresponds
to a failing set of items.

Precondition for AcrossLocate(D′, D′′, D′′′): the partition [D′, D′′, D′′] of D
is such that |D′| = |D′′| = |D′′′| = 3l for some integer l ≥ 1, and no error within
D is also within one of D′, D′′, or D′′. This subprocedure, in combination with
HalveFirstSet and HalveSecondSet, determines that an error within D is
either across the partition [B,C] of a set B ∪ C (where each of B,C is one half of
D′, D′′, or D′′), or has one factor in each of D′, D′′, and D′′′.

procedure LocateTriple(D)
if |D| = 3 then return D
else

Partition D into thirds [D′, D′′, D′′].
if TestSet(D′) = fail then return LocateTriple(D′)
else

RemoveNonErrors(U,D′)
if TestSet(D′′) = fail then return LocateTriple(D′′)
else

RemoveNonErrors(U,D′′)
if TestSet(D′′′) = fail then return LocateTriple(D′′′)
else

RemoveNonErrors(U,D′′′)
return AcrossLocate(D′, D′′, D′′′)

procedure AcrossLocate(D′, D′′, D′′′)
if TestSet(D′ ∪D′′) = fail then return HalveFirstSet(D′, D′′)
else

RemoveNonErrors(U,D′ ∪D′′)
if TestSet(D′ ∪D′′′) = fail then return HalveFirstSet(D′, D′′′)
else

RemoveNonErrors(U,D′ ∪D′′′)
if TestSet(D′′ ∪D′′′) = fail then return HalveFirstSet(D′′, D′′′)
else

RemoveNonErrors(U,D′′ ∪D′′′)
return OneBallPerBin(D′, D′′, D′′′)

5. Strength-3 Group Testing and Error Location 115

Case 1: Without loss of generality, suppose that D∗∗ = D′∪D′′. Let B = D′, C =

D′′, and let c be an arbitrary element of C. The procedure HalveFirstSet takes

the union of B with {c} and removes c from C so that each of B, C contains an even

number of elements, |B| = 3l + 1, and |C| = 3l − 1. It then partitions each of B,C

into halves as [B′, B′′], [C ′, C ′′], respectively.

The procedures HalveFirstSet and HalveSecondSet collectively determine

whether one of B′ ∪ C ′, B′ ∪ C ′′, B′′ ∪ C ′, or B′′ ∪ C ′′ corresponds to a failing set of

items. First suppose that one of those sets does correspond to a failing set, and let it

be B′ ∪ C ′, without loss of generality. The sets B′ and C ′ are disjoint, so

|B′ ∪ C ′| = |B′|+ |C ′| = 1

2
|B|+ 1

2
|C| = 1

2
(3l + 1 + 3l − 1) = 3l.

Therefore, by the induction hypothesis, LocateTriple(B′∪C ′) returns a triple

τ ⊆ B′ ∪ C ′ ⊂ D∗∗ that corresponds to a failing set of items. Since D∗∗ ⊂ D, the

thesis holds.

Alternatively, suppose that B′∪C ′, B′∪C ′′, B′′∪C ′, and B′′∪C ′′ all correspond

to passing sets. Then any error within B ∪ C must have one factor in each of three

known disjoint subsets X, Y, Z ∈ {B′, B′′, C ′, C ′′}, i.e. we are in Case 2, and we call

OneBallPerBin(X, Y, Z).

Case 2: The procedure OneBallPerBin(X,Y, Z) identifies the factors in a

triple (corresponding to a strength-3 error) factor-by-factor via a binary search sub-

procedure called BinarySearch, which is conducted on each of X,Y, Z. A binary

search on X iteratively halves X while keeping X ∪ Y ∪ Z in correspondence with a

failing item set. This reduces the cardinality of X to 1, while still having a strength-3

error across [X, Y, Z] such that each of X, Y, Z contains one factor involved in that

error. Subsequent binary searches reduce the cardinalities of Y and Z in a simi-

lar way, finally returning a factor-set {x, y, z} that corresponds to an error, where

x ∈ X, y ∈ Y , and z ∈ Z.

5. Strength-3 Group Testing and Error Location 116

We remark here on two subprocedures which occur within LocateErrorsInSet.

First, RemoveNonErrors(U, P) clearly removes from U precisely all 3-subsets of

the factor-set P that corresponds to a passing set of items. Second, the procedure

RemoveErrors(U,E) clearly removes from U precisely each triple containing a

factor-set e ∈ E that corresponds to an error. These remarks can be easily verified

by a careful reading of the respective subprocedures.

Next, we show that LocateErrorsInSet(A, T) identifies each subset of A that

corresponds to an error exactly once.

Theorem 5.1.7 Let T be a test, and let A be a set of k factors such that A ⊆ CT ,

and assume that every error within A has strength at most 3. Then the following two

statements hold.

(a) At each iteration of its while-loop, the procedure LocateErrorsInSet(A, T)

removes either at least one triple from U that corresponds to a failing item-set, or it

removes at least 1
α
|U | triples from U , each corresponding to a passing item-set, where

α is given in Lemma 5.1.4.

(b) LocateErrorsInSet(A, T) returns the set E of all subsets of A that cor-

respond to faulty interactions.

Proof: LocateErrorsInSet begins with U containing all 3-subsets of A, and

E = ∅. At each step, triples are removed from U as their corresponding item-sets are

identified as either passing or failing, and the factor-sets corresponding to errors are

stored in E.

We first prove (a). We remark here that the while-loop iterates as long as there

are triples corresponding to item-sets whose pass/fail status is unknown (i.e. U ̸= ∅).

MaxUnidentifiedTriples(A,U,E) returns a set A′ containing at least one triple

that is also in U , by Lemma 5.1.4, since |U | > 0. If TestSet(A′) returns fail, then by

Lemma 5.1.6, LocateTriple(A′) returns a triple τ that corresponds to a failing set,

and by Lemma 5.1.5, LocateErrorsInTriple(τ) returns the set E ′ of all subsets

5. Strength-3 Group Testing and Error Location 117

Algorithm 5.4 Precondition: |B| = |C| = 3l for some integer l ≥ 1, and there
is an error across the partition [B,C] of the set B ∪ C. In combination with
HalveSecondSet, this procedure determines that an error is within a subset
S ⊆ B ∪C such that |S| = 1

2
|B ∪C| = 3l for some integer l ≥ 1, or that a strength-3

error has one factor in each of three disjoint sets X, Y , and Z, such that each of X, Y ,
and Z is a subset of either B or C.

procedure HalveFirstSet(B,C)
◃ Move one element from C to B so that we can halve each of B and C.
Choose one element c ∈ C. B ← B ∪ {c}, and C ← C \ {c}.
Partition each of B,C into halves [B′, B′′], [C ′, C ′′], respectively.
if TestSet(B′ ∪ C) = fail then return HalveSecondSet(B′, C ′, C ′′)
else

RemoveNonErrors(B′ ∪ C)
if TestSet(B′′ ∪ C) = fail then return HalveSecondSet(B′′, C ′, C ′′)
else

RemoveNonErrors(B′′ ∪ C), return OneBallPerBin(B′, B′′, C)

◃ Precondition: B∗ ∈ {B′, B′′}, and there is an error across the partition [B∗, C]
◃ of the set B∗ ∪ C. This subprocedure is a continuation of HalveFirstSet.
procedure HalveSecondSet(B∗, C ′, C ′′)

if TestSet(B∗ ∪ C ′) = fail then return LocateTriple(B∗ ∪ C ′)
else

RemoveNonErrors(B∗ ∪ C ′)
if TestSet(B∗ ∪ C ′′) = fail then return LocateTriple(B∗ ∪ C ′′)
else

RemoveNonErrors(B∗ ∪C ′′), return OneBallPerBin(B∗, C ′, C ′′)

◃ Precondition: X ∪ Y ∪ Z corresponds to a failing set of items, and there is a
◃ strength-3 error with one factor in each of the disjoint sets X, Y, Z. This
◃ subprocedure identifies each factor and returns the factor-set corresponding to
◃ the strength-3 error.
procedure OneBallPerBin(X, Y, Z)
{x} ← BinarySearch(X,Y ∪ Z), and {y} ← BinarySearch(Y, {x} ∪ Z)
{z} ← BinarySearch(Z, {x, y}), and return {x, y, z}

◃ Precondition: W ∪R corresponds to a failing item-set, and w ∈ W is one factor
◃ involved in a strength-3 error, where the other two factors are in R.
◃ This subprocedure conducts a binary search in W , and returns {w}.
procedure BinarySearch(W,R)

if |W | = 1 then return W
else

Partition W into [W ′,W ′′] as evenly as possible.
if TestSet(W ′ ∪R) = fail then return BinarySearch(W ′, R)
else

RemoveNonErrors(W ′ ∪R), return BinarySearch(W ′′, R)

5. Strength-3 Group Testing and Error Location 118

of τ corresponding to faulty interactions. Next, RemoveErrors(U,E ′) removes

from U each triple that contains a factor-set e ∈ E ′ that corresponds to an error. In

particular, τ is removed from U by RemoveErrors(U,E ′). Therefore, at least one

triple is removed from U in each iteration of the while-loop in which TestSet(A′)

returns fail.

If TestSet(A′) returns pass, then RemoveNonErrors(U,A′) removes ev-

ery 3-subset of A′ from U , since they all correspond to passing sets of items. By

Lemma 5.1.4, there are at least 1
α
|U | such 3-subsets of A′.

Therefore (a) holds.

It remains to show that every subset of A that corresponds to a failing interaction

is contained in the set E returned by the algorithm. Before we do so, we prove that the

following statement is a loop invariant for the while-loop in LocateErrorsInSet:

P(E,U) =“For each e ⊆ A that corresponds to a faulty interaction, either e ∈ E,

or e ⊆ τ for some triple τ ∈ U .”

First, notice that P(E,U) is true before the first iteration of the while-loop.

Every e ⊆ A that corresponds to a faulty interaction has cardinality at most 3,

therefore e ⊆ τ for some τ ∈ U =
{
τ ′ ⊆ A : |τ ′| = 3

}
, and obviously e ̸∈ E = ∅.

Consider an arbitrary iteration of the while-loop and let EB and UB be the values

of E and U , respectively, before this iteration. Similarly, let EA and UA be the values

of E and U after this iteration. Assume that P(EB, UB) holds; we will show that

P(EA, UA) also holds.

Now, let e ⊆ A be a factor-set corresponding to a faulty interaction. Then either

e ∈ EB or e ⊆ τ for some τ ∈ UB, since P(EB, UB) holds. We consider two cases as

follows.

Case 1: e ∈ EB. In this case, e ∈ EA since EB ⊆ EA, therefore P(EA, UA) holds.

Case 2: e ̸∈ EB, and e ⊆ τ for some τ ∈ UB.

Let A′ be the set returned by MaxUnidentifiedTriples(A,UB, EB).

IfTestSet(A′) returns fail, then the set τ ⊆ A′ returned by LocateTriple(A′)

5. Strength-3 Group Testing and Error Location 119

corresponds to a failing set of items. If e ⊆ τ , then e ∈ E ′, since every error within

τ has its corresponding factor-set stored in E ′, by Lemma 5.1.5. In this case, e ∈

EB ∪ E ′ = EA. Moreover, RemoveErrors(U,E ′) guarantees that there exists no

τ ′ ∈ UA such that e ⊆ τ ′. Therefore P(EA, UA) holds in Case 2 when A′ corresponds

to a failing set of items.

On the other hand, if TestSet(A′) returns pass, then e ̸⊆ A′, and UA = UB \{
τ ′′ ⊆ A′ : |τ ′′| = 3

}
after we call RemoveNonErrors(UB, A

′). We see that

τ ∈ UA, since e ̸⊆ A′ and e ⊆ τ ∈ UB. Furthermore, EA = EB, so e ̸∈ EA. Therefore

P(EA, UA) also holds for Case 2 when A′ corresponds to a passing set of items.

Since P(E,U) holds before and after an iteration of the while-loop, we conclude

that P(E,U) is a loop invariant.

Now, we show that the while-loop terminates after a finite number of iterations.

During each iteration, |U | strictly decreases, since by (a) at least one triple is removed

from U by one of RemoveErrors(U,E ′) and RemoveNonErrors(U,A′). Since

the stopping condition of the loop is |U | = 0, we conclude that the loop terminates.

At the end of the last iteration of the while-loop, the loop invariant P(E, ∅) holds,

which implies (b).

This concludes the proof of correctness of Algorithm 5.1; in the next section we

analyze its performance.

5.2 Performance Analysis

We measure each algorithm’s cost as we did in previous chapters: by the number of

times it calls Test (note that every call to TestSet is also a call to Test). We

begin by counting the maximum number of tests required to identify all subsets of a

3-set of factors that correspond to errors.

5. Strength-3 Group Testing and Error Location 120

Lemma 5.2.1 Under the assumptions of Lemma 5.1.5, at most 6 tests are conducted

by LocateErrorsInTriple(T).

Proof: The procedure LocateErrorsInTriple(τ) conducts one test for each

element of τ , and at most one test per pair, for a total of at most
(
3
1

)
+
(
3
2

)
= 6 tests.

Next, we give the maximum number of tests conducted by LocateTriple.

However, we first need the following auxiliary lemma.

Lemma 5.2.2 Let Tl be a sequence of integers satisfying

Tl =

 0 if l = 1

10 + max
{
Tl−1, 3⌈(l − 1) log2 3⌉

}
if l > 1.

Then Tl < 10l for all l ≥ 1.

Proof: We first prove, by induction on l, that the following claim holds for all

l ≥ 3.

C(l): Tl−1 > 3⌈(l − 1) log2 3⌉.

To see that C(3) holds, we first calculate

T2 = 10 + max
{
T1, 3⌈log2 3⌉

}
= 10 + max

{
0, 6
}
= 16 > 12 = 3⌈2 log2 3⌉.

Hence C(l) holds for l = 3.

Now, assume that C(l) holds for some integer l ≥ 3, and consider C(l + 1).

By the induction hypothesis, we have

Tl = 10 + Tl−1 > 10 + 3
⌈
(l − 1) log2 3

⌉
.

5. Strength-3 Group Testing and Error Location 121

Next, we see that

⌈
(l − 1) log2 3

⌉
= ⌈l log2 3− log2 3⌉ ≥ ⌈l log2 3− 2⌉ = ⌈l log2 3⌉ − 2.

Hence

Tl > 10 + 3
(
⌈l log2 3⌉ − 2

)
= 4 + 3⌈l log2 3⌉ > 3⌈l log2 3⌉,

i.e. C(l + 1) holds.

We conclude that C(l) holds for all l ≥ 3. Consequently, Tl = 10 + Tl−1 for all

l > 2. We now prove, also by induction on l, that Tl ≤ 10l for all l ≥ 1.

We have already seen that T (1) = 0 < 10 and T (2) = 16 < 20, therefore the

inequality holds for l = 1, 2.

Now, assume that Tl < 10l for some l ≥ 2. Since C(l + 1) holds, we have

Tl+1 = 10 + Tl, and applying the induction hypothesis, we see that

Tl+1 < 10 + 10l = 10(l + 1).

The result follows by induction.

Now, we give the maximum number of tests conducted by LocateTriple (see

Algorithm 5.3 on Page 114).

Lemma 5.2.3 Under the assumptions of Lemma 5.1.6, LocateTriple(D) con-

ducts fewer than 10 log3 n tests, where n = |D|.

Proof: Let T (l) be the maximum number of tests conducted by LocateTriple(D)

when n = |D| = 3l. We proceed by induction on l = log3 n.

5. Strength-3 Group Testing and Error Location 122

It is easy to see that LocateTriple(D) returns D after conducting no tests at

all when l = 1, therefore T (1) = 0.

When l > 1, we see that LocateTriple(D) conducts up to 10 tests before

calling either LocateTriple(D∗) for some D∗ ⊂ D such that |D∗| = 1
3
|D|, or

OneBallPerBin(X, Y, Z) for someX,Y, Z ⊂ D such that |X|, |Y |, |Z| ≤ n/3 (these

10 tests consist of 3 tests in LocateTriple, 3 tests in AcrossLocate, 2 tests

in HalveFirstSet, and 2 tests in HalveSecondSet). It is easy to see (e.g. by

induction) that the number of tests conducted by each call to BinarySearch within

OneBallPerBin(X, Y, Z) is at most

⌈
log2(n/3)

⌉
=
⌈
(l − 1) log2 3

⌉
.

So, in total OneBallPerBin(X, Y, Z) conducts at most 3
⌈
(l − 1) log2 3

⌉
tests.

Then T (l) satisfies the recurrence relation given in Lemma 5.2.2, with Tl = T (l).

Therefore T (l) < 10 log3 n.

The main while-loop of LocateErrorsInSet reduces |U |, the number of triples

corresponding to 3-sets of items whose pass/fail status is not yet known, by a constant

ratio 1
α
(α > 1 is an integer) at each iteration in which the factor-set A′ corresponds

to a passing set of items
(
see the proof of Theorem 5.1.7(a)

)
. It has been shown [10]

that, in such cases, the number of iterations is bounded above by α lnu0, where u0 is

the initial value of |U |. We give a proof of this bound in the following lemma.

Lemma 5.2.4 Let (ui)
∞
i=0 be a sequence of non-negative integers, u0 > 1, and let

α > 1 be an integer. Suppose that ui ≤ ui−1

(
1− 1

α

)
for all i ≥ 1.

Let N be the smallest value of i such that ui = 0. Then N ≤ α lnu0.

5. Strength-3 Group Testing and Error Location 123

Proof: From the hypothesis we get ui ≤ u0

(
1− 1

α

)i

. We claim that

N ≤ − lnu0

ln
(
1− 1

α

) + 1.

Indeed, for any i > − lnu0

ln
(
1− 1

α

) , we have

ui < u0

(
1− 1

α

)− lnu0

ln

(
1− 1

α

)
.

Taking logarithms of both sides, and applying well-known properties of logarithmic

functions, we get

lnui < ln

(
u0

(
1− 1

α

)− lnu0

ln

(
1− 1

α

))
= lnu0 −

lnu0

ln
(
1− 1

α

) ln(1− 1

α

)
= 0.

Therefore, ui < 1. Since ui is an integer, we have ui = 0. Thus,

N ≤ lnu0

− ln
(
1− 1

α

) + 1.

Next, we apply the McLaurin expansion ln(1 + x) = x − 1
2
x2 + 1

3
x3 − 1

4
x4 + ...,

which converges for all real numbers −1 < x ≤ 1. Since α > 1, we have −1 < −1
α

< 0.

Hence − ln
(
1 − 1

α

)
=
∑

i≥1
1
i

(
1
α

)i
=
∑

i≥1
1
iαi . Using this expansion in the above

inequality we obtain

N ≤ lnu0∑
i≥1

1
iαi

+ 1.

We then notice that
∑

i≥1
1
iαi >

1
α
, since α is a positive integer, and hence

lnu0∑
i≥1

1
iαi

<
lnu0

1
α

= α lnu0.

Therefore, N < α lnu0 + 1. Since N is an integer, the result follows.

5. Strength-3 Group Testing and Error Location 124

We now give an upper bound on the number of tests conducted by Algorithm 5.1.

Theorem 5.2.5 Let A be a set of k ≥ 4 factors whose corresponding item-set con-

tains d ≥ 0 faulty interactions, each having strength at most 3. Let N∗ be the maxi-

mum number of tests conducted by LocateErrorsInSet(A, T).

If d = 0, then N∗ = 1.

If d = 1, then N∗ < 3 ln
(
k
3

)
+ 7 + 10

ln 3
ln k < 12.55 log2 k + 7.

If d ≥ 2, then N∗ <
(
4.5d3 − 4.5d2 + d

)
ln
(
k
3

)
+ d
(
7 + 10

ln 3
ln k
)
< 9.36d3 log2 k

Proof: At each iteration of the while-loop, some subset of A is assigned to A′.

Let Np be the number of times that TestSet(A′) returns pass, and let Nf be the

number of times that TestSet(A′) returns fail. Then the total number of iterations

of the while-loop is N = Np +Nf .

Index the iterations where TestSet(A′) returns pass by the integer i ∈ [1, Np].

Consider the iteration labeled i. Let Ui be the set U at iteration i, and let ui = |Ui|.

Also, let Ti =
{
τ ⊆ A′ : |τ | = 3

}
∩ Ui, and let ti = |Ti|.

By Lemma 5.1.4, ti ≥ 1
α
ui, for the value of α specified in that lemma. Since A′

corresponds to a passing set at each of these iterations and Ti ⊆ U , exactly ti triples

are removed from U each time there are no iterations between the ith and (i + 1)st

in which TestSet(A′) returns fail, and we have ui+1 = ui − ti in this case. If there

is at least one such iteration, then at least one more triple is removed from U , and

we have ui+1 < ui − ti. Therefore ui+1 ≤ ui − ti, and hence

ui+1 ≤
(
1− 1

α

)
ui.

By Lemma 5.2.4, we have Np ≤ α lnu0. Since u0 =
(
k
3

)
, we have

Np ≤ α ln

(
k

3

)
.

5. Strength-3 Group Testing and Error Location 125

At each iteration in which TestSet(A′) returns fail, this algorithm conducts

one test for A′, plus the number of tests conducted within LocateTriple(A′) and,

subsequently, LocateErrorsInTriple(τ). Then the total number of tests con-

ducted within one iteration where A′ corresponds to a failing set of items is at most

7 + 10 log3 k, by Lemmas 5.2.3 and 5.2.1.

It is easy to see that Nf ≤ d. Let N∗ be the maximum number of tests conducted

by this algorithm. Then we have

N∗ ≤ Np +Nf (7 + 10 log3 k) ≤ α ln

(
k

3

)
+ d(7 + 10 log3 k).

If d ≥ 2, then α =
(
3d
3

)
, and

N∗ ≤
(
3d

3

)
ln

(
k

3

)
+d(7+10 log3 k) =

(
4.5d3−4.5d2+d

)
ln

(
k

3

)
+d

(
7+

10

ln 3
ln k

)
.

Since
(
k
3

)
< k3, we have ln

(
k
3

)
< ln k3 = 3 ln k. We apply this inequality to the

preceding expression to get

N∗ < 3
(
4.5d3 − 4.5d2 + d

)
ln k + 7d+

10d

ln 3
ln k.

We notice that 7d < 7d ln k since k ≥ 4. The inequality then becomes

N∗ <

(
13.5d3 − 13.5d2 +

(
10 +

10

ln 3

)
d

)
ln k.

Next, we see that 10 + 10
ln 3

< 19.11, and for all d ≥ 2 we have −13.5d2 + 19.11d < 0.

Therefore 13.5d3 − 13.5d2 +
(
10 + 10

ln 3

)
d < 13.5d3 − 13.5d2 + 19.11d < 13.5d3, and

hence,

N∗ < 13.5d3 ln k = 13.5(ln 2)d3 log2 k < 9.36d3 log2 k.

5. Strength-3 Group Testing and Error Location 126

If d ≤ 1, then α = 3. It is easy to see that exactly one test is conducted when

d = 0, so suppose that d = 1. Then

N∗ ≤ 3 ln

(
k

3

)
+ 7 +

10

ln 3
ln k.

We apply the inequality ln
(
k
3

)
< 3 ln k, and combine like terms to get

N∗ <

(
9 +

10

ln 3

)
ln k + 7.

Since 9 + 10
ln 3

< 18.11, we have

N∗ < 18.11 ln k + 7 = 18.11(ln 2) log2 k + 7 < 12.55 log2 k + 7.

We conclude that N∗ satisfies the conditions presented in the statement of this

theorem.

In the next section, we generalize Algorithm 4.4 to strength 3.

5. Strength-3 Group Testing and Error Location 127

5.3 Strength-3 ELAs with Safe Values via CGT

In the preceding chapter, we presented two algorithms for adaptively building an

ELA for a TP
(
k, (g1, g2, ..., gk)

)
that has g = max{g1, g2, ..., gk} fixed, and safe values

s1, s2, ..., sk. The first, Algorithm 4.2, can be applied to systems with only strength-

1 errors, and the second, Algorithm 4.4, can be applied to systems with errors of

strengths up to two.

We now give an algorithm that generalizes this procedure up to strength 3.

Algorithm 5.5 Strength-3 generalization of Algorithm 4.4 on Page 101.
Precondition: TP (k, (g1, g2, ..., gk)) has safe values s1, s2, ..., sk (k ≥ 2 is an integer),
the set of all errors is independent, each error has strength at most 3, and g =
max{g1, g2, ..., gk} is fixed. This algorithm returns the set E of all errors in the
TP
(
k, (g1, g2, ..., gk)

)
.

procedure ErrorLocateWithSafeValues(k, (s1, s2, ..., sk), (g1, g2, ..., gk))
◃ Relabel values in each factor so that s1 = s2 = ... = sk = 0.
S ← ∅
for each factor f ∈ [1, k] such that sf ̸= 0 do

S ← S ∪ {f}, and swap labels (f, 0) and (f, sf).

◃ Identify the defective items via CGT.
E ← ∅, and let g = max{g1, g2, ..., gk}
LetM be an MCA(N ; 3, k, (g1 − 1, g2 − 1, ..., gk − 1)).
Denote the ith row (test) ofM by T (i) = T (i)1T (i)2...T (i)k.
for i← 1 to N do

for all f ∈ [1, k] such that T (i)f = 0 do T (i)f ← gf − 1

if Test
(
T (i)

)
= fail then

Let A =
{
f ∈ [1, k] : T (i)f ̸= 0

}
.

E ′ ← LocateErrorsInSet
(
A, T (i)

)
for D ∈ E ′ do E ← E ∪

{
{(f, T (i)f) : f ∈ D}

}
◃ Restore the original labels to every factor whose label we previously changed.
for f ∈ S do swap labels (f, 0) and (f, sf).

return E

5. Strength-3 Group Testing and Error Location 128

Corollary 5.3.1 Let g = max{g1, g2, ..., gk} be fixed. Then the number of tests per-

formed by Algorithm 5.5, as k →∞, satisfies

N∗ ≤
(
3(g − 1)3 ln k +O(1)

)((
4.5d3 − 4.5d2 + d

)
ln

(
k

3

)
+ d

(
7 +

10

ln 3
ln k

)
+ 1

)

Proof: As in Corollary 4.3.1, an MCA
(
N ; 3, k, (g1 − 1, g2 − 1, ..., gk − 1)

)
can be

built, by the method of [6], with N ≤ 3(g − 1)3 ln k +O(1).

ErrorLocateWithSafeValues performs N tests in the main for-loop (even

when d = 0), and it calls the procedure LocateErrorsInSet at most N times

(once for each failing test in the covering array). By Theorem 5.2.5, the result fol-

lows.

5.4 Comparison to d(H)-Disjunct Matrix Method

We now compare Algorithm 5.1 with the d(H)-disjunct matrix method of Chen et

al. [9], in terms of maximum number of tests conducted on a set A of k items (vertices)

with d errors (edges) of strength (cardinality) at most 3. By Theorem 4.4.2, if d ≤

k−3, then there exists a d(H)-disjunct matrix that has at most N rows (tests), where

N <

(
d+ 3

3

)3(
d+ 3

d

)d
(
1 + (d+ 3)

(
1 + ln

(
1 +

k

d+ 3

)))
.

We first note that when d = 0, our adaptive algorithm conducts exactly one

test, by Theorem 5.2.5. There is no 0(H)-disjunct matrix; however, one could always

test the entire set A prior to executing any CGT algorithm, to determine whether

or not d = 0. Therefore, we compare the two methods for d = 1 and d ≥ 2. In

the tables that follow, we use Nadaptive and Nd(H) to denote the maximum number of

5. Strength-3 Group Testing and Error Location 129

tests conducted by Algorithm 5.1 and the d(H)-disjunct matrix method as stated in

Theorems 5.2.5 and 4.4.2, respectively.

If d = 1, then by Theorem 5.2.5, Nadaptive = 3 ln
(
k
3

)
+7+ 10

ln 3
ln k tests. The case

where k = 3 is trivial, so we give a table for values of k beginning with k = 4.

k Nadaptive Nd(H)
Nadaptive

Nd(H)

4 24 74 0.323
5 29 78 0.365
6 32 82 0.393
7 35 86 0.412
8 38 89 0.427
9 40 92 0.437
10 42 95 0.446
20 55 115 0.480
30 63 129 0.489
40 68 138 0.493
50 72 146 0.495
100 85 171 0.497

1,000 127 257 0.493
10,000 168 344 0.489
100,000 210 431 0.487

1,000,000 252 519 0.485
1,000,000,000 377 781 0.483

1,000,000,000,000 502 1,043 0.481
googol 4,170 8,728 0.478

Table 5.1: Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9]
for d = 1.

Consider Table 5.1. We used bold font to indicate the first time each method

conducts fewer tests than an exhaustive method, which would conduct at most
(
k
3

)
+6

tests (one test per triple, plus one call to LocateErrorsInTriple once a failing

triple is found).

Furthermore, our adaptive algorithm conducts at most half as many tests as the

disjunct matrix method, if the latter is given the foreknowledge that d = 1 (the ratio is

5. Strength-3 Group Testing and Error Location 130

greatest when k = 112;
Nadaptive

Nd(H)
≈ 0.4965866 < 0.497). However, our algorithm does

not need to know d in advance; a d̂(H)-disjunct matrix method with d̂ > d conducts

a far greater number of tests as d̂/d increases, which we shall see in subsequent tables.

If d ≥ 2, then by Theorem 5.2.5, we have

Nadaptive =
(
4.5d3 − 4.5d2 + d

)
ln

(
k

3

)
+ d

(
7 +

10

ln 3
ln k

)
.

Consider Table 5.2. If k = 10, an exhaustive method would conduct at most(
10
3

)
+ 6d tests (one test per triple, plus one call to LocateErrorsInTriple per

failing triple). We see that if k = 10, then either method may conduct more than(
10
3

)
+ 6d tests, even for d = 2.

d
(
10
3

)
+ 6d Nadaptive Nd(H)

Nadaptive

Nd(H)

2 132 152 333 0.456
3 138 486 825 0.589
4 144 1,165 1,693 0.688

Table 5.2: Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9]
for k = 10, d ∈ [2, 4].

For small values of k, the exhaustive method (i.e. every triple is tested, and every

subset of every failing triple is also tested) may be superior to both Algorithm 5.1

and the use of a d(H)-disjunct matrix. In practice, however, both our algorithm

and the method of Chen et al. may conduct significantly fewer tests than the upper

bounds given in Theorems 5.2.5 and 4.4.2, depending on the structure of the error

hypergraph H.

5. Strength-3 Group Testing and Error Location 131

Next, consider Table 5.3. Let Ne be the maximum number of tests conducted by

the exhaustive method. If k = 100, then Ne =
(
100
3

)
+6d and for values of d contained

in Table 5.3 (that is, d ∈ [2, 15]), we have 161, 712 ≤ Ne ≤ 161, 790. When k = 100,

each method may conduct more tests than the exhaustive method if d ≥ 15.

d Nadaptive Nd(H)
Nadaptive

Nd(H)
N(2d)(H)

Nadaptive

N(2d)(H)

2 338 614 0.550 3,228 0.105
3 1,154 1,551 0.744 9,979 0.116
4 2,834 3,228 0.878 23,574 0.120
5 5,702 5,930 0.962 47,239 0.121
6 10,080 9,979 1.010 84,680 0.119
7 16,294 15,731 1.036 140,047 0.116
8 24,666 23,574 1.046 217,913 0.113
9 35,521 33,927 1.047 > Ne 0.110
10 49,183 47,239 1.041 > Ne 0.107
11 65,975 63,988 1.031 > Ne 0.103
12 86,221 84,680 1.018 > Ne 0.100
13 110,245 109,846 1.004 > Ne 0.097
14 138,370 140,047 0.988 > Ne 0.095
15 170,922 175,866 0.972 > Ne 0.092

Table 5.3: Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9]
for k = 100, d ∈ [2, 15].

We notice that, even when the exact value of d is foreknown, Nadaptive ≤ 1.047Nd(H).

Now, let d̂ ≥ d be an upper bound on d. From the entries in the table, it is easy to

see that for all d̂ ≥ d+1, we have Nadaptive < Nd̂(H). If d̂ is overestimated by a factor

of 2, then Nadaptive < 0.121Nd̂(H). Furthermore, a 16(H)-disjunct matrix may contain

as many as 217, 913 > 162, 000 tests, that is, far more than the exhaustive testing

method, even though only 8 errors are present.

5. Strength-3 Group Testing and Error Location 132

Consider Table 5.4. If k = 1, 000, then Ne =
(
1,000
3

)
+ 6d ≈ 166× 106 for values

of d contained in Table 5.4 (that is, 2 ≤ d ≤ 126). We remark here that when

k = 1, 000, Nadaptive first exceeds Ne when d = 126, and Nd(H) first exceeds Ne earlier

with respect to d, that is, when d = 88.

d Nadaptive Nd(H)
Nadaptive

Nd(H)
N(2d)(H)

Nadaptive

N(2d)(H)

2 518 941 0.5505 5,097 0.1016
3 1,800 2,415 0.7453 16,139 0.1115
4 4,444 5,097 0.8719 38,880 0.1143
5 8,962 9,483 0.9451 79,224 0.1131
6 15,865 16,139 0.9830 144,098 0.1101
7 25,664 25,702 0.9986 241,407 0.1063
8 38,870 38,880 0.9997 379,986 0.1023
9 55,995 56,442 0.9921 569,569 0.0983
10 77,548 79,224 0.9788 820,754 0.0945
11 104,043 108,123 0.9623 1,144,979 0.0909
12 135,988 144,098 0.9437 1,554,494 0.0875
13 173,896 188,168 0.9242 2,062,339 0.0843
14 218,278 241,407 0.9042 2,682,327 0.0814
15 269,644 304,950 0.8842 3,429,022 0.0786
20 649,131 820,754 0.7909 9,623,387 0.0675
30 2,225,817 3,429,022 0.6491 41,866,556 0.0532
40 5,318,676 9,623,387 0.5527 119,664,329 0.0444
50 10,438,778 21,575,354 0.4838 > Ne 0.0385
88 57,394,799 169,595,300 0.3384 > Ne 0.0267
126 169,047,461 631,874,470 0.2675 > Ne 0.0211

Table 5.4: Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9]
for k = 1, 000, some values of d ∈ [2, 126].

From the table, it is apparent that Nadaptive < Nd(H) for all values of d in the table

when k = 1, 000. If d̂ is overestimated by a factor of 2, then Nadaptive ≤ 0.1143Nd(H).

5. Strength-3 Group Testing and Error Location 133

Next, consider Table 5.5. If k = 10, 000, then Ne =
(
10,000

3

)
+ 6d ≈ 166.6 × 109

for values of d contained in Table 5.5 (that is, 2 ≤ d ≤ 1, 128). We remark here that

when k = 10, 000, Nadaptive first exceeds Ne when d = 1, 128, and Nd(H) first exceeds

Ne much earlier with respect to d, that is, when d = 483.

d Nadaptive Nd(H)
Nadaptive

Nd(H)
N(2d)(H)

Nadaptive

N(2d)(H)

2 698 1,273 0.5483 7,012 0.0995
3 2,443 3,297 0.7410 22,490 0.1086
4 6,048 7,012 0.8625 54,765 0.1104
5 12,211 13,134 0.9297 112,632 0.1084
6 21,630 22,490 0.9618 206,559 0.1047
7 35,002 36,018 0.9718 348,626 0.1004
8 53,025 54,765 0.9682 552,491 0.0960
9 76,396 79,884 0.9563 833,344 0.0917
10 105,815 112,632 0.9395 1,207,876 0.0876
20 886,026 1,207,876 0.7335 14,797,949 0.0599
50 14,249,561 33,720,869 0.4226 448,282,453 0.0318
100 115,124,242 448,282,453 0.2568 6,081,130,416 0.0189
200 925,574,940 6,081,130,415 0.1522 82,530,408,310 0.0112
300 3,129,004,060 27,982,974,551 0.1118 > Ne 0.0083
400 7,423,063,565 82,530,408,310 0.0899 > Ne 0.0067
483 13,074,670,182 167,501,393,845 0.0781 > Ne 0.0058

1,128 166,736,249,646 > Ne 0.0418 > Ne 0.0032

Table 5.5: Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9]
for k = 10, 000, some values of d ≤ 1, 128.

Again, we have Nadaptive < Nd(H) for all values of d in the table when k = 10, 000;

in particular, Nadaptive ≤ 0.9718Nd(H). If d̂ is overestimated by a factor of 2, then

Nadaptive ≤ 0.1104Nd(H).

5. Strength-3 Group Testing and Error Location 134

We now consider Table 5.6. If k = 100, 000, then Ne =
(
100,000

3

)
+ 6d ≈ 166.66×

1012 for values of d contained in Table 5.5 (that is, 2 ≤ d ≤ 10, 236). We remark here

that when k = 100, 000, Nadaptive first exceeds Ne when d = 10, 420, and Nd(H) first

exceeds Ne much earlier with respect to d, that is, when d = 2, 631.

d Nadaptive Nd(H)
Nadaptive

Nd(H)

2 879 1,606 0.5473
3 3,086 4,181 0.7381
4 7,652 8,932 0.8567
5 15,459 16,796 0.9204
6 27,392 28,861 0.9491
7 44,336 46,369 0.9562
8 67,174 70,711 0.9500
9 96,791 103,425 0.9359
10 134,071 146,194 0.9171
100 145,902,281 632,012,933 0.2309

1,000 147,214,224,265 4,207,070,302,481 0.0350
2,631 2,682,757,183,342 166,690,234,140,180 0.0161
5,000 18,416,496,832,237 > Ne 0.0098
10,420 166,703,738,743,611 > Ne 0.0057

Table 5.6: Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9]
for k = 100, 000, some values of d ≤ 10, 420.

Yet again, we have Nadaptive < Nd(H) for all values of d in the table when k =

100, 000; in particular, Nadaptive ≤ 0.9562Nd(H). We also notice that
Nadaptive

Nd(H)
decreases

rapidly as d increases past 10.

5. Strength-3 Group Testing and Error Location 135

If k = 1, 000, 000, then Ne =
(
1,000,000

3

)
+ 6d ≈ 166.666 × 1015 for values of

d contained in Table 5.7 (that is, 2 ≤ d ≤ 97, 750). We remark here that when

k = 1, 000, 000, Nadaptive first exceeds Ne when d = 97, 750, and Nd(H) first exceeds

Ne when d = 14, 367.

d Nadaptive Nd(H)
Nadaptive

Nd(H)

2 1,059 1,940 0.5459
3 3,729 5,065 0.7362
4 9,255 10,853 0.8528
5 18,707 20,458 0.9144
6 33,155 35,234 0.9410
7 53,670 56,724 0.9462
8 81,323 86,663 0.9384
9 117,185 126,975 0.9229
10 162,326 179,770 0.9030
100 176,679,238 816,407,667 0.2164

1,000 178,268,187,369 5,926,134,514,674 0.0301
14,367 529,146,573,279,085 166,703,447,853,592,306 0.0032
50,000 22,305,361,570,089,421 > Ne 0.0012
97,750 166,668,603,171,383,725 > Ne 0.0007

Table 5.7: Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9]
for k = 1, 000, 000, some values of d ≤ 97, 750.

When k = 100, 000, we have Nadaptive ≤ 0.9462Nd(H) for all values of d in the

table. Again,
Nadaptive

Nd(H)
decreases rapidly as d increases past 10.

5. Strength-3 Group Testing and Error Location 136

Next, we try fixing d to some values greater than one, and varying k from values

as low as 100 up to as high as one googol. In Table 5.8, we compare Nadaptive with

Nd(H) and N(2d)(H) for the cases in which d = 10p, p ∈ [2, 4].

d k Nadaptive Nd(H)
Nadaptive

Nd(H)

Nadaptive

N(2d)(H)

10 100 49,183 47,239 1.0412 0.1066
10 1,000 77,548 79,224 0.9788 0.0599
10 10,000 105,815 112,632 0.9395 0.0407
10 100,000 134,071 146,194 0.9171 0.0308
10 1,000,000 162,326 179,770 0.9030 0.0247
10 109 247,091 280,505 0.8809 0.0156
10 1012 331,856 381,240 0.8705 0.0114
10 googol 2,818,303 3,336,131 0.8448 0.0013
100 1,000 84,335,365 270,846,403 0.3114 0.0155
100 10,000 115,124,242 448,282,453 0.2568 0.0088
100 100,000 145,902,281 632,012,933 0.2309 0.0060
100 1,000,000 176,679,238 816,407,667 0.2164 0.0045
100 109 269,009,760 1,369,806,297 0.1964 0.0026
100 1012 361,340,270 1,923,213,162 0.1879 0.0019
100 googol 3,069,701,877 18,156,481,439 0.1691 0.0002

1,000 10,000 116,159,168,645 2,545,436,931,660 0.0456 0.0016
1,000 100,000 147,214,224,265 4,207,070,302,481 0.0350 0.0009
1,000 1,000,000 178,268,187,369 5,926,134,514,674 0.0301 0.0006
1,000 109 271,429,726,012 11,102,762,581,525 0.0244 0.0003
1,000 1012 364,591,251,196 16,280,140,519,714 0.0224 0.0002
1,000 googol 3,097,329,322,860 168,149,915,408,123 0.0184 0.0000

Table 5.8: Algorithm 5.1 vs. Chen et al.’s d(H)-disjunct matrix method [9]
for d = 10p, p ∈ [2, 4].

We see that the ratio
Nadaptive

Nd(H)
steadily decreases as k increases. Furthermore,

Nadaptive

N(2d)(H)
decreases quite rapidly as k increases. We conclude that the larger the value

of k, the more advantageous it is to choose Algorithm 5.1 over the d(H)-disjunct

matrix method [9], particulary if d is large, and even more so if d is not known in

advance.

Chapter 6

Conclusion

In this thesis, we have given two new algorithms for identifying faulty interactions

in testing problems. Each algorithm applies to a particular type of testing problem,

and we discuss the results, and relevant open problems related to each result, in

Sections 6.1 and 6.2, respectively. We then discuss some additional related open

problems in Section 6.3.

6.1 Robust Error Location for Binary Alphabets

In Chapter 3, we gave a new adaptive algorithm, called LocateAllErrors, for

constructing a strength-2 error locating array (ELA) for a TP (k, 2) with at most two

faulty interactions, without knowledge of safe values (see Algorithm 3.3 on Page 64).

For the special case where at most two errors are present, LocateAllErrors is an

improvement on the DiscoverEdges algorithm of Mart́ınez et al. [32] in two key

ways.

1. Their algorithm assumes that all errors are locatable, and ours does not.

2. Their algorithm finds a passing test by using a randomized selection process,

while ours finds a passing test by an efficient deterministic process.

137

6. Conclusion 138

We analyzed four types of graphs (a, b, c, and d) corresponding to nonlocatable

errors, as seen in Figure 3.1 on Page 39 (and originally defined in [32]). We gave

some refinements to the notion of locatability (see Definitions 3.1.2 and 3.1.3 on

Pages 40 and 41); these new insights led us to see that some faulty interactions

are “more nonlocatable” than others, as shown in Corollary 3.1.4 on Page 41. In

particular, we discovered that a passing test exists for a TP (k, 2) if and only if its

associated error graph G does not contain a type-d subgraph (see Theorem 3.2.2 on

Page 44). Subsequently, we gave an efficient deterministic procedure for either finding

a passing test, or determining that one does not exist (see Version 1 of Algorithm 3.1

on page 51).

Our insights into the particularities of nonlocatability have enabled our algorithm

to handle the cases where errors corresponding to a nonlocatable subgraph (of type

a, b, or c) are present in the TP (k, 2). In all cases where a passing test exists for the

given TP (k, 2), Algorithm 3.3 returns the set of errors corresponding to the edges of

either G or a graph that is location-equivalent to G.

The number of tests conducted by both our algorithm and the algorithm of

Mart́ınez et al. is related to the quantity N = 2
(
1+o(1)

)
(log k)2+O(log k). However,

the number of tests conducted by their algorithm, DiscoverEdges, is expected to

be N , due to the randomized process of finding a passing test, while Algorithm 3.3

conducts at most N tests, since our algorithm uses a deterministic procedure for

finding a passing test. Therefore, if at most two faulty interactions are present in

a TP (k, 2) without known safe values, Algorithm 3.3 is both more robust and more

efficient than the previously-known algorithm that can be applied to such a testing

problem, DiscoverEdges [32].

Several open problems exist for identifying errors in testing problems for which

safe values are not known.

One could generalize either DiscoverEdges or Algorithm 3.3 for testing prob-

lems with larger alphabets, i.e. TP (k, g)s with g ≥ 3, or for testing problems with

6. Conclusion 139

mixed alphabets, i.e. TP
(
k, (g1, g2, ..., gk)

)
s with gi ̸= gj for some i ̸= j. Since our

algorithm proceeds case-by-case, and relies on the fact that the number of cases to

consider is relatively small for a TP (k, 2) with at most two faulty interactions, it may

not easily generalize to testing problems with larger or mixed alphabets.

However, it may not need to be generalized directly. That is, a more complicated

case-by-case algorithm may not be needed. Consider a TP
(
k, (g1, g2, ..., gk)

)
with

gi ≥ 3 for some i ∈ [1, k], and several faulty interactions of strengths up to 2. We can

construct a TP (k, 2) from the TP
(
k, (g1, g2, ..., gk)

)
in the following way.

Let G be the (unknown, k-partite) error graph associated with the given

TP
(
k, (g1, g2, ..., gk)

)
, and let V ′ ⊂ V (G) such that exactly two vertices from each of

the k parts of G are stored in V ′. Then G[V ′] is a Gk,2 whose edges are unknown. Now,

suppose that we have an algorithm that, when applied to the TP
(
k, (g1, g2, ..., gk)

)
,

can determine that for some V ′ ⊂ V (G), the induced subgraph G[V ′] has at most

two edges. In this case, Algorithm 3.3 can be applied to the TP (k, 2) associated with

G[V ′], after a temporary and appropriate relabeling of some vertices in G.

We believe that the procedure for finding a passing test will easily generalize to

a larger alphabet due to its symmetrical nature. This procedure, or some variation

of it, may yield enough information about errors present in a TP
(
k, (g1, g2, ..., gk)

)
in

order to allow error identification in such a testing problem, via the method suggested

in the preceding two paragraphs.

To generalize Algorithm 3.3 to identify more than two errors may require an

approach other than a case-by-case analysis, since the presence of more than two

errors could greatly increase the number of subcases. More research is needed here.

Development of higher-strength versions of DiscoverEdges and Algorithm 3.3

also seem to be significant problems, particularly since adaptive error location with

safe values has only been done for strength 3 in this thesis, and identifying errors is

significantly more difficult when safe values are not known.

6. Conclusion 140

6.2 Combinatorial Group Testing and Error Loca-

tion for Strengths Greater than Two

In Chapter 5, we gave the first adaptive CGT algorithm that can identify faulty

interactions of strengths up to three. In particular, LocateErrorsInSet (given

as Algorithm 5.1 on Page 107) is a strength-3 generalization of the strength-2 CGT

algorithm by Mart́ınez et al. [32].

We have compared LocateErrorsInSet to the current-best nonadaptive CGT

method that can be applied to item-sets with faulty interactions of strengths up to

three, and showed that our method excels at identifying more faulty interactions in

fewer tests than the competing method of Chen et al. [9], particularly as both k, the

number of items in the given set, and d, the number of faulty interactions among

those items, grow very large.

The nonadaptive method of Chen et al. [9] requires advance knowledge of an

upper bound on d, while adaptive algorithms such as ours do not require such knowl-

edge. This is a key advantage, as can be seen in Tables 5.1 through 5.7 on Pages 129

through 135. In particular, the maximum number of tests conducted by Algorithm 5.1

is lower than the maximum number of tests conducted by the nonadaptive, disjunct-

matrix method of Chen et al. given the following parameters:

1. k ≥ 4 and d = 1.

2. k ≥ 1, 000 and d ≥ 2.

Furthermore, if the upper bound on d is overestimated even by one, then the

maximum number of tests conducted by Algorithm 5.1 is lower than the maximum

number of tests conducted by the method of Chen et al., and far lower if the upper

bound on d is overestimated by a factor of two.

Further generalizations of Algorithm 5.1 to strengths greater than three are

needed, particularly since testing with strengths up to t ∈ [4, 6] is needed in sev-

6. Conclusion 141

eral applications; Kuhn et al. [27] give empirical results showing that 4-way testing

is needed to detect at least 95% of faulty interactions in the applications they tested,

and 6-way testing is needed to identify all faulty interactions. We believe that the

next step is to generalize Algorithm 5.1 to strength t for any fixed integer t that is

reasonably small with respect to k.

We also gave a new adaptive algorithm for generating a strength-3 error locating

array (ELA) for a graph associated with a TP
(
k, (g1, g2, ..., gk)

)
that has safe values.

We showed how such an ELA can be generated by applying Algorithm 5.1 to each

failing test in an MCA
(
N ; 3, k, (g1 − 1, g2 − 1, ..., gk − 1)

)
. Algorithm 5.5 is a gen-

eralization of the strength-2 ELA-building algorithm by Mart́ınez et al. [32], and it

will easily generalize to strength-t for some fixed integer t, once there is an adaptive

strength-t CGT algorithm.

6.3 Other Related Open Problems

Recall that Error Locating Arrays are related to Mixed Covering Arrays (MCAs), by

Theorems 2.2.12 and 2.2.13 on Pages 33 and 34. Bryce and Colbourn give a method

that adaptively generates anMCA
(
N ; t, k, (g1, g2, ..., gk)

)
for a given TP

(
k, (g1, g2, ...,

gk)
)
, such that N , the number of rows, is logarithmic in k if t and g = maxi{gi} are

fixed [5].

We have shown that Algorithm 5.5 generates an ELA(N ′; 3, H) for a hypergraph

H associated with a TP
(
k, (g1, g2, ..., gk)

)
such that N ′ is also logarithmic in k if

g = maxi{gi} is fixed. Assuming further generalizations of Algorithms 5.1 and 5.5

to strength t for some fixed positive integer t, it will soon be possible to adaptively

generate an ELA(N ′; t,H ′) for a hypergraph H ′ whose edges have cardinalities up to

t, such that N ′ is also logarithmic in k.

However, these arrays can only be applied to testing problems where every inter-

action may be tested. Forbidden configurations often arise out of product constraints

6. Conclusion 142

in the context of computer hardware, software, and network testing; this has been

studied by Cohen et al. [11]. A new type of array has been created for use in trou-

bleshooting such systems with constraints. Covering Arrays avoiding Forbidden Edges

(CAFEs), and their close relation to ELAs, have been studied by Danziger et al. [16]

and Maltais [31]. In particular, Danziger et al. give a recursive construction for

CAFEs, and an explicit equation that, given an error graph G associated with a test-

ing problem, relates the minimum number of rows in an ELA(G) with the minimum

number of rows in a CAFE(G).

Loosely speaking, CAFEs can be described as strength-2 covering arrays with

restrictions. That is, certain specified interactions must not be covered by any row of

the CAFE, but every other pairwise interactions must appear in at least one row of the

CAFE. In other words, the rows of an ELA that are passing tests collectively form a

CAFE whose forbidden edges are precisely the edges identified by the ELA. Now that

an efficient, adaptive algorithm for constructing a strength-3 ELA is known (in the

case that safe values are also known), further research may yield a generalization to

CAFEs so that certain hyperedges (in a hypergraph associated with a given testing

problem) may be avoided - i.e. a Covering Array avoiding Forbidden Hyperedges

(CAFH).

Now, consider a TP
(
k, (g1, g2, ..., gk)

)
that has safe values and whose associated

hypergraph H has (forbidden) hyperedges whose cardinalities are at most 3. Also

consider an iteration of Algorithm 5.5 in which E ̸= ∅. In all subsequent iterations,

every test conducted by this algorithm avoids all errors in E corresponding to hyper-

edges in H. That is, given safe values for a TP
(
k, (g1, g2, ..., gk)

)
and an initial set

of errors E that correspond to forbidden hyperedges, Algorithm 5.5 adaptively con-

structs a CAFH for H. Therefore we have given a method for constructing a CAFH

when safe values are known. Constructing a CAFH when safe values are not known

may be a significantly more challenging problem.

An additional problem would be to actually identify all faulty interactions in a

6. Conclusion 143

given testing problem, even in the presence of constraints yielding forbidden inter-

actions; an array that can be applied in such a situation would be either an Error

Locating Array avoiding Forbidden Edges (ELAFE) or, similarly, an ELAFH if the

testing problem is associated with a hypergraph, rather than just a graph.

It is our hope that the results developed here enable further progress in the study

of testing problems with faulty interactions of strengths greater than two.

Bibliography

[1] T. Andreae, A search problem on graphs which generalizes some group testing

problems with two defectives, Discrete Math. 88 (1991), 121–127.

[2] J. Azar, R. Motwani and J. Naor, Approximating probability distribu-

tions using small sample spaces, Combinatorica 18 (1998), 151–171.

[3] J. A. Bondy and U. S. R. Murty, Graph Theory With Applications,

Springer, New York, 2008.

[4] M. Bouvel, V. Grebinski and G. Kucherov, Combinatorial search on

graphs motivated by bioinformatics applications: a brief survey, Graph Theo-

retic Concepts in Computer Science, 2005, Springer, 16–27.

[5] R.C. Bryce and C.J. Colbourn, A density algorithm for pairwise interac-

tion testing, Softw. Test. Verif. Reliab. 17 (2007), 159–182.

[6] R.C. Bryce and C.J. Colbourn, A density-based greedy algorithm for

higher-strength covering arrays, Softw. Test. Verif. Reliab. 19 (2009), 37–53.

[7] K. Burr and W. Young, Combinatorial test techniques: Table-based au-

tomation, test generation, and code coverage, Proc. Intl. Conf. on Soft. Test.

Anal. and Rev., New York, October 1998, ACM, 503–513.

[8] H. B. Chen, D. Z. Du and F. K. Hwang, An unexpected meeting of

four seemingly unrelated problems: graph testing, DNA complex screening,

144

BIBLIOGRAPHY 145

superimposed codes and secure key distribution, J. Comb. Optim. 14 (2007),

121–129.

[9] H. B. Chen, H. L. Fu and F. K. Hwang, An upper bound of the number

of tests in pooling designs for the error-tolerant complex model, Optim. Letters

2 (2008), 425–431.

[10] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, The

AETG System: An Approach to Testing Based on Combinatorial Design, IEEE

Transactions On Software Engineering 23 (1997), 437–444.

[11] M. B. Cohen, M. B. Dwyer, J. Shi, Interaction testing of highly-

configurable systems in the presence of constraints, Inter. Symp. Softw. Test.

and Analysis, ISSTA ’07 (London) 23 (2007), 129–139.

[12] C.J. Colbourn, Combinatorial aspects of covering arrays, Le Matematiche

(Catania) 58 (2004), 121–167.

[13] C.J. Colbourn, S.S. Martirosyan, G.L. Mullen, D.E. Shasha, G.B.

Sherwood, and J.L Yucas, Products of mixed covering arrays of strength

two, J. Comb. Des. 14 (2006), 124–138.

[14] C.J. Colbourn and D.W. McClary, Locating and detecting arrays for

interaction faults, J. Comb. Optim. 15 (2008), 17–48.

[15] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G.

C. Patton, and B. M. Horowitz, Model-based Testing in Practice, Proc. of

the Intl. Conf. on Software Engineering, ICSE ’99 (New York), 1999, 285–294.

[16] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, Covering

arrays avoiding forbidden edges, Theor. Comput. Sci. 410 (2009), 5403-5414.

BIBLIOGRAPHY 146

[17] D.Z. Du and F.K. Hwang, Combinatorial group testing and its applications,

World Scientific Publishing Cp. Inc., River Edge, NJ, 2000.

[18] P. Flajolet and R. Sedgewick. Analytic Combinatorics, Cambridge Uni-

versity Press, 2009.

[19] H. Gao, F.K. Hwang, M.T. Thai and W. Wu, Construction of d(H)-

disjunct matrix for group testing in hypergraphs, J. Comb. Optim. 12 (2006),

297–301.

[20] L. Gargano, J. Korner, and U. Vaccaro, Sperner Capacities, Graphs

Combin. 9 (1993), 31–46.

[21] A. P. Godbole, D. E. Skipper, and R. A. Sunley. t-Covering arrays: up-

per bounds and Poisson approximations, Combinatorics, Probability and Com-

puting 5 (1996), 105–118.

[22] A. Hedayat, N. Sloane, and J. Stufken, Orthogonal Arrays, Springer-

Verlag New York, 1999.

[23] F.K. Hwang, A method for detecting all defetive members in a population by

group testing, J. Amer. Statist. Assoc. 67 (1972), 605–608.

[24] G. Katona. Two applications (for search theory and truth functions) of

Sperner type theorems. Periodica Math. 3 (1973), 19–26.

[25] D. Kleitman and J. Spencer, Families of k-independent sets, Discrete

Math. 6 (1973), 255–262.

[26] D.R. Kuhn and M. Reilly, An investigation of the applicability of design

of experiments to software testing, In Proc. 27th Annual NASA Goddard/IEEE

Software Engineering Workshop, Los Alamitos, CA, October 2002, IEEE, 91–

95.

BIBLIOGRAPHY 147

[27] D.R. Kuhn, D.R. Wallace and A.M. Gallo, Software fault interactions

and implications for software testing, IEEE Trans. Soft. Eng. 30 (2004), 418–

421.

[28] J. Lawrence, R. N. Kacker, Y. Lei, D. R. Kuhn, M. Forbes, A Survey

of Binary Covering Arrays, The Electronic Journal of Combinatorics 18 (2011),

84.

[29] D. Lubell, A short proof of Sperner’s lemma, J. Comb. Theory 1 (1966), 299.

[30] A.J. Macula and L.J. Popyack, A group testing method for finding pat-

terns in data, Discrete Appl. Math. 144 (2004), 149–157.

[31] E. Maltais, Covering Arrays Avoiding Forbidden Edges And Edge Clique

Covers, MSc Thesis, University of Ottawa, Ottawa, 2009.

[32] C. Mart́ınez, L. Moura, D. Panario and B. Stevens, Locating errors

using ELAs, covering arrays, and adaptive testing algorithms. SIAM J. Discrete

Math 4 (2009), 1776–1799.

[33] K. Meagher, Covering Arrays on Graphs: Qualitative Independence Graphs

and Extremal Set Partition Theory, PhD Thesis, University of Ottawa, Ottawa,

2005.

[34] L.D. Mešalkin, A generalization of Sperner’s theorem on the number of sub-

sets of a finite set, Teor. Verojatnost i Primenen 8 (1963), 219–220.

[35] L. Moura, J. Stardom, B. Stevens, and A. Williams, Covering arrays

with mixed alphabet sizes, J. Comb. Des. 11 (2003), 413–432.

[36] J. Naor and M. Naor, Small-bias probability spaces: efficient constructions

and applications. SIAM J. Computing 22 (1993), 838–856.

BIBLIOGRAPHY 148

[37] M. Naor, L.J. Schulman, and A. Srinivasan, Splitters and near-optimal

randomization, Proc. 36th Annual Symp. Foundations of Computer Science

(FOCS), IEE, (1996), 182–191.

[38] K. H. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill, New

York, 2003.

[39] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. A. 27

(1928), 544–548.

[40] D.C. Torney, Sets pooling designs, Ann. Comb. 3 (1999), 95–101.

[41] A.W. Williams and R.L. Probert, A measure for component interaction

test coverage, Proc. ACS/IEEE Intl. Conf. Comput. Syst. & Applic., 2001, 301–

311.

[42] K. Yamamoto, Logarithmic order of free distributive lattice. J. Math. Soc.

Japan 6 (1954), 343–353.

