
COVERING ARRAYS AVOIDING FORBIDDEN EDGES

AND EDGE CLIQUE COVERS

Elizabeth Maltais

Thesis Submitted to the Faculty of Graduate and Postdoctoral Studies

In partial fulfilment of the requirements for the degree of Master of Science in

Mathematics 1

Department of Mathematics and Statistics

Faculty of Science

University of Ottawa

c© Elizabeth Maltais, Ottawa, Canada, 2009

1The M.Sc. program is a joint program with Carleton University, administered by the Ottawa-
Carleton Institute of Mathematics and Statistics

Abstract

Covering arrays avoiding forbidden edges (CAFEs) are combinatorial designs which

can be used to generate test suites for practical testing applications. CAFEs gen-

erate test suites in which all required pairwise interactions between any two factors

are tested at least once each, with the property that a specified list of pairwise in-

teractions, the so called forbidden interactions, are avoided by all tests generated

by the CAFE. Consequently, CAFEs can be applied to testing applications wherein

constraints are imposed on the factors of the tests, resulting in forbidden interactions.

In this thesis, we study CAFEs, as well as their relationship to the edge clique

cover problem from graph theory. We give new results and bounds for uniform edge

clique covers and CAFEs. We establish the computational complexity of several

problems related to CAFEs and edge clique covers. In particular, we prove that

finding an optimal CAFE (as well as finding an optimal error-locating array) for a

graph is NP-hard, even for the case of binary alphabets.

ii

Acknowledgements

For making my Master’s experience a truly enjoyable quest, I must deeply thank the

following people.

First, thank you Lucia! My supervisor, Dr. Lucia Moura, provided me with

the opportunity to do my Master’s on a fascinating topic. Thanks to her guidance,

expertise, innovative ideas, and detailed edits, my thesis turned out to be an ac-

complishment that I am very proud of. Lucia’s suggestions and hints led to many

interesting results, and I feel very fortunate to have had such an excellent supervisor.

Obrigada!

I would also like to thank my family for their support and love: Mom, Dad,

Pierre and John. Thanks to Gryffin and Monty too—my office would not have been

the same without the poodle entities near by. Thank you Chris Dionne, my love, the

unexpected and most wonderful outcome of my master’s experience. “Working in

parallel on our respective theses truly was a blessing” simply does not do to describe

the amazing journey we have begun together. At least once every day: you make me

smile; you make me laugh; you make me breakfast or tea; you captivate me with your

ideas; you challenge mine; you hold my hand; you help; you listen; you laugh at me;

you smile back. You are like the sun on my heart and I am immeasurably grateful to

be able to share this life adventure with you, my dearest beloved.

For their time, suggestions, and positive comments, I would like to thank my

thesis examiners Mike Newman and Brett Stevens.

iii

iv

For financial support and for providing me with the invaluable opportunity to

be a teaching assistant, I am very grateful to the University of Ottawa, and the

Department of Mathematics and Statistics, as well as to my supervisor.

For providing me with some fun distractions from my work, and for always

being encouraging, I must thank my best friends Heather Schulz and Jennifer Côté.

Thanks to Éric Serré for convincing me that I should do a master’s and forcing me to

do stations to get stronger. Thanks to my supervisor’s co-student, Patrick Niesink,

for being a friend in class and for providing me with class notes whenever I needed

them.

Lastly, I want to thank Monica Nevins and Mateja Šajna for writing reference

letters for me. I am especially grateful to Mateja for introducing me to Lucia in the

first place, and for being the Chair of my defense at the end.

Elizabeth Jane Maltais

Contents

Abstract ii

Acknowledgements iii

List of Figures viii

List of Tables x

1 Introduction 1

1.1 The Testing Problem . 1

1.2 Orthogonal Arrays, Covering Arrays, and Mixed Covering Arrays 5

1.3 Overview of Thesis . 10

1.4 Required Graph Theory and Notation 11

1.4.1 Basic Definitions . 12

1.4.2 Equality, Subgraphs, and Induced Subgraphs 13

1.4.3 Some Special Simple Graphs 13

1.4.4 Cliques and Independent Sets 14

1.4.5 Connectivity . 15

1.4.6 Graph Colouring . 16

1.5 Required Computational Complexity Concepts 16

v

CONTENTS vi

2 Covering Arrays Avoiding Forbidden Edges 22

2.1 Testing in the Presence of Forbidden Configurations 23

2.2 The Forbidden Edges Graph . 25

2.3 Covering Arrays Avoiding Forbidden Edges 27

2.4 Bounds for CAFEs . 33

2.5 A Recursive Construction for CAFEs 37

2.6 Error-Locating Arrays . 41

3 Edge Clique Covers 45

3.1 Edge Clique Covers . 45

3.2 Edge-disjoint ECCs . 53

3.3 Uniform ECCs . 58

3.4 Partial ECCs . 66

3.5 ECCs and Node Clique Covers 68

4 Covering Arrays as Edge Clique Cover Problems 74

4.1 Orthogonal arrays . 74

4.2 Covering Arrays and Mixed Covering Arrays 76

4.3 Covering Arrays Avoiding Forbidden Edges 79

4.4 Binary CAFEs . 83

4.5 Partial Covering Arrays Avoiding Forbidden Edges and Testing

Applications . 88

5 Computational Complexity of Covering Array Problems 93

5.1 Decision Problems Related to CAFEs and Previous Results . . . 93

5.2 NP-Completeness of 2-CAFEN 102

5.3 NP-Completeness of g-CAFEN 114

5.4 NP-Completeness of PARTIAL-CAFEN 115

5.5 NP-Completeness of UNIFORM-ECCN 116

CONTENTS vii

5.6 Previous Results on the Complexity of ELAs 117

5.7 NP-Completeness of 2-ELAN . 120

5.8 NP-Completeness of g-ELAN for g ≥ 3 126

6 Conclusion 132

A Asymptotic Definitions 136

List of Figures

2.1 A forbidden edges graph G and the graph G| 27

2.2 Example of a forbidden edges graph that is not consistent 29

2.3 Forbidden induced subgraphs for binary forbidden edges graphs . . . 31

2.4 The forbidden edges graph G ∈ G(3,3,3,2,2) of the mobile phone prod-

uct line testing problem given in Tables 2.1 and 2.2, and a CAFE(10, Ĝ) 32

2.5 A graph attaining the lower bound of Proposition 2.4.1 34

2.6 A graph G ∈ G6,2 with CAFEN(G) ≥ bk2/4c = 9. 35

2.7 A graph G ∈ G4,3 with CAFEN(G) ≥ (g − 1)2bk2/4c = 16. 36

2.8 An error-encoding graph G ∈ G(3,2,2) and an ELA(9, G). 43

3.1 Example of an edge-disjoint ECC 56

3.2 Example of a graph G with ω(G) = 4, θ′4(G) 6= +∞ and θ′4(G) =

θ′(G) + 1. 62

3.3 Example of a graph G with ω(G) = 4, but θ′3(G) = θ′(G) 63

3.4 Example of graph with θ′3(G,E
′) = 1 and θ′3(G) = +∞. 68

4.1 Equivalence of an OA(4; 2, 3, 2) and an edge-disjoint 3-ECC of K3,2 . 76

4.2 A graph G ∈ G4,3 such that CAFEN(G) > θ′(G|). 81

4.3 The forbidden edges graph G ∈ G(3,3,4,2,2) of the augmented mobile

phone product line testing problem, with the dotted edges corre-

sponding to I, and a PCAFE(3;G, I) 91

viii

LIST OF FIGURES ix

5.1 The graph G′ of Proposition 5.1.5 98

5.2 Across Edge Rule . 103

5.3 Theorem 5.2.11: Case 1: {vi, vj} 6∈ E(GUV) 110

5.4 Theorem 5.2.11: Case 2: {vi, vj} ∈ E(GUV) 111

List of Tables

1.1 Home entertainment system testing problem 3

2.1 Mobile phone product line . 24

2.2 Constraints on the mobile phone product line 24

x

Chapter 1

Introduction

Combinatorial designs are mathematical objects, typically involving subsets of a finite

set that satisfy specified properties of intersection and balance. These properties vary

depending on the design, and often have applications to real life problems.

In this thesis, we look at a family of combinatorial designs called covering arrays

which are useful for designing smaller than exhaustive test suites. In Section 1.1, we

define the testing problem to which covering arrays can be applied. In Section 1.2,

we look at three types of covering arrays and explain how they are used in testing

problems. In Section 1.3, we give an overview of the thesis, followed by Section

1.4 which highlights the necessary graph theoretic definitions as well as the most

frequently used notation. In Section 1.5, we review basic computational complexity

concepts.

1.1 The Testing Problem

Before a company releases a new product, much testing needs to occur in order to

ensure high quality standards. Whether the product is a software-based electronic

device or a new prescription drug, there are often various components or factors

1

1.1. The Testing Problem 2

involved, each having several options, which should be tested in some sensible way.

To model the general situation, we use the following definition.

Remark 1.1.1 Given integers l and m, we write [l, l + m] to denote the set {l, l +

1, l + 2, ..., l +m}.

Definition 1.1.2 A testing problem is a system with k components called factors,

which we label by the indices 1, ..., k. Each factor i ∈ [1, k] has gi possible options,

called values. Typically, we use the alphabet [0, gi− 1] to denote the values of factor

i. For convenience, we denote such a testing problem as a TP(k, (g1, ..., gk)). If the

alphabet size is constant, that is, if g1 = g2 = · · · = gk = g for some g ∈ Z, then we

shorten the notation to a TP(k, g). We represent a test by a k-tuple T = (a1, ..., ak) ∈

[0, g1 − 1] × · · · × [0, gk − 1], to mean that value ai has been selected for factor i for

each i ∈ [1, k].

For example, Table 1.1 shows a TP(5, (3, 3, 2, 2, 2)) for possible home entertain-

ment systems. We can refer to a specific choice concisely by using the corresponding

5-tuple, say (2, 0, 1, 0, 1), rather than by its full description: a 25” LCD TV with a

DVD/VHS combo player, basic cable, no speakers and a Play Station game system.

For our purposes, a test of such a system is simply a choice of one value for each

of the factors. Our goal is to find out how successful the outcome of this particular

combination of values is. At this point we need to distinguish between a test and the

procedure used to determine its outcome.

The methods used to determine the success of a test depend on the particular

system itself. We assume that the same procedure is run for each test. For example,

if the system involves mixtures of chemical substances, then the procedure to deter-

mine the outcome of a test might be to measure the melting point, boiling point,

strength, and flexibility of the resulting substance. On the other hand, the procedure

to determine the outcome of the home entertainment system might be to let a family

1.1. The Testing Problem 3

Factors Values

1 = TV 0 = 50” LCD high def.
1 = 32” LCD high def.
2 = 25” LCD

2 = DVD player 0 = DVD/VHS combo
1 = DVD only
2 = no DVD player

3 = Cable 0 = satellite
1 = basic

4 = Surround Sound System 0 = no
1 = yes

5 = Game system 0 = Nintendo
1 = Play Station

Table 1.1: Home entertainment system testing problem

use the system corresponding to a test for three weeks, and then to have them fill out

a survey to determine their satisfaction.

The procedure for determining the outcome of the test is not our focal point.

Regardless of the particular procedure, we only care about the success of the outcomes

of the tests. To simplify matters, we assume that the nature of the system is such

that the outcome of the tests performed is either pass or fail. If a test fails, we may

assume that a fault is present in the system and that this fault is responsible for the

test’s failure. Our goal is thus to design a suite of tests which can reveal to us the

faults of the system.

In practice, exhaustively testing a TP(k, (g1, ..., gk)) is too costly. Even for a

moderately small testing problem, say a TP(5, 4), exhaustive testing would require

45 = 1024 tests, which could be infeasible depending on budget and time. So we must

look for more reasonably sized test suites, but at the same time, we want the tests

to cover a wide range of possibilities and test each value or combination of values in

a balanced manner. For example, suppose we generate a test suite of a TP(5, 4) by

choosing the first ten tests in lexicographic order. We certainly save money and time

1.1. The Testing Problem 4

compared to the exhaustive 1024 tests, but we do not even cover every value of every

factor at least once each.

Since the purpose of testing products is to eliminate problems, we have to con-

sider the causes of problems. It may be that one specific value of one of the factors

is faulty. However, with systems involving several components, faults are often due

to unexpected interactions that occur between a specific combination of the options

(see [6, 34]). Therefore, one alternative to exhaustive testing would be to design a

suite of tests in which every t-way interaction between any t of the factors is covered.

To be precise we use the following definition.

Definition 1.1.3 [11] Let TP(k, (g1, ..., gk)) be a testing problem, and let t be a

positive integer such that 1 ≤ t ≤ k. A t-way interaction is a set of values assigned

to t distinct factors. We denote a t-way interaction as I = {(f1, af1), ..., (ft, aft)}

where fi ∈ [1, k], fi 6= fj for i 6= j, and afi ∈ [0, gfi − 1] for 1 ≤ i ≤ t. If t = 2,

we refer to a 2-way interaction as a pairwise interaction. If t = 1, we refer to a

1-way interaction as a pointwise interaction. We say that a test T = (T1, ..., Tk) ∈

[0, g1 − 1]× · · · × [0, gk − 1] covers interaction I = {(f1, af1), ..., (ft, aft)} if Tfi = afi

for each i ∈ [1, t].

As an alternative to exhaustive testing, test suites designed to cover all t-way

interactions for some small value of t can be applied. Indeed, research has shown

that testing all pairwise interactions in a testing problem finds a large percentage

of existing faults, thus offers a good compromise to exhaustive testing [3, 10, 23,

24]. In the following section, we focus on the combinatorial designs which have the

desired properties for designing test suites that guarantee the coverage of all t-way

interactions.

1.2. Orthogonal Arrays, Covering Arrays, and Mixed Covering Arrays 5

1.2 Orthogonal Arrays, Covering Arrays, and Mixed

Covering Arrays

We begin with orthogonal arrays, which were first introduced in 1943 (see [7]).

Definition 1.2.1 An orthogonal array, denoted OAλ(N ; t, k, g), is an N ×k array

with entries from an alphabet with g elements, typically [0, g− 1], such that in every

N × t subarray, each t-tuple occurs exactly λ times as a row. Thus N = λgt. The

parameter N is called the size of the array; t is its strength; k is the number of

factors; we call λ the index. If λ = 1 we omit the subscript and denote the array

simply as an OA(N ; t, k, g).

For example, the following array is an OA(4; 2, 3, 2):

A =

0 0 0
1 1 0
1 0 1
0 1 1

.

We see that A has N = 4 rows and k = 3 columns with entries from the alphabet

X = {0, 1}, thus g = 2. The strength parameter is t = 2, so we see that in any two

columns of A, the pairs (0, 0), (0, 1), (1, 0) and (1, 1) are all present exactly λ = 1 time

each.

Suppose an OA(N ; t, k, g) exists, say A. Then we can use A to solve a testing

problem, TP(k, g), resulting in a test suite in the following way. Each column of A

represents the corresponding factor of the TP(k, g). Each row Ri = (Ri(1), .., Ri(k))

of A is a k-tuple representing one test, where Ri(j) ∈ [0, g − 1] indicates the value

to be assigned to the jth factor. Since A contains N rows, the test suite consists of

N tests. Since A has strength t, every N × t subarray of A contains each possible

t-tuple exactly once each. In terms of the testing problem, this translates to every

t-way interaction of the TP(k, g) being covered by exactly one test (one row of A).

1.2. Orthogonal Arrays, Covering Arrays, and Mixed Covering Arrays 6

There is a vast number of known constructions for orthogonal arrays. See, for ex-

ample [17] for many constructions and results. The use of orthogonal arrays in testing

applications, however, is limited, since for many parameters N, t, k, g, there does not

always exist an OA(N ; t, k, g). For example, there does not exist an OA(4; 2, 4, 2).

An array very similar to an orthogonal array exists for all parameters λ, t, k, g

when we relax the requirement that every t-tuple appear exactly λ times to the

requirement that every t-tuple appear at least λ times. This array is called a covering

array and we give the precise definition below.

Definition 1.2.2 [6] A covering array, denoted CAλ(N ; t, k, g), is an N × k array,

A, with entries from an alphabet with g symbols, typically [0, g − 1], such that in

every N × t subarray, consisting of t columns of A, say columns i1, ..., it, we have

each t-tuple of [0, gi1 − 1]× · · · × [0, git − 1] occurring at least λ times as a row. The

parameter N is the size of the array; t is the strength of coverage of interactions; k

is the number of factors; g is the number of values for each factor, called the order;

λ is the index; if λ = 1, the subscript is omitted.

We see that a covering array is very much like an orthogonal array, with the

exception that a covering array can have t-wise interactions repeating more than λ

times each, whereas an orthogonal array is more strict in that it requires each t-tuple

to occur exactly λ times each. In particular, every OAλ(N ; t, k, g) is a CAλ(N ; t, k, g).

Unlike orthogonal arrays, covering arrays exist for every number of factors k ∈ Z

because we can always enumerate all the k-tuples of our alphabet λ times each.

From now on, we consider only the case when the index λ = 1, and for given

strength, number of factors, and alphabet size, of interest to us is the minimum size

N for which a CA(N ; t, k, g) exists.

Definition 1.2.3 Given parameters t, k, and g, the covering array number, de-

noted by CAN(t, k, g), is the minimum integer N for which a CA(N ; t, k, g) exists. A

1.2. Orthogonal Arrays, Covering Arrays, and Mixed Covering Arrays 7

covering array CA(N ; t, k, g) of size N = CAN(t, k, g) is called optimal.

Evidently, since we require all t-tuples of our alphabet to appear at least once

each, a lower bound for the covering array number must be

gt ≤ CAN(t, k, g).

Furthermore, removing a factor (column) from a CA(N ; t, k, g) yields a CA(N ; t, k−

1, g), thus

CAN(t, k − 1, g) ≤ CAN(t, k, g).

Since a covering array of strength t is also a covering array of strength t′ for 1 ≤ t′ ≤ t,

we have

CAN(t′, k, g) ≤ CAN(t, k, g),

for all t′ ∈ [1, t]. For our purposes, we focus only on covering arrays of strength t = 2,

which can be applied to testing problems where pairwise coverage is used.

In the particular case where the alphabet size is g = 2 we refer to such covering

arrays as binary covering arrays. For this case, the binary covering array number

has been determined exactly, for all numbers of factors k. It was shown for the case

N even by Rényi [32], and independently by Kleitman and Spencer [21] and Katona

[20], for all N.

Theorem 1.2.4 [29] Let k be a positive integer. Then

CAN(2, k, 2) = min

{
N |
(
N − 1

bN
2
c − 1

)
≥ k

}
.

The following asymptotic result holds for covering arrays, indicating that for

fixed alphabet size g, the covering array number grows as log k.

Theorem 1.2.5 (Gargano, Körner, and Vaccaro [14]) Let g ≥ 2 be a fixed integer.

Then, as k →∞,

CAN(2, k, g) ∼ g

2
log2 k.

1.2. Orthogonal Arrays, Covering Arrays, and Mixed Covering Arrays 8

For more information on covering arrays, their bounds and constructions, see

Colbourn’s survey [6].

For a covering array, the alphabet size g is constant and thus gi = g for 1 ≤ i ≤ k;

however, practical testing problems do not necessarily have this property. In practice,

it is unlikely that we fall into the convenient case where each factor to be tested has

the exact same number of possible values. This naturally brings us to a generalization

of a covering array where we allow for the possibility of multiple alphabet sizes.

Definition 1.2.6 A mixed covering array (MCA) is an N × k array, A, having

the following property. Each column i has symbols from the alphabet [0, gi − 1], and

for {i1, ..., it} ⊆ {1, ..., k}, if we consider the N×t subarray of A obtained by selecting

columns i1, ..., it, then there are
∏t

i=1 gi distinct t-tuples that could appear as a row.

An MCA requires that each appear at least λ times. We denote such an array as an

MCAλ(N ; t, k, (g1, g2, ..., gk)). If λ = 1 then we omit the subscript.

Here is an example of an MCA(9; 2, 5, (3, 3, 3, 2, 2)) taken from [11]:

M =

0 2 2 0 0
1 1 2 1 1
0 1 0 1 1
2 2 0 1 0
1 2 1 0 1
0 0 2 0 1
2 1 1 0 1
1 0 1 1 0
2 0 0 0 0

.

Again, we are hoping to find an MCA with the minimum possible number of

rows, in order to reduce testing expenses.

Definition 1.2.7 The minimum integer N for which an MCA(N ; t, k, (g1, ..., gk)) ex-

ists is called the MCA number and we denote it by MCAN(t, k, (g1, ..., gk)).

1.2. Orthogonal Arrays, Covering Arrays, and Mixed Covering Arrays 9

Since for every t columns i1, ..., it, there are
∏t

i=1 gi possible t-tuples, a lower

bound on the MCA number is
t∏
i=1

git ,

for the t largest alphabet sizes gi1 , ..., git . It is easy to check that the array obtained

by reordering the columns of an MCA, is also an MCA with the same size, strength,

number of factors, and index. Therefore, we can assume without loss of generality

that the factors of an MCA are ordered so that g1 ≥ g2 ≥ · · · ≥ gk, in which case our

lower bound is simply
∏t

i=1 gi. For upper bounds and constructions of MCAs, see [6]

and [30].

Unfortunately, in practice, testing problems are even more complicated, and

they frequently come with extra constraints. For many reasons, in a given system,

not every plausible test is valid, and the constraints imposed on a testing problem

can limit our options. Constraints may simply be due the incompatibility of specific

values. For example, some values may require the presence or absence of specific

values of other factors, otherwise testing these combinations does not make sense.

We can also have dangerous interactions, such as explosive chemical mixtures. We

may also wish to avoid interactions which have been found to be faulty by previous

testing. Whatever the reason, many testing problems have constraints which result

in interactions that should be avoided by all tests.

In this thesis, we consider further generalizations of mixed covering arrays which

are used to build test suites for more complicated systems wherein constraints are

present. We also study the translations of these problems into the language of graph

theory, and examine the respective computational complexity of several of the prob-

lems. In the following section, we give a more detailed overview of the thesis.

1.3. Overview of Thesis 10

1.3 Overview of Thesis

We begin by giving a review of the required graph theory in Section 1.4, highlighting

the frequently used notations and definitions. In Section 1.5, we review some basic

computational complexity concepts.

In Chapter 2, we look at covering arrays avoiding forbidden edges (CAFEs), a

recently defined generalization of covering arrays, which take into consideration in-

valid pairwise interactions in a given testing problem. In practice, we often have

constraints on the parameters of a testing problem, and we would like a test suite

which covers all the desired interactions, but which avoids the forbidden combina-

tions. The contents of this chapter are based almost entirely on work by Danziger,

Mendelsohn, Moura, and Stevens [11]. We also look briefly at error-locating arrays,

a related combinatorial object used in some of the computational complexity results

that follow in Chapter 5.

In Chapter 3, we focus on a problem from graph theory, namely the edge clique

cover (ECC) problem. The goal of the ECC problem is to find a collection of cliques

of a given graph, such that every edge of the graph is covered by (has both its ends

in) at least one of the cliques. In this chapter, we present some basic results for the

ECC problem. We also consider three variations of the ECC problem, namely edge-

disjoint ECCs, uniform ECCs, and partial ECCs. Since the uniform ECC problem

is the variation that is most relevant to covering arrays and the testing problem, we

prove several small new results in this area. In the particular case of partial ECCs, we

contribute two new types of partial ECCs based on the edge-disjoint ECC problem

and the uniform ECC problem. We also give some new basic results for partial ECCs.

At the end of Chapter 3, we present a small section on node clique covers, another

graph theory problem that is related to covering arrays, as well as its equivalence to

the graph-colouring problem of the complementary graph.

In Chapter 4, we tie together several covering array problems to the correspond-

1.4. Required Graph Theory and Notation 11

ing variations of ECC problems. We present proofs of the equivalence between edge-

disjoint ECCs and orthogonal arrays, ECCs of complete k-partite graphs and mixed

covering arrays, and uniform ECCs and CAFEs. In particular, we contribute new

results for the existence and upper bounds of CAFEs, based on their relationship

with the uniform ECC problem. We also define a new type of array which we call a

partial covering array avoiding forbidden edges. We give a proof of the equivalence

between partial CAFEs and the partial uniform ECC problem, as well as some initial

basic results. Partial CAFEs are a generalization of CAFEs, but accommodate an

even wider range of testing applications.

In Chapter 5, we present several results on the computational complexity of prob-

lems related to CAFEs, ECCs, and error-locating arrays. In particular, we resolve the

open question about the complexity of the decision problem related to the language

2-CAFEN, which addresses the existence of a binary CAFE of a specified size. We

do so by giving a reduction from the ECC problem, which takes a simple graph and

transforms it into a binary forbidden edges graph. We also use this result to show that

g-CAFEN is NP-complete for all g ≥ 2. We prove that the decision problem related

to UNIFORM-ECCN, the language which addresses the existence of a partial ECC

of a given graph, is NP-complete as well, using a reduction from 2-CAFEN. Further-

more, we extend the construction we use to prove the NP-completeness of 2-CAFEN

in order to prove the NP-completeness of g-ELAN, the language which addresses the

existence of error-locating arrays having alphabet size g, for all g ≥ 2. This covers the

remaining open cases of g = 2, 3, 4 since the NP-completeness of g-ELAN for g ≥ 5

has been previously established [28].

1.4 Required Graph Theory and Notation

We now present a brief review of graph theory, giving the definitions and notations

we use within this thesis. We follow the text by Bondy and Murty [1] throughout.

1.4. Required Graph Theory and Notation 12

1.4.1 Basic Definitions

A graph G is an ordered pair (V (G), E(G)). The vertex set V (G) consists of a

nonempty set of elements called vertices. The edge set E(G) is a multiset that is

disjoint from V (G), and its elements are called edges. An edge e ∈ E(G) consists

of a 2-element subset of V (G), so that e = {u, v} for two vertices u, v ∈ V (G). If

e = {u, v}, then e is said to join u and v; the vertices u and v are called the ends of

e. The ends of an edge are said to be incident with the edge and vice-versa. Two

vertices which are incident with a common edge are adjacent. Similarly, two edges

which are incident with a common vertex are adjacent. If an edge e has identical

ends, we refer to e as a loop; otherwise we simply call e an edge. If for two distinct

edges, say e1 and e2 we have e1 = {u, v} and e2 = {u, v}, that is, if two distinct edges

have the same ends, then such edges are referred to as parallel edges.

A graph is simple if it contains no loops and no parallel edges. In the case where

we have a simple graph, we may refer to an edge simply by its ends, since any pair

of vertices in a simple graph can be joined by at most one edge. That is, if an edge e

of a simple graph G satisfies e = {u, v} then we can refer to e as the unordered pair

{u, v}.

For our purposes, we only consider finite graphs, that is, graphs whose vertex

set and edge set are both finite. We denote the number of vertices of a graph G as

|V (G)|, and the number of edges of G as |E(G)|. Moreover, from now on, all graphs

throughout this paper are simple finite graphs, and for convenience, we denote by G

the set of all finite simple graphs.

In a graph G, the degree of a vertex v ∈ V (G) is the number of edges of G

incident with v, and we denote it by dG(v), or simply d(v) when the context is clear.

The minimum degree of any vertex in a graph G is denoted δ(G) and the maximum

degree of a vertex of G is denoted ∆(G). The following lemma is referred to as the

handshaking lemma.

1.4. Required Graph Theory and Notation 13

Lemma 1.4.1 In any graph G,
∑

v∈V (G) dG(v) = 2|E(G)|.

A vertex v ∈ V (G) is called isolated if dG(v) = 0. We call an edge e ∈ E(G)

an isolated edge if e = {u, v} and dG(u) = 1 = dG(v). The neighbourhood of

v ∈ V (G) in G, denoted by NG(v), is the set of vertices adjacent to v in G. That is,

NG(v) = {u ∈ V (G)|{u, v} ∈ E(G)}.

1.4.2 Equality, Subgraphs, and Induced Subgraphs

We say that two graphs H and G are identical if V (H) = V (G) and E(H) = E(G),

in which case we write H = G. A graph H is a subgraph of G, denoted H ⊆ G, if

V (H) ⊆ V (G) and E(H) ⊆ E(G). When H ⊆ G but H 6= G, we say that H is a

proper subgraph of G, and we write H ⊂ G.

For a graph G, and a nonempty subset V ′ ⊆ V (G), the subgraph of G whose

vertex set is V ′ and whose edge set is the set of those edges of G that have both

ends in V ′ is called the subgraph of G induced by V ′ and is denoted by G[V ′].

Similarly, for a nonempty subset of edges E ′ ⊆ E(G), the subgraph of G whose vertex

set is the set of ends of edges in E ′ and whose edge set is E ′ is called the subgraph

of G induced by E ′, and is denoted G[E ′].

For a subset of vertices V ′ of a the vertex set of graph G we use the notation

G − V ′ to denote the subgraph of G induced by the vertices not in V ′. That is

G − V ′ = G[V (G) \ V ′]. For a nonempty subset of edges, E ′ ⊆ E(G), we use the

notation G \ E ′ to denote the graph with vertex set V (G \ E ′) = V (G) and edge set

E(G \ E ′) = E(G) \ E ′.

1.4.3 Some Special Simple Graphs

A graph with just one vertex and no edges is trivial and all other graphs are nontriv-

ial. A graph in which each pair of distinct vertices is joined by an edge is a complete

graph. Up to isomorphism, there is only one complete graph on n vertices and it is

1.4. Required Graph Theory and Notation 14

denoted by Kn. Conversely, the graph on n vertices which contains no edges is called

an empty graph, and we denote it by Kn.

If k is a positive integer then a k-partite graph is one whose vertex set can be

partitioned into subsets so that no edge has both ends in any one subset. The subsets

of vertices in the partition are called the partite sets. A k-partite graph in which

each vertex is joined to every vertex that is not in the same partite set is called a

complete k-partite graph. If the partition of the vertices of a complete k-partite

graph has partite sets of sizes g1, ..., gk, we denote such a graph as K(g1,...,gk). If a

complete k-partite graph has partite sets of equal size, say g1 = · · · = gk = g, then we

simplify the notation to Kk,g. In the case where k = 2, a 2-partite graph is referred

to as a bipartite graph. In the case where all parts of a k-partite graph are equal in

size, we call this graph equipartite.

The complement of a graph G, denoted by G, is the simple graph with vertex

set V (G), and the property that two distinct vertices are adjacent in G if and only if

they are not adjacent in G.

1.4.4 Cliques and Independent Sets

Given a graph G, a subset of vertices, C ⊆ V (G), is a clique of G if the subgraph of G

induced by the vertex set C is complete. In other words, a clique of a graph is a subset

of vertices in which every pair of distinct vertices is joined by an edge. Conversely,

a subset of vertices, I ⊆ V (G), is an independent set of G if the subgraph of G

induced by the vertex set I is empty.

Aside from having similar definitions, cliques and independent sets are funda-

mentally related to each other by taking the complement of the graph in which they

belong. The following easy result makes this relationship precise.

Proposition 1.4.2 Let G be a simple graph. Then a subset of vertices C ⊆ V (G)

is a clique of G if and only if C is an independent set of G.

1.4. Required Graph Theory and Notation 15

If C is a clique of G containing k vertices, that is, if |C| = k, then we call C a

k-clique of G. Moreover, a clique C of G is maximum if G contains no clique C ′

such that |C ′| > |C|. The clique number of a graph G, written ω(G), is the number

of vertices in a maximum clique of G. Similarly, if I is an independent set of G

containing k vertices, then we call I an independent set of size k. An independent

set I of G is maximum if G contains no independent set I ′ such that |I ′| > |I|.

The independence number of G, denoted by α(G), is the number of vertices in a

maximum independent set of G. .

1.4.5 Connectivity

In a simple graph, a finite non-null sequence P = v0{v0, v1}v1{v1, v2}v2...{vl−1, vl}vl,

whose terms are alternately vertices vi ∈ V (G) for 0 ≤ i ≤ l and edges {vi−1, vi} ∈

E(G) for 1 ≤ i ≤ l, is called a (v0, vl)-walk. The vertex v0 is called the origin of P ,

and vl is called the terminus of P . The length of P is l, the number of edges in the

sequence. If, in particular, vi 6= vj for 0 ≤ i < j ≤ l, then P is called a (v0, vl)-path.

A finite non-null sequence P = v0v1...vl−1vl is called a cycle if vi 6= vj for i 6= j,

{vi, vi+1} ∈ E(G) for 0 ≤ i ≤ l − 1 and v0 = vl. If P = v0...vl−1v0 is a cycle then l is

its length. If the length of a path P (or, cycle, respectively) is odd, then we call P

an odd path (odd cycle, respectively). If the length of P is even, then we call P

an even path (even cycle, respectively).

Two vertices u, v ∈ V (G) are connected if there exists a (v0, vl)-path in G. Two

vertices being connected in a graph G forms an equivalence relation on the vertex set

V (G). Thus, there exists a partition of V (G) into nonempty subsets V1, ..., Vm such

that two vertices u and v are connected in G if and only if both u and v belong to

the same set Vi. The induced subgraphs G[V1], ..., G[Vm] are called the connected

components of G. If G has exactly m = 1 connected component, then we say that

G is connected; otherwise, G is disconnected.

1.5. Required Computational Complexity Concepts 16

1.4.6 Graph Colouring

A k-vertex colouring of a graph G is an assignment of k colours, 1,...,k, to the

vertices of G. If no two adjacent vertices are assigned the same colour, then the

colouring is called proper. A proper k-vertex colouring partitions V (G) into k (pos-

sibly empty) sets {V1, ..., Vk}, so that vertices in Vi are assigned colour i, for 1 ≤ i ≤ k.

If G admits a proper k-vertex colouring, then we call G k-colourable.

The minimum k for which a graph G is k-colourable is called the chromatic

number of G, and is denoted by χ(G). In fact, a graph G is k-colourable if and

only if it is k-partite, since the colour classes V1, ..., Vk have the property that no two

vertices in a given colour class Vi are adjacent in G. A proper χ(G)-vertex colouring

of a graph G is called optimal.

For the particular case of 2-colourable graphs (bipartite graphs) the following

result holds.

Theorem 1.4.3 A graph is 2-colourable (bipartite) if and only if it contains no odd

cycles.

1.5 Required Computational Complexity Concepts

In this section, we give the definitions of the complexity classes P and NP, as well

as the concept of NP-completeness and polynomial-time reducibility, following [9]

throughout. We consider only decision problems here. That is, we do not look directly

at the problem of finding an optimal solution to a given optimization problem, but

rather, we look at a closely related problem for which the answer is either “yes” or

“no.” Let us be more precise. An abstract decision problem Q is a map from the

set I of instances for the problem to the set of solutions, namely {0, 1}. Thus, for an

instance i ∈ I we have Q(i) = 1 if the answer for the decision is “yes” and Q(i) = 0

if the answer is “no.”

1.5. Required Computational Complexity Concepts 17

Since computers are designed to use binary strings as encodings for abstract

structures, as well as numbers and letters, it makes sense to translate instances for an

abstract decision problem into binary strings. We do this using an encoding which is

simply a map e from the set I of instances for an abstract decision problem to the set

of binary strings. We denote by ε the empty string and let {0, 1}∗ denote the set of all

binary strings. That is, {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, ...}. Thus, computers do

not solve the abstract decision problem, but rather, they solve the encoded version.

For convenience, given an abstract decision problem Q : I → {0, 1} and an encoding

e : I → {0, 1}∗, we denote by Qe the encoded version of Q. That is, Qe is a map

from the set {0, 1}∗ to the set of solutions {0, 1}, so that for any instance i ∈ I, we

have Q(i) = 1 if and only if Qe(e(i)) = 1. Since an encoding e does not necessarily

map surjectively onto {0, 1}∗, we use the convention that if x ∈ {0, 1}∗ and x 6= e(i)

for some i ∈ I, then Qe(x) = 0. As a result, we may think of an abstract decision

problem and its encoded version interchangeably.

Now, in order to represent an abstract decision problem concisely, we use lan-

guages. For our purposes, a language L is any set of strings made up of symbols from

the alphabet {0, 1}. Every language over {0, 1} is thus a subset of {0, 1}∗. With this

framework, an abstract decision problem Q can be viewed as a language L over {0, 1}

where L = {x ∈ {0, 1}∗|Qe(x) = 1}. In practice, we more commonly define a language

by the underlying abstract problem, rather than the encoded version. That is, when

we have a decision problem Q defined as the language L = {x ∈ {0, 1}∗|Qe(x) = 1},

we more commonly write L as L = {i ∈ I|Q(i) = 1}.

A language L is decided by an algorithm A if for every x ∈ L, the algorithm’s

output is A(x) = 1, and for every x 6∈ L, the algorithm’s output is A(x) = 0. A

language L is polynomial-time decidable if there is an algorithm A and a constant

c such that for any input x ∈ {0, 1}∗ such that |x| = n, the algorithm A correctly

decides whether x ∈ L in time O(nc). A verification algorithm is a two-input

algorithm A, where one argument is an input string x and the other is a binary

1.5. Required Computational Complexity Concepts 18

string y called a certificate. We say that A verifies an input string x if there

exists a certificate y such that A(x, y) = 1. The language verified by a verification

algorithm A is

L = {x ∈ {0, 1}∗|there exists y ∈ {0, 1}∗ such that A(x, y) = 1}.

Informally, if we are given an instance x ∈ L, then there exists a certificate y that

A can use as proof that x ∈ L. If there exists a polynomial-time algorithm A that

verifies a language L, then we say that L is polynomial-time verifiable.

The complexity class P is the class of languages that are polynomial-time

decidable. That is,

P = {L ⊆ {0, 1}∗| there exists an algorithm A that decides L in polynomial time}.

The complexity class NP is the class of languages that can be verified by a

polynomial-time algorithm. We say that a language L belongs to the class NP if

and only if there exists a two-input polynomial-time algorithm A and a constant c

such that

L = {x ∈ {0, 1}∗| there exists a certificate y with |y| = O(|x|c) such that A(x, y) = 1}.

It is clear that P ⊆ NP since any decision problem that is polynomial-time de-

cidable must also be polynomial-time verifiable. However, the answer to the question

“does P equal NP?” is unknown. In particular, there is a special subset of decision

problems in the class NP called NP-complete problems which are in some sense the

hardest problems in the class NP. In order to give the definition of NP-complete, we

need to be precise in what we mean by “a problem is at least as hard as another

problem.” We give the definition for reducibility below.

Definition 1.5.1 A language L1 is polynomial-time reducible to a language L2

if there exists a polynomial-time computable function f taking instances for the lan-

guage L1 to instances for the language L2 such that for all x, we have x ∈ L1 if

1.5. Required Computational Complexity Concepts 19

and only if f(x) ∈ L2. If such a function exists, we use the notation L1 ≤P L2 to

denote that L1 is polynomial-time reducible to L2. The function f is called the re-

duction function, and a polynomial-time algorithm Af that computes f(x) is called

a reduction algorithm.

Thus, if we have L1 ≤P L2 for languages L1 and L2 we can say that the decision

problem for L2 is at least as hard as the decision problem for L1 since a polynomial-

time algorithm that decides L2 together with a reduction function f can be used to

decide L1 in polynomial time.

Lemma 1.5.2 If L1 and L2 are languages such that L1 ≤P L2, then L2 ∈ P implies

L1 ∈ P .

Now we give the definition for an NP-complete language.

Definition 1.5.3 A language L is NP-hard if L′ ≤P L for every language L′ ∈ NP.

If L is NP-hard and we also have L ∈ NP, then L is NP-complete.

If a language is NP-complete, we see that its decision problem is at least as hard as

that of every other language in the class NP. In fact, no polynomial-time algorithm

that solves the decision problem for an NP-complete language is known, and the

following theorem tells us that if any NP-complete language admits a polynomial-

time algorithm, then every language in NP does as well.

Theorem 1.5.4 If any NP-complete problem is polynomial-time decidable, then P

= NP. Equivalently, if any problem in NP is not polynomial-time decidable, then no

NP-complete problem is polynomial-time decidable.

Proof: Suppose that L ∈ P and L is NP-complete. For any L′ ∈ NP, we have

L′ ≤P L. By Lemma 1.5.2 we must have that L′ ∈ P also, for every L′ ∈ NP which

implies NP ⊆ P and so P = NP.

1.5. Required Computational Complexity Concepts 20

Now, given a language that is NP-complete we can prove that another language

is NP-complete via the following lemma.

Lemma 1.5.5 If L0 is a language that is NP-complete and L is a language such that

L0 ≤P L, then L is NP-hard. Moreover, if additionally we have L ∈ NP, then L is

NP-complete.

Proof: Since L0 is NP-complete, for every language L′ ∈ NP we have L′ ≤P L0.

We also have L0 ≤P L and by transitivity of ≤P for every language L′ ∈ NP we

have L′ ≤P L. Thus L is NP-hard. If additionally we have L ∈ NP, then L is also

NP-complete.

The usefulness of Lemma 1.5.5 relies on the existence of some initial NP-complete

language. That is, we need some language that can be proven to be NP-complete from

scratch, without already requiring the existence of an NP-complete problem. Indeed,

in 1971, Cook [8] proved the existence of an NP-complete problem, the satisfiability

problem. A boolean formula consists of the conjunction of clauses, wherein each

clause is the disjunction of literals (a literal is a variable or the negation of a vari-

able). A boolean formula ϕ is satisfiable if there exists a valuation V , that is an a

assignment of truth values (T or F) to each of the variables, such that V (ϕ) = T .

The satisfiability problem is given by the language

SAT = {ϕ|ϕ is a satisfiable boolean formula}.

For general k, instances for k-SAT are boolean formulas consisting of the conjunction

of clauses, wherein each clause consists of exactly k literals. Levin [25] also proved

the existence of an NP-complete tiling problem, independently from Cook. In 1972,

Karp [19] proved that several central combinatorial problems, including the clique

problem, the graph colouring problem, and 3-SAT, are all NP-complete. In contrast

to the NP-completeness of 3-SAT, it is known that 2-SAT ∈ P. By revealing that such

1.5. Required Computational Complexity Concepts 21

a large number of important problems are computationally intractable, Karp’s work

resulted in further study of NP-completeness and his paper provides many tools for

proving NP-completeness via reductions from other NP-complete problems. In 1979,

Garey and Johnson [13] catalogued many problems that were known at the time to

be NP-complete, and provided an excellent guide to the theory of NP-completeness.

Chapter 2

Covering Arrays Avoiding

Forbidden Edges

Using MCAs to generate test suites can be useful; however, these designs do not take

into consideration the possibility that some interactions in a testing problem may be

invalid, faulty, or even dangerous. Such interactions should be avoided (not covered)

by all tests performed. Thus, we are looking for a suite of tests which do cover all the

allowable interactions of a desired size, but which avoid all forbidden interactions.

In this chapter, the object we study for this purpose is a covering array avoiding

forbidden edges. Section 2.1 motivates the study of such objects. Section 2.2 looks at

a family of graphs which are used to represent the forbidden interactions in a testing

problem. In Section 2.3, we give the definition of covering arrays avoiding forbidden

edges and some important properties. Sections 2.4 and 2.5 review bounds and a

construction for covering arrays avoiding forbidden edges. Lastly, Section 2.6 looks

at error-locating arrays, objects which are closely related to covering arrays avoiding

forbidden edges.

22

2.1. Testing in the Presence of Forbidden Configurations 23

2.1 Testing in the Presence of Forbidden Configu-

rations

For some reason, a particular t-way interaction of a given testing problem may need

to be forbidden from all tests. For example, some combinations of components in a

highly-configurable software system can be invalid. Table 2.1 shows an example pre-

sented by Cohen et. al. [5], of a TP(5, (3, 3, 3, 2, 2)) for a mobile phone product line.

This system contains some inherent constraints. For example, video ringtones cannot

be used without the presence of a video camera. Table 2.2 gives a list of constraints

on the various options, as well as the resulting forbidden interactions. In this case,

the system has seven forbidden pairwise interactions and one forbidden 3-way inter-

action. An MCA(N ; 2, 5, (3, 3, 3, 2, 2)) provides a suite of tests which guarantees the

coverage of all pairwise interactions, but ignores the constraints completely. Conse-

quently, some of the tests generated by the MCA simply cannot take place, resulting

in wasted tests. Thus it is desirable to design a minimal suite of tests which cover

all permitted interactions, but which avoid the forbidden interactions. Experiments

involving material mixtures provide an example of a testing problem where ignoring

forbidden interactions could be deadly. These types of experiments may combine ma-

terials in order to produce mixtures with improved properties such as strength and

flexibility, but absolutely must avoid creating known explosive or toxic combinations.

Cawse [4] supports the use of covering arrays for the design of such experiments, but

the ability to avoid the dangerous combinations is essential.

Hartman and Raskin [16] address the need for forbidden configurations in some

testing applications, although their proposed solution requires an exhaustive list of all

invalid tests (not simply a list of the forbidden interactions themselves). We opt not to

use their solution since its non-compact representation seems inefficient. Cohen et. al.

[5] define constrained covering arrays and present a general technique for representing

2.1. Testing in the Presence of Forbidden Configurations 24

Factors Values

1 = display 0 = 16 million colours
1 = 8 million colours
2 = black and white

2 = email viewer 0 = graphical
1 = text
2 = none

3 = camera 0 = 2 megapixels
1 = 1 megapixel
2 = none

4 = video camera 0 = yes
1 = no

5 = video ringtones 0 = yes
1 = no

Table 2.1: Mobile phone product line

Constraints Forbidden
Interactions

(C1) graphical email viewer requires a colour display {(1, 2), (2, 0)}
(C2) 2 megapixel camera requires a colour display {(1, 2), (3, 0)}
(C3) graphical email viewer is not supported with {(2, 0), (3, 0)}
2 megapixel camera
(C4) 8 million colour display does not support a {(1, 1), (3, 0)}
2 megapixel camera
(C5) video camera requires a camera and a colour {(3, 2), (4, 0)}
display {(1, 2), (4, 0)}
(C6) video ringtones cannot occur without a video {(4, 1), (5, 0)}
camera
(C7) the combination of 16 million colours, text, and {(1, 0), (2, 1), (3, 0)}
2 megapixel camera will not be supported

Table 2.2: Constraints on the mobile phone product line

2.2. The Forbidden Edges Graph 25

constraints so that existing testing problem algorithms can now handle constraints.

Danziger et. al. [11] use graphs to represent forbidden pairwise interactions of a

testing problem and define covering arrays avoiding forbidden edges. The use of

graphs allows the authors to establish links between a clique covering problem from

graph theory and testing problems having constraints.

We follow the solution of Danziger et. al. [11] and study covering arrays avoiding

forbidden edges (CAFEs). In general, the constraints imposed on a testing problem

can result in forbidden interactions of any size (forbidden t-way interactions for any

t ∈ [1, k]). For example, the constraint (C7) of Table 2.2 yields a forbidden 3-way

interaction. These situations can be modeled using hypergraphs representing the

forbidden interactions; however, we concentrate solely on the simpler case, where all

forbidden interactions are pairwise interactions.

Remark 2.1.1 From now on, we only consider the problem of covering all pairwise

interactions of a given testing problem. Moreover, if a testing problem has an as-

sociated forbidden interaction set, we assume all forbidden interactions are pairwise

interactions. Unless otherwise stated, we refer to pairwise interactions simply as

interactions.

2.2 The Forbidden Edges Graph

Given a testing problem TP(k, (g1, ..., gk)) and an associated forbidden (pairwise)

interaction set, say F = {I|I is a forbidden interaction of TP(k, (g1, ..., gk))}, we

represent the forbidden interactions using a k-partite graph G that is a member of

the following family of graphs.

Definition 2.2.1 The family of forbidden edges graphs, denoted by G(g1,...,gk),

is the family of k-partite graphs having parts of sizes g1, ..., gk. Furthermore the

vertices of any G ∈ G(g1,...,gk) are labeled vi,ai where i ∈ [1, k] and ai ∈ [0, gi − 1],

2.2. The Forbidden Edges Graph 26

so that the respective parts are of the form Pi = {vi,ai|ai ∈ [0, gi − 1]} for each

i ∈ [1, k]. The edge set of any G ∈ G(g1,...,gk) is a subset of the edge set of the complete

k-partite graph K(g1,...,gk) with vertices labeled likewise. In the particular case when

g1 = g2 = · · · = gk = g, we denote the family of forbidden edges graphs with uniform

alphabet size g as Gk,g.

For each G ∈ G(g1,...,gk) there is a corresponding testing problem TP(k, (g1, ..., gk))

with forbidden interaction set F such that G contains one vertex for each value of

each factor in the corresponding testing problem. Moreover, each partite set Pi =

{vi,ai |ai ∈ [0, gi−1]} corresponds to the gi values of factor i, and we sometimes refer to

this vertex set simply as factor i. For i 6= j, two vertices vi,ai and vj,aj are joined by

an edge in G if and only if the interaction between the values ai and aj between factors

i and j, respectively, is forbidden. That is, if interaction I = {(i, ai), (j, aj)} ∈ F, then

the graph G contains the edge {vi,ai , vj,aj}. In this case, we call G the forbidden

edges graph for the testing problem TP(k, (g1, ..., gk)) with forbidden interaction set

F.

Although we never allow a test to assign two distinct values of a given factor

simultaneously, we do not add these “implicity forbidden” interactions to the forbid-

den edges graph. However, it is sometimes convenient to consider the graph obtained

from a forbidden edges graph G that does have these edges. We denote by G| the

graph obtained from a forbidden edges graph G ∈ G(g1,...,gk) by adding to G all edges

of the form {vi,ai , vi,bi} for each factor i ∈ [1, k] and for every two distinct values

ai 6= bi such that ai, bi ∈ [0, gi − 1]. Figure 2.1 shows a forbidden edges graph G as

well as the graph G|. In the following section, we consider covering arrays associated

to a forbidden edges graph.

2.3. Covering Arrays Avoiding Forbidden Edges 27

G :

v1,0

v1,1

v2,0

v2,1

v3,0

G| :

v1,0

v1,1

v2,0

v2,1

v3,0

Figure 2.1: A forbidden edges graph G and the graph G|

The graph G ∈ G(2,2,1) is associated to the testing problem TP(3, (2, 2, 1)), having one

forbidden interaction between factors 1 and 2, namely F = {{(1, 0), (2, 0)}}. The

graph G| contains edges joining vertices within each factor.

2.3 Covering Arrays Avoiding Forbidden Edges

Now, we are looking for a suite of tests which avoids all forbidden interactions repre-

sented by a given forbidden edges graph, but which does cover all allowable interac-

tions between factors. The structure that does the trick, if it exists, is called a covering

array avoiding forbidden edges. First, let us consider the following definitions.

Definition 2.3.1 [11] Given a testing problem TP(k, (g1, ..., gk)), we say that a k-

tuple T = (T1, ..., Tk) avoids interaction I = {(f1, af1), ..., (ft, aft)} if T does not

cover I. A k-tuple T = (T1, ..., Tk) ∈ [0, g1 − 1]× · · · × [0, gk − 1] is said to avoid the

forbidden edges graph G ∈ G(g1,...,gk) if for all i, j ∈ [1, k], we have {vi,Ti , vj,Tj} 6∈ E(G).

We should remark that when a k-tuple T = (T1, ..., Tk) avoids a graph G it must

be that the set of vertices {v1,T1 , ..., vk,Tk} is an independent set of G| (and therefore

of G as well).

Lemma 2.3.2 Let G ∈ G(g1,...,gk). Then T = (T1, ..., Tk) forms a k-tuple avoiding G

if and only if I = {v1,T1 , ..., vk,Tk} is an independent set of G|.

Proof: Let T = (T1, ..., Tk) be a k-tuple avoiding G. By definition, for all i, j ∈

[1, k] we have {vi,Ti , vj,Tj} 6∈ E(G), which is equivalent to I = {v1,T1 , ..., vk,Tk} being

2.3. Covering Arrays Avoiding Forbidden Edges 28

an independent set of G|. Conversely, if I = {v1,T1 , ..., vk,Tk} is an independent set of

G|, then for all i, j ∈ [1, k], we have {vi,Ti , vj,Tj} 6∈ E(G). Thus T = (T1, ..., Tk) forms

a k-tuple avoiding G.

Remark 2.3.3 It is sometimes convenient for us to refer to an interaction I =

{(i, ai), (j, aj)} simply as the pair of vertices {vi,ai , vj,aj}. Then, if {vi,ai , vj,aj} 6∈ E(G),

we have a non-forbidden interaction, and if {vi,ai , vj,aj} ∈ E(G), we have a forbidden

interaction.

We now give the definition of a CAFE.

Definition 2.3.4 [11] A covering array avoiding forbidden edges (CAFE) of a

graph G ∈ G(g1,...,gk), is an N × k array A, with each column i having symbols from

the alphabet [0, gi − 1], and denoted CAFE(N,G), such that:

1. each row of A forms a k-tuple avoiding G, and

2. for all vi,ai , vj,aj ∈ V (G) with i 6= j, if {vi,ai , vj,aj} 6∈ E(G), then there exists a

row Rl = (Rl(1), ..., Rl(k)) such that Rl(i) = ai and Rl(j) = aj.

The CAFE number of a forbidden edges graph G, denoted by CAFEN(G), is the

minimum integer N for which a CAFE(N,G) exists, if a CAFE of G exists, or +∞

otherwise.

As depicted in Figure 2.2, we see that there does not always exist a CAFE(n,G)

for every graph G ∈ G(g1,...,gk). This brings us to the next definition where we consider

the properties of forbidden edges graphs for which a CAFE exists.

Definition 2.3.5 [11] Let G ∈ G(g1,...,gk). An interaction I = {(i, ai), (j, aj)} is said

to be consistent with G if there exists a k-tuple T with Ti = ai and Tj = aj that

avoids G. The graph G is consistent if all interactions {(i, ai), (j, aj)} such that

i 6= j and {vi,ai , vj,aj} 6∈ E(G) are consistent with G.

2.3. Covering Arrays Avoiding Forbidden Edges 29

G :

v1,0

v1,1

v2,0

v2,1

v3,0

v3,1

Figure 2.2: Example of a forbidden edges graph that is not consistent

The graph G ∈ G3,2 is associated to the testing problem TP(3, 2) with forbidden

interaction set F = {{(1, 0), (2, 0)}, {(1, 0), (2, 1)}}. If a CAFE(n,G) exists then

in particular there needs to be a row that covers the non-forbidden interaction

I = {(1, 0), (3, 0)}; however, upon closer inspection, we see that such a row can-

not exist since there is no value that can be assigned to the second factor within the

same row that covers the point v1,0.

Indeed, there exists a CAFE(n,G) for a forbidden edges graph G if and only

if G is consistent. For a forbidden edges graph G ∈ G(g1,...,gk), we denote by Ĝ the

minimal supergraph of G that is consistent. We refer to Ĝ as the avoidance closure

of G [11]. Indeed, Ĝ exists for every G ∈ G(g1,...,gk) since we can always add to G all

possible edges and the complete k-partite graph K(g1,...,gk) is trivially consistent.

For the particular case of binary forbidden edges graphs, that is, for graphs

G ∈ Gk,2 corresponding to CAFEs with binary alphabets, we have the following

result by Danziger et. al. [11] which characterizes their consistency.

Proposition 2.3.6 (Danziger et. al. [11]) Let G ∈ Gk,2 be a forbidden edges graph

with vertex set V (G) = {vi,a|1 ≤ i ≤ k, a ∈ {0, 1}}. Then G is consistent if and only

if

1. {vi,a, vj,b} ∈ E(G) whenever i 6= j and there exist vertices in the same factor, say

vl,c and vl,1−c, such that l 6= i, l 6= j and {vi,a, vl,c} ∈ E(G) and {vj,b, vl,1−c} ∈

E(G) (see Figure 2.3-1.), and

2. {vi,a, vj,b} ∈ E(G) for all j ∈ [1, k] \ {i} whenever there exist vertices in the

2.3. Covering Arrays Avoiding Forbidden Edges 30

same factor, say vl,0 and vl,1 such that l 6= i, l 6= j, and {vi,a, vl,0} ∈ E(G) and

{vi,a, vl,1} ∈ E(G) (see Figure 2.3-2.).

Proof: Suppose we have vertices vi,a, vj,b, vl,c and vl,1−c from three distinct parts i, j

and l, such that {vi,a, vl,c} ∈ E(G), {vj,b, vl,1−c}, but {vi,a, vj,b} 6∈ E(G). Then the non-

forbidden interaction {(i, a), (j, b)} would not be consistent with G and consequently

G would not be consistent. Similarly, if edges {vi,a, vl,0} and {vi,a, vl,1} exist, but for

i 6= j we have {vi,a, vj,b} 6∈ E(G), then {(i, a), (j, b)} would not be consistent with G.

Thus, necessity is clear.

For sufficiency, assume that 1. and 2. holds. Let {vi,a, vj,b} be any non-edge of

G with i 6= j. We give an algorithm that yields a k-tuple T = (T1, ..., Tk) avoiding G

and covering {(i, a), (j, b)}. Initially set F = Ø. At the first iteration the algorithm

sets f1 = i and Tf1 = a, and resets F ← F ∪ {f1}. At the second iteration, the

algorithm sets f2 = j and Tf2 = b, and resets F ← F ∪ {f2}. At the mth iteration,

F = {f1, f2, ..., fm−1} and Tfi has been set for all fi ∈ F so that the set of vertices

{vfi,Tfi |fi ∈ F} is an independent set of G. We then select fm ∈ [1, k] \ F . If

{vfm,0, vfi,Tfi} is an edge of G for some fi ∈ F then set Tfm = 1. Otherwise, set

Tfm = 0.

At this point, if the algorithm fails it means that neither Tfm = 0 nor Tfm = 1

yields an independent set. That is, we must have fp, fq ∈ F such that {vfp,Tfp , vfm,0} ∈

E(G) and {vfq ,Tfq , vfm,1} ∈ E(G). If fp 6= fq, then 1. implies that {vfp,Tfp , vfq ,Tfq} ∈

E(G). This contradicts our assumption that {vfi,Tfi |fi ∈ F} is an independent set,

hence is impossible. If fp = fq then 2. implies that {vfi,Tfi , vfp,Tfp} ∈ E(G) for

every fi 6= fp which again, contradicts our assumption that {vfi,Tfi |fi ∈ F} is an

independent set. Therefore, the algorithm cannot fail at the mth iteration.

The algorithm then sets F ← F ∪ {fm} and iterates similarly until |F | = k, at

which point T is a k-tuple avoiding G. Thus every interaction {(i, a), (j, b)} such that

i 6= j and {vi,a, vj,b} 6∈ E(G) is consistent with G and by definition G is consistent.

2.3. Covering Arrays Avoiding Forbidden Edges 31

1.

vj,b

vl,c

v
l,1−c

vi,a

2.

vj,b vi,a vl,0

vl,1

Figure 2.3: Forbidden induced subgraphs for binary forbidden edges graphs

The dotted edges indicate interactions that would not be consistent with G if non-

forbidden. That is, the dotted edges must be present in order for the graph to be

consistent.

The above proposition is equivalent to stating that for G ∈ Gk,2, G = Ĝ if and

only if G does not contain either of the induced forbidden subgraphs shown in Figure

2.3. We now give the definition of a related structure which we sometimes find

useful.

Definition 2.3.7 Let G ∈ G(g1,...,gk). A pointwise CAFE, denoted CAFE1(N,G),

is an N ×k array A, with each column i having symbols from the alphabet [0, gi− 1],

such that:

1. each row of A forms a k-tuple avoiding G, and

2. for all vi,ai ∈ V (G) such that there exists vj,aj ∈ V (G) with i 6= j and

{vi,ai , vj,aj} 6∈ E(G), there exists a row Rl = (Rl(1), ..., Rl(k)) that covers the

pointwise interaction {(i, ai)}.

The pointwise CAFE number of G, denoted by CAFEN1(G), is the minimum

integer N for which a CAFE1(N,G) exists if a pointwise CAFE of G exists, or +∞

otherwise.

Indeed, every CAFE(N,G) is a CAFE1(N,G), so the pointwise CAFE number

is always less than or equal to the CAFE number of a graph G ∈ G(g1,...,gk). That

2.3. Covering Arrays Avoiding Forbidden Edges 32

G:

v1,0

v1,1

v1,2

v2,0 v2,1 v2,2

v3,0

v3,1

v3,2

v4,0

v4,1 v5,0

v5,1

a CAFE(10, Ĝ) :

0 0 2 1 1
0 1 0 1 1
0 2 0 0 0
0 0 1 0 0
1 0 1 1 1
1 1 2 1 1
1 2 1 0 1
2 1 1 1 1
2 2 2 1 1
1 1 1 0 0

Figure 2.4: The forbidden edges graph G ∈ G(3,3,3,2,2) of the mobile phone product

line testing problem given in Tables 2.1 and 2.2, and a CAFE(10, Ĝ)

is CAFEN1(G) ≤ CAFEN(G). Furthermore, a graph G ∈ G(g1,...,gk) may not be

consistent; nevertheless, there still may exist a pointwise CAFE for G.

We conclude this section with a concrete example based on the mobile phone

testing problem given in Table 2.1, along with the constraints of Table 2.2, omit-

ting constraint (C7) so that the only forbidden interactions are pairwise interactions.

The graph in Figure 2.4 with the solid edges represents the forbidden edges graph

G ∈ G(3,3,3,2,2) of the mobile phone product line testing problem. The dotted edges

{v1,2, v5,0} and {v3,2, v5,0} correspond to interactions which are not consistent with

G. For example, if we try to cover the interaction I = {(1, 2), (5, 0)} with a row

R = (R(1), ..., R(5)), then we must have R(1) = 2 and R(5) = 0 and R must form

a 5-tuple avoiding G. Since {v1,2, v4,0} ∈ E(G), we cannot have R(4) = 0, otherwise

R would not avoid G. On the other hand, since {v4,1, v5,0} ∈ E(G), we cannot have

2.4. Bounds for CAFEs 33

R(4) = 1 either. Thus, we have no way to cover I and still avoid G. Similarly, we

cannot cover the interaction {(3, 2), (5, 0)}, so the avoidance closure Ĝ requires the

dotted edges to be present. The array in Figure 2.4 is a CAFE(10, Ĝ) and is taken

from Danziger et. al. [11].

2.4 Bounds for CAFEs

In this section, we look at upper and lower bounds for the CAFE number of a con-

sistent forbidden edges graph. We also examine the effects of adding or removing

forbidden interactions.

Proposition 2.4.1 (Danziger et. al. [11]) Let G ∈ G(g1,...,gk) be a consistent forbid-

den edges graph. Let Ei,j(G) denote the set of edges with one end in factor i and the

other end in factor j. Then

max
1≤i<j≤k

{
gigj − |Ei,j(G)|

}
≤ CAFEN(G) ≤

∑
1≤i<j≤k

(
gigj − |Ei,j(G)|

)
.

Proof: Every non-forbidden interaction between two factors i and j must be

covered by distinct rows. This is equal to the number of non-edges between factors

i and j, which equals gigj − |Ei,j(G)|. So an optimal CAFE(N,G) requires at least

max1≤i<j≤k {gigj − |Ei,j(G)|} rows.

On the other hand, an optimal CAFE(N,G) requires at most one row per non-

forbidden interaction, which is equal to the total number of non-edges between every

pair of distinct factors. Thus CAFEN(G) ≤
∑

1≤i<j≤k (gigj − |Ei,j(G)|) .

The lower and upper bounds of Proposition 2.4.1 are attained for all forbidden

edges graphs G ∈ G(g1,g2) with only k = 2 factors, since in this case we have

max
1≤i<j≤k

{
gigj − |Ei,j(G)|

}
= g1g2 − |E1,2(G)| =

∑
1≤i<j≤k

(
gigj − |Ei,j(G)|

)
.

2.4. Bounds for CAFEs 34

G:

v1,0

v1,1

v1,2

v2,0

v2,1

v2,2

v3,0 v4,0

a CAFE(6, G):

0 1 0 0
0 2 0 0
1 0 0 0
1 2 0 0
2 0 0 0
2 1 0 0

Figure 2.5: A graph attaining the lower bound of Proposition 2.4.1

The graph G ∈ G(3,3,1,1) attains the lower bound in Proposition 2.4.1. A CAFE for G

requires at least g1g2 − |E1,2(G)| = 6 rows, and this is sufficient.

In Section 4.3, we prove that the upper bound is never attained by any consistent

forbidden edges graph with k ≥ 3 factors. The lower bound, however, can be attained

for all k ≥ 3 by a consistent graph G ∈ G(g1,g2,1,...,1) such that all of its forbidden

interactions lie between factors 1 and 2. See Figure 2.5 for a particular example.

Now let us consider the effects of the number of edges in a forbidden edges graph.

For a given family of forbidden edges graphs, G(g1,...,gk), we show that increasing the

number of forbidden edges may increase or decrease the CAFE number. Using the

same notation as in Proposition 2.4.1, for a graph G ∈ G(g1,...,gk) let Ei,j(G) denote

the set of edges with one end in factor i and the other end in factor j. Then the total

number of forbidden interactions is

|E(G)| =
∑

1≤i<j≤k

|Ei,j(G)| ≤
∑

1≤i<j≤k

gigj.

If |E(G)| = 0, that is, if G is empty, then we are reduced to a mixed cover-

ing array problem and CAFEN(G) = MCAN(2, k, (g1, ..., gk)). If, on the other

hand G = K(g1,...,gk), then we have no non-forbidden interactions to cover and so

CAFEN(K(g1,...,gk)) = 0. Thus, increasing the number of forbidden interactions can

decrease the CAFE number.

2.4. Bounds for CAFEs 35

G:

v1,0 v2,0 v3,0 v4,0 v5,0 v6,0

v1,1 v2,1 v3,1 v4,1 v5,1 v6,1

Figure 2.6: A graph G ∈ G6,2 with CAFEN(G) ≥ bk2/4c = 9.

The graph G ∈ G6,2 has two cliques C1 = {v1,0, v2,0, v3,0} and C2 = {v4,0, v5,0, v6,0}.

The dotted edges show the row that is forced when covering the zero-zero interaction

{v1,0, v4,0}. Similarly, each interaction between vertices of C1 and C2 forces a distinct

row which covers no other zero-zero interaction. Thus, we require bk2/4c = 9 rows

simply to cover the zero-zero interactions of G.

For fixed alphabet size g, if G ∈ Gk,g is consistent, then the upper bound of

Proposition 2.4.1 becomes

CAFEN(G) ≤ g2
(
k

2

)
− |E(G)|.

At worst, this bound is quadratic on k. Indeed, Danziger et. al. [11] provide an

example of a graph G ∈ Gk,g for which CAFEN(G) ≥ bk2
4
c. The graph consists of two

cliques, C1 = {vi,0 ∈ V (G)|1 ≤ i ≤ bk/2c} and C2 = {vi,0 ∈ V (G)|bk/2c+1 ≤ i ≤ k}.

Covering the non-forbidden interactions of the form {vi,0, vj,0} where vi,0 ∈ C1 and

vj,0 ∈ C2 requires bk
2
c
(
k − bk

2
c
)
≥ bk2

4
c rows. See Figure 2.6 for a particular example

of this construction. Note that for an empty graph G′ ∈ Gk,g we have CAFEN(G′) =

CAN(2, k, g) ∼ g
2

log2 k, as k → ∞ (see Theorem 1.2.5). Thus, the construction

given above demonstrates how adding forbidden interactions to a TP(k, g) can indeed

greatly increase the number of tests required.

We now extend the construction of this example to yield a graph G ∈ Gk,g
with CAFEN(G) ≥ (g − 1)2bk2

4
c, in order to demonstrate how an increase in the

2.4. Bounds for CAFEs 36

G:

v1,0 v2,0 v3,0 v4,0

v1,1 v2,1 v3,1 v4,1

v1,2 v2,2 v3,2 v4,2

Figure 2.7: A graph G ∈ G4,3 with CAFEN(G) ≥ (g − 1)2bk2/4c = 16.

The graph G ∈ G4,3 has two complete equipartite graphs, G1 and G2, where V (G1) =

{v1,1, v2,1, v1,2, v2,2} and V (G2) = {v3,1, v4,1, v3,2, v4,2}. The dotted edges show the row

that is forced when we cover interaction {(1, 1), (3, 1)}. Similarly, each interaction

between vertices of G1 and G2 forces a distinct row which covers no other interaction

between vertices of G1 and vertices of G2. Thus, we require (g− 1)2bk2/4c = 16 rows

simply to cover the “G1-G2” interactions of G.

number of forbidden interactions can increase the CAFE number. Rather than G

having two cliques, we let G have two complete equipartite graphs, G1 and G2 with

V (G1) = {vi,ai ∈ V (G)|1 ≤ i ≤ bk/2c} and V (G2) = {vi,ai ∈ V (G)|bk/2c+ 1 ≤ i ≤ k}.

The partite sets of G1 are of the form Pi = {vi,ai ∈ V (G1)|ai ∈ [1, g − 1]} for

1 ≤ i ≤ bk/2c. Similarly, the partite sets of G2 are of the form Pi = {vi,ai ∈

V (G2)|ai ∈ [1, g − 1]} for bk/2c+ 1 ≤ i ≤ k. Then every row that covers an interac-

tion {(i, ai), (j, aj)} between vertices of G1 and vertices of G2 is forced to use the zero

values for all l ∈ [1, k] \ {i, j}. There are bk
2
c(g − 1)

(
k − bk

2
c
)

(g − 1) = (g − 1)2bk2
4
c

such interactions. Thus, CAFEN(G) ≥ (g − 1)2bk2
4
c. See Figure 2.7 for a particular

example.

2.5. A Recursive Construction for CAFEs 37

2.5 A Recursive Construction for CAFEs

In the following theorem, Danziger et. al. [11] give a recursive construction for

building CAFEs. Assuming that the forbidden edges graph can be broken up into

several subgraphs of a particular form, the construction in Theorem 2.5.1 builds a

CAFE based on these smaller subgraphs.

Theorem 2.5.1 (Danziger et. al. [11]) Let G ∈ G(g1,...,gk) be a forbidden edges

graph that can be decomposed into s subgraphs G1, ..., Gs in the following way. Let

F1, ..., Fs denote disjoint subsets of factors 1, ..., k, so that Fi ⊆ [1, k], and Fi∩Fj = Ø

for i 6= j. We assume that the subgraph Gi is associated to the factor subset Fi,

so that Gi contains all vertices from each of the factors in Fi. In other words, Gi is

the induced subgraph Gi = G[{vfi,afi ∈ V (G)|fi ∈ Fi, afi ∈ [0, gfi − 1]}]. Moreover,

we assume that all edges of G lie within the subgraphs Gi for 1 ≤ i ≤ s. Thus, if

e ∈ E(G), then both ends of e are contained in factors from some Fi. Let ki = |Fi| for

1 ≤ i ≤ s. It is possible that F1∪· · ·∪Fs 6= [1, k], so we let l = |[1, k]\ (F1∪· · ·∪F2)|.

If l > 0, then without loss of generality, we assume that [1, l] = [1, k] \ (F1 ∪ · · · ∪Fs),

and we let Fs+1 = [1, l] and denote by Gs+1 the subgraph of G induced by the vertices

of factors 1, ..., l. In this case, Gs+1 is an empty graph. If the following designs exist:

1. P1, ..., Ps, where each Pi is a CAFE1(pi, Gi) with pi rows and ki columns;

2. A1, ..., As, where each Ai is an ai × ki array such that the array Ci obtained by

appending the rows of Pi and Ai forms a CAFE(pi + ai, Gi);

3. Ps+1: an MCA(ps+1; 1, l, (g1, ..., gl)) (possibly ps+1 = 0 and P is empty if l = 0);

4. As+1: an as+1 × l array, such that the array Cs+1 obtained by appending the

rows of Ps+1 and As+1 is an MCA(ps+1 +as+1; 2, l, (g1, ..., gl)) (possibly as+1 = 0

if l = 0);

5. M : an MCA(m; 2, s+ 1, (p1, ..., ps, ps+1)) if l > 0; otherwise, if l = 0, then M is

an MCA(m; 2, s, (p1, ..., ps));

2.5. A Recursive Construction for CAFEs 38

then there exists a CAFE(n,G) where n = m+ max{a1, ..., as, as+1}.

Proof: We build an array C with its first set of rows consisting of the arrays

A1, ..., As+1, pasted side by side. We add arbitrary repeated rows to the subarrays in

order to complete max{a1, ..., as+1} rows of C.

We complete the array C by adding m rows in the following way. For each row

Ri = (Ri(1), ..., Ri(s + 1)) of M , we form row Ri+max{a1,...,as+1} of C, by pasting side

by side row RRi(1) of P1, row RRi(2) of P2,..., row RRi(s) of Ps, and row RRi(s+1) of

Ps+1. Thus, C is an n× k array where n = m+ max{a1, ..., as+1}.

First we show that the subarray Ci of C, corresponding to the columns of factors

in Fi, forms a CAFE(n,Gi) for i ∈ [1, s]. By construction, Ci contains every row of

Ai. Moreover, since column i of M covers every symbol from [1, pi] at least once each,

we see that the last m rows of Ci must contain each row of Pi at least once each. By

design of the arrays Ai and Pi, the subarray Ci forms a CAFE(n,Gi). Similarly, if

l > 0, then subarray Cs+1 is an MCA(n; 2, l, (g1, ..., gl)) by design, which is equivalent

to a CAFE(n,Gs+1) since Gs+1 is empty.

Since every edge of G is an edge of one of the subgraphs G1, ..., Gs, and the

subarrays C1, ..., Cs are CAFEs for G1, ..., Gs, respectively, we see that every row of

C avoids G. Moreover, the subarrays Ci cover all the non-forbidden interactions of G

that lie entirely within any one of the subgraphs G1, ..., Gs. Similarly, if l > 0, then

Cs+1 covers all the non-forbidden interactions of G that lie in Gs+1.

It remains to show that C covers all the non-forbidden interactions of the form

{vi,ai , vj,aj} where i ∈ Fx and j ∈ Fy and x 6= y. Indeed, we show that the last m rows

of C are sufficient to cover all such interactions. Let {vi,ai , vj,aj} be a non-forbidden

interaction such that i ∈ Fx and j ∈ Fy for some x 6= y. Then vi,ai ∈ V (Gx) so there

is a row, say Ri0 , of Px that covers the point vi,ai . Similarly, since vj,aj ∈ V (Gy), there

is a row, say row Rj0 , of Py that covers vj,aj . We have i0 ∈ [1, px] and j0 ∈ [1, py],

so there exists a row of M , say row Rw, such that Rw(x) = i0 and Rw(y) = j0.

2.5. A Recursive Construction for CAFEs 39

Thus, row Rw+max{a1,...,as+1} of C contains sub-rows Ri0 and Rj0 simultaneously, hence

covers both vi,ai and vj,aj . Since {vi,ai , vj,aj} was arbitrary, we conclude that C is a

CAFE(n,G).

Remark 2.5.2 If G ∈ G(g1,...,gk) has subgraphs G1, ..., Gs as described in Theorem

2.5.1, then the arrays Ai and Pi of the construction exist so long as CAFEN(G) 6= +∞.

If we take a CAFE(n,G), say C, then for i ∈ [1, s], the columns of C corresponding

to the factors in Fi must form a CAFE(n,Gi). Furthermore, a CAFE(n,Gi) is also a

CAFE1(n,Gi), possibly having some unnecessary rows. The MCAs required for the

construction also always exist, though they may be empty depending on the value of

l.

Indeed, Theorem 2.5.1 can be applied to any consistent graph G ∈ G(g1,...,gk),

using the following definition.

Definition 2.5.3 Let G ∈ G(g1,...,gk). We call G factor-connected if the graph G|

is connected. The connected components of G| are called the factor-connected

components of G.

Clearly, the non-trivial factor-connected components of G ∈ G(g1,...,gk) can be used in

Theorem 2.5.1 as the subgraphs G1, ..., Gs.

Corollary 2.5.4 (Danziger et. al. [11]) Let g ≥ 2 be a fixed integer, and let G

be a family of consistent forbidden edges graphs such that: for all G ∈ G , we have

G ∈ Gk,g, and all the edges of G have both ends in factors in F1 ⊆ [1, k], where we let

k1 = |F1|, and let G1 be the subgraph of G on factors in F1. Then as k →∞,

g

2
log2(k − k1) ≤ CAFEN(G) ≤ h(k1, k) ∼ max

{
g2

2
k1

2,
g

2
log2(k − k1)

}
. (2.5.1)

In particular,

1. CAFEN(G) = O(k1
2 + log k) = O(|E(G)|2 + log k).

2.5. A Recursive Construction for CAFEs 40

2. If k1 = o(
√

log k) (or, if |E(G)|2 = o(
√

log k)), then CAFEN(G) ∼ g
2

log2 k.

Moreover, as k → ∞, if CAFEN(G1) = O(f(k1)), then CAFEN(G) = O(f(k1) +

log k).

Proof: For each G ∈ G we apply Theorem 2.5.1 with s = 1. In this case, we have

l = k− k1. For the array P1, we get p1 ≤ gk1, since an upper bound on CAFEN1(G1)

is the total number of vertices of G1. As for P2, an MCA(p2; 1, l, (g, ..., g)) is simply a

CA(p2; 1, l, g). Since CAN(1, l, g) = g we can take p2 = g. For the array M , we have

m ≤ g2k1, as MCAN(2, 2, (p1, p2)) = p1p2 ≤ (gk1)g.

Using the upper bound in Proposition 2.4.1, for the array A1, we have

a1 ≤ CAFEN(G1) ≤ g2
(
k1
2

)
< g2

k1
2

2
.

Finally, for the array A2, we have a2 ≤ MCAN(2, l, (g, ..., g)) = CAN(2, l, g). Since

l = k − k1, we have a2 ≤ CAN(2, k − k1, g) ∼ g
2

log2(k − k1), by Theorem 1.2.5.

Therefore, as k →∞, we have

CAFEN(G) ≤ m+ max{a1, a2}

≤ g2k1 + max

{
g2
k1

2

2
, a2

}
∼ max

{
g2
k1

2

2
,
g

2
log2(k − k1)

}
,

which proves the upper bound in Equation 2.5.1. The lower bound follows from the

fact that g
2

log2(k − k1) ∼ a2 ≤ CAFEN(G).

If k1 = o(
√

log k) (or, if |E(G)|2 = o(
√

log k)), then max
{
g2 k1

2

2
, g
2

log2(k − k1)
}
∼

g
2

log2 k, which proves 2. Since G1 can be chosen so that k1 − 1 ≤ |E(G)|, we have

CAFEN(G) ∼ max

{
g2
k1

2

2
,
g

2
log2(k − k1)

}
= O(k1

2 + log2 k) = O(|E(G)|2 + log2 k),

which proves 1. If CAFEN(G1) = O(f(k1)), then using a similar proof as for the

upper bound in Equation 2.5.1, as k →∞, we get

CAFEN(G) = O
(

max
{
f(k1),

g

2
log2(k − k1)

})
= O(f(k1) + log2 k),

2.6. Error-Locating Arrays 41

which proves the last statement.

2.6 Error-Locating Arrays

In this section, we look at error-locating arrays (ELAs), another type of array that

is closely related to CAFEs and was introduced by Martinez et. al. [28]. As with

MCAs, we can consider ELAs of various strengths t ≥ 1; however, for our purposes,

we restrict the definitions and results that follow to the case where t = 2.

Given a TP(k, (g1, ..., gk)), suppose that all errors (interactions which are re-

sponsible for the failure of any test that they are covered by) correspond to faulty

pairwise interactions. Our goal is to discover these errors, so we would like to

design a test suite having the following properties. For each faulty interaction,

I = {(i, ai), (j, aj)}, every test that covers I is a failing test. Moreover there ex-

ists a failing test, TI = (a1, ..., ak) ∈ [0, g1− 1]×· · ·× [0, gk− 1], such that TI covers I

and for each pairwise interaction, I ′ 6= I, that is covered by TI , there exists a passing

test T ′ that covers I ′. Such a test suite allows us to deduce which of the pairwise

interactions of the TP(k, (g1, ..., gk)) correspond to errors.

We use a graph G ∈ G(g1,...,gk) to encode the faulty pairwise interactions. The

edges of G correspond to pairwise interactions which are faulty and result in failing

test outcomes whenever covered. Unlike the forbidden edges graphs associated to

CAFEs, the edges of the error-encoding graphs associated to ELAs are unknown to us

in advance. These edges can only be discovered if there exists a suite of passing/failing

tests that form an ELA for G, for which we give the definition below.

Definition 2.6.1 Let G ∈ G(g1,...,gk). A k-tuple T = (T1, ..., Tk) ∈ [0, gi − 1] × · · · ×

[0, gk− 1] is said to locate interaction I = {(i, ai), (j, aj)} if Ti = ai and Tj = aj, and

for every other interaction {(p, ap), (q, aq)} 6= I that T covers we have {vp,ap , vq,aq} 6∈

2.6. Error-Locating Arrays 42

E(G). In this case we say that interaction I is located by T .

An error-locating array (ELA) for a graphG ∈ G(g1,...,gk), denoted by ELA(n,G),

is an n × k array A, with each column i having symbols from the alphabet [0, gi −

1], such that every interaction {(i, ai), (j, aj)} corresponding to a pair of vertices

vi,ai , vj,aj ∈ V (G) with i 6= j (corresponding to an edge, or a non-edge of G) is located

by a k-tuple corresponding to some row of A.

If for some n ∈ Z there exists an ELA(n,G), then we say that G is locatable.

The ELA number of G, denoted by ELAN(G), is the smallest N such that an

ELA(N,G) exists, if there exists an ELA for G, or +∞ otherwise.

As with CAFEs, ELAs require rows to cover all pairwise interactions correspond-

ing to the non-edges of G. Equivalently, there is a subset of the rows of an ELA(n,G)

that actually form a CAFE(n′, G). In contrast to CAFEs, ELAs also require rows to

locate each pairwise interaction corresponding to an edge of G. The next result gives

the precise relationship.

Theorem 2.6.2 (Danziger et. al. [11]) If G ∈ G(g1,...,gk) is locatable, then

ELAN(G) = CAFEN(G) + |E(G)|.

Proof: The rows of an optimal ELA(N,G) can be classified into two sets. One

set of rows locates individually each interaction {vi,ai , vj,aj} ∈ E(G). Thus we

require exactly |E(G)| such rows. The other set of rows locates all interactions

{vi,ai , vj,aj} 6∈ E(G). Clearly, the second set of rows is equivalent to an optimal

CAFE(N ′, G).

It is possible for a graph G ∈ G(g1,...,gk) to be consistent, but not locatable.

Therefore, we can have CAFEN(G) = N 6= +∞, but ELAN(G) = +∞. The next

result give us a sufficient condition for a graph G ∈ G(g1,...,gk) to be locatable. It uses

the definition of safe values given next.

2.6. Error-Locating Arrays 43

v1,0

v1,1

v1,2

v2,0

v2,1

v3,0

v3,1

G: an ELA(9, G):

0 1 0
1 0 0
1 0 1
0 1 1
2 0 0
2 1 0
0 0 0
1 1 1
2 1 1

Figure 2.8: An error-encoding graph G ∈ G(3,2,2) and an ELA(9, G).

Definition 2.6.3 [28] A graph G ∈ G(g1,...,gk) is said to have safe values, if for every

factor i ∈ [1, k] there exists a vertex vi,si ∈ V (G) such that vi,si is an isolated vertex

of G. The values s1, ..., sk are called safe values of G.

Proposition 2.6.4 (Martinez et. al. [28]) Let G ∈ G(g1,...,gk) have safe values

s1, ..., sk. Then G is locatable.

Proof: Take any pair of vertices vi,ai , vj,aj ∈ V (G) such that i 6= j. Then a k-tuple

T = (T1, ..., Tk) defined by

Tp =

sp, if p ∈ [1, k] \ {i, j};

ai, if p = i;

aj, if p = j;

clearly locates the interaction corresponding to vi,ai , vj,aj . If we build an array with

one row like T per pair vi,ai , vj,aj ∈ V (G), then this array forms an ELA for G and so

G is locatable.

In Figure 2.8, we give an example of an error-encoding graph G ∈ G(3,2,2) and an

2.6. Error-Locating Arrays 44

ELA(9, G). As the graph G in this figure contains no safe values in factor 1, but is

nonetheless locatable, we see that the converse of Proposition 2.6.4 is not true.

Chapter 3

Edge Clique Covers

In this chapter we look at edge clique covers of graphs. We give the definition of

an edge clique cover and give some results on upper bounds of the edge clique cover

number, as well as some other properties in Section 3.1. We investigate several other

types of edge clique covers in Sections 3.2, 3.3, and 3.4, namely edge-disjoint, uniform,

and partial edge clique covers, respectively. In particular, in Section 3.3, we give new

results regarding uniform edge clique covers. In Section 3.4, we define two new types

of partial edge clique covers and give some initial results for these problems. Finally,

in Section 3.5, we look at the relationship between the node clique cover problem and

the edge clique cover problem, as well as their relationship to the vertex colouring

problem.

3.1 Edge Clique Covers

Here we study edge clique covers. In particular, we present several results regarding

upper bounds on the minimum number of cliques required to form an edge clique

cover, as well as various other properties of interest. We begin by giving the definition

of an edge clique cover.

45

3.1. Edge Clique Covers 46

Definition 3.1.1 Let G be a simple graph. If C is a clique of G and e is an edge

of G, we say that the clique C covers e if the ends of e belong to C. That is, if

e = {u, v} and u, v ∈ C, then C covers e. If C = {C1, ..., CN} is a collection of N

cliques of G such that for every edge e ∈ E(G) there is at least one clique Ci ∈ C that

covers e, then we say that C is an edge clique cover (ECC) of G. We say that an

ECC of G, C, is optimal if there is no ECC of G, say C′, such that |C′| < |C|. The

number of cliques in an optimal ECC of G is called the ECC number of G, and we

denote it by θ′(G).

Remark 3.1.2 Clearly every graph G admits an edge clique cover since we can form

an ECC of G by taking the collection of edges, namely C = {{u, v} ⊆ V (G)|{u, v} ∈

E(G)}. Clearly, every edge of G is covered by the 2-clique in C containing its ends.

Thus we always have θ′(G) ≤ |E(G)|.

The following result from Erdös, Goodman and Posá [12] gives us another upper

bound on the ECC number of a graph. The proof requires the next lemma.

Lemma 3.1.3 For any positive integer n, we have b(n+ 2)2/4c = bn2/4c+ n+ 1.

Theorem 3.1.4 (Erdös, Goodman, and Pósa [12]) Let G be a simple graph on n ≥ 2

vertices. Then θ′(G) ≤ bn2/4c and an ECC attaining this bound need only contain

2-cliques and 3-cliques.

Proof: We prove the result by induction on n, the number of vertices of the

graph. For the base case when n is even, let G be a graph on n = 2 vertices.

Either G = K2, in which case θ′(G) = 1 = b22/4c; otherwise, G = K2, in which

case θ′(G) = 0 < b22/4c. For the odd base case, take n = 3. If G = K3, then

θ′(G) = 1 ≤ 2 = b32/4c. Otherwise, G is a graph on 3 vertices with at most 2 edges

in which case θ′(G) ≤ |E(G)| ≤ 2 ≤ b32/4c.

Now for the induction step we assume the statement holds for all graphs on n

vertices and prove that it must also hold for all graphs on n+ 2 vertices. Let G be a

3.1. Edge Clique Covers 47

graph on n+ 2 vertices. If G contains no edges, then θ′(G) = 0 ≤ bn2/4c. Otherwise,

G must contain at least one edge, in which case we can label the vertices of G as

x1, x2, ..., xn+2, so that in particular, the vertices x1 and x2 are joined by an edge in G.

Now, consider G[V ′], the subgraph of G induced by the vertex set V ′ = {x3, ..., xn+2}.

Clearly, G[V ′] is a graph on n vertices. By our induction hypothesis, at most bn2/4c

cliques are required to cover all the edges of G[V ′].

By Lemma 3.1.3, we need only show that the remaining edges of G can be covered

by at most n+ 1 edges. Consider the vertex xi ∈ V ′ = {x3, ..., xn+2}. If xi is adjacent

to both x1 and x2 in G, then we cover those edges by the 3-clique Ci = {xi, x1, x2}.

If xi is adjacent to one of x1 or x2, but not both, then we cover the edge {xi, x1} (or

{xi, x2}) by the 2-clique Ci = {xi, x1} (or Ci = {xi, x2}, respectively). If xi is not

adjacent to either x1 or x2 in G, then there is no edge to cover.

Hence, for i = 3, ..., n + 2, we require at most n cliques, Ci, to cover the edges

of G joining vertices of V ′ to x1 or x2. One last clique, namely {x1, x2}, may possi-

bly need to be added in order to ensure that the edge {x1, x2} is covered. In total,

we require at most bn2/4c + n + 1 cliques. Therefore, by Lemma 3.1.3, we have

θ′(G) ≤ b(n+ 2)2/4c.

In fact, Erdös, Goodman, and Pósa [12] also prove that the number bn2/4c in

Theorem 3.1.4 cannot be replaced by any smaller number. For n even, consider the

complete bipartite graph Kk,2 on n = 2k vertices. It is easy to see that Kk,2 does

not contain any clique larger than size 2, hence θ′(Kk,2) = |E(Kk,2)| = k2 =
(
n
2

)2
=

bn2/4c. Similarly, for n odd, the complete bipartite graph K(k,k+1) on n = 2k + 1

vertices satisfies θ′(K(k,k+1)) = k2 + k = bn2/4c.

A slight improvement to the above result is given by Lovász [26]. The improve-

ment is given when we know the number of edges in the graph.

Theorem 3.1.5 (Lovász, [26]) Let G be a simple graph on n vertices. Suppose

3.1. Edge Clique Covers 48

r =
(
n
2

)
− |E(G)| and t is the greatest natural number such that t2 − t ≤ r. Then

θ′(G) ≤ r + t.

Proof: Let G be a simple graph on n vertices and ε edges. Clearly, if ε = 0,

then the statement holds. Assume, therefore, that ε > 0. Let C1 be a clique of G

of maximum size, and for i ≥ 2, let Ci+1 be a clique of maximum size of the graph

G − C1 − · · · − Ci. Let ai denote the number of vertices of Ci and let C1, C2, ..., Cp

be the nonempty graphs defined above. Let q be the index for which aq ≥ 2 and

aq+1 < 2 (this index exists by assumption that ε > 0).

For a given Ci and vertex x ∈ V (G), if x 6∈ Ci, then let Si,x denote the set of

vertices of Ci which are adjacent to x in G. Clearly Si,x ∪ {x} is a clique of G since

any two vertices in Ci are adjacent and x is adjacent to every vertex in Si,x ⊆ Ci. Let

Ci,x denote the clique Si,x ∪ {x}. Then the collection of cliques

C = {Ci|1 ≤ i ≤ q} ∪ {Ci,x|x ∈ Cj, 1 ≤ i < j ≤ p and |Si,x| > 0}

forms an ECC of G. For a given index i ≥ 1 there are at most ai+1 + ...+ ap vertices

in the cliques Cj such that i < j ≤ p. Therefore, we have

|{Ci,x|x ∈ Cj, i < j ≤ p and |Si,x| > 0}| ≤ ai+1 + ai+2 + ...+ ap

for 1 ≤ i ≤ p. Summing over all i ∈ [1, p], there are at most a2 + 2a3 + ...+ (p− 1)ap

cliques of the form Ci,x as defined above. Therefore,

|C| ≤ q + a2 + 2a3 + ...+ (p− 1)ap.

By maximality of each Ci, if i < j and x ∈ Cj there must be at least one vertex

of Ci that is not adjacent to x; otherwise, Ci could have been extended to include x

in the first place. For every j > i there are at least aj non-edges between each vertex

of Cj and the vertices of Ci. In other words the number of non-edges of G must be

at least a2 + 2a3 + ...+ (p− 1)ap. Since r =
(
n
2

)
− ε is the number of non-edges of G

we must have r ≥ a2 + 2a3 + ...+ (p− 1)ap. Therefore |C| ≤ q + r.

3.1. Edge Clique Covers 49

Furthermore, since q is the index chosen so that ai ≥ 2 for 1 ≤ i ≤ q we have

r ≥ a2 + 2a3 + ...+ (q − 1)aq since p ≥ q;

≥ 2 + 2(2) + ...+ (q − 1)2 since ai ≥ 2 for 1 ≤ i ≤ q;

= 2[1 + 2 + ...+ (q − 1)]

= q(q − 1).

Clearly the choice of t to be the greatest positive integer such that t2 − t ≤ r implies

q(q−1) ≤ t(t−1) ≤ r and so q ≤ t. We conclude that |C| ≤ r+t so θ′(G) ≤ r+t.

As a result, if we know for a graph G on n vertices that |E(G)| ≤ bn2/4c, then it

is easy to see that we get r + t ≥ |E(G)|. Thus, the bound becomes θ′(G) ≤ |E(G)|

by Remark 3.1.2. Otherwise, if |E(G)| > bn2/4c, we have r + t < bn2/4c, hence the

bound θ′(G) ≤ r + t is an improvement on θ′(G) ≤ bn2/4c.

The next results give us a few basic properties of ECCs. They are taken from a

paper by Orlin [31] in which the author refers to ECCs as R-content decompositions

of graphs and the ECC number is referred to as the R-content of the graph. However,

to be consistent with the notation used throughout this thesis, we paraphrase these

results in terms of ECCs and θ′(G).

Proposition 3.1.6 (Orlin [31]) If G is a simple graph and V ′ ⊆ V (G), then θ′(G) ≥

θ′(G[V ′]).

Proof: Let C = {C1, C2, ..., Cn} be an edge clique cover of G. Let C′ = {C1 ∩

V ′, C2 ∩ V ′, ..., Cn ∩ V ′}. It follows that C′ is an ECC of G and hence θ′(G[V ′]) ≤

θ′(G) ≤ n.

Now we come to an easy yet important result which tells us that for the purpose

of determining the ECC number of a graph, we may restrict our attention to ECCs

in which each clique is maximal with respect to set inclusion.

3.1. Edge Clique Covers 50

Proposition 3.1.7 (Orlin [31]) Let G be a simple graph. Then there exists an

optimal ECC of G, C′, such that every clique C ∈ C′ is maximal with respect to set

inclusion.

Proof: Let C = {C1, ..., CN} be an ECC of G. For each Ci ∈ C take C ′i to be a

clique of G with Ci ⊆ C ′i, and such that C ′i is maximal with respect to set inclusion.

Then C′ = {C ′1, ..., C ′N} is an ECC of G and |C′| ≤ |C|. Moreover, if |C| = θ′(G), then

|C′| = θ′(G).

For convenience, if C = {C1, ..., Cn} is an ECC of a graph G with the added

property that each clique Ci ∈ C is maximal with respect to set inclusion, then we

call C a clique-maximal ECC of G.

Proposition 3.1.8 (Orlin [31]) Let G be a simple graph and suppose that edge

e = {u, v} belongs to a unique clique Ce of G that is maximal with respect to set

inclusion. Then Ce occurs in every clique-maximal ECC of G.

Proof: The edge e must be covered by at least one clique in a clique-maximal

ECC of G. By uniqueness, Ce is the only choice.

Corollary 3.1.9 (Orlin [31]) Suppose a graph G has a subset of edges, E ′ ⊆ E(G),

with the property that every edge e ∈ E ′ belongs to a unique maximal clique Ce.

Furthermore, suppose that C = {Ce|e ∈ E ′} is an ECC of G. Then C is the unique

optimal clique-maximal ECC of G.

Proof: By Proposition 3.1.8, for each e ∈ E ′ the clique Ce must be included in

every clique-maximal ECC of G. Thus C = {Ce|e ∈ E ′} ⊆ C′ where C′ is any optimal

clique-maximal ECC of G. Consequently, we must have |C| ≤ |C′|. Since we assume

that C is an ECC of G, we must have θ′(G) ≤ |C| ≤ |C′| = θ′(G). We conclude that

C = C′, thus C is the unique optimal clique-maximal ECC of G.

3.1. Edge Clique Covers 51

Here we give a simple lower bound on the ECC number of a graph. It is taken

from Gyárfás [15] and it uses the following definition of equivalent vertices.

Definition 3.1.10 [15] Let G be a graph. Two distinct vertices u, v ∈ V (G) are

called equivalent if {u, v} ∈ E(G) and if for all vertices w ∈ V (G) such that w 6= u

and w 6= v, we have {w, u} ∈ E(G) if and only if {w, v} ∈ E(G).

If a graph G contains equivalent vertices, the following lemma tells us that we can

identify equivalent vertices without changing the ECC number of the graph.

Proposition 3.1.11 (Gyárfás [15]) If u and v are equivalent vertices of a simple

graph G and if the edge {u, v} is not an isolated edge, then θ′(G) = θ′(G− {v}).

Proof: If u and v are equivalent vertices and edge e = {u, v} is not an isolated

edge, there must exist another vertex x ∈ V (G) such that x 6= u, x 6= v, and x is

adjacent to both u and v.

Let C = {C1, ..., CN} be an optimal clique-maximal ECC of the graph G− {v}.

Observe that for 1 ≤ i ≤ N , Ci is a clique of G. Furthermore, since {x, u} ∈ E(G)

and x 6= v, we must have {x, u} ∈ E(G − {v}). Therefore, there must exist some

clique Cj ∈ C that covers edge {x, u}. In particular, note that Cj contains vertex u.

Now, for 1 ≤ i ≤ N we define C∗i =

 Ci ∪ {v}, if u ∈ Ci;

Ci, otherwise.

We claim that C∗ = {C∗1 , ..., C∗N} forms an ECC of G. First observe that each C∗i

is a clique of G for 1 ≤ i ≤ N . If u 6∈ Ci then C∗i = Ci and all pairs of vertices in C∗i

are therefore adjacent in G since they are adjacent in G− {v}. Otherwise, if u ∈ Ci
then C∗i = Ci ∪ {v} and we need to show that v must be adjacent to all vertices of

Ci. Indeed, since u ∈ Ci, every other vertex in Ci is adjacent to u. By equivalence of

u and v, we must have that v is adjacent to every vertex in Ci other than u, and by

definition of equivalence, we must also have that v is adjacent to u. Thus every pair

of vertices in C∗i are adjacent in G, so C∗i is a clique of G.

3.1. Edge Clique Covers 52

Now let e′ be any edge of G. If v is not an end of e′, then e′ ∈ E(G − {v}).

Therefore, there exists Ci ∈ C that covers e′, and consequently, C∗i ∈ C∗ covers e′. If

v is an end of e′, then e′ = {v, y} for some y ∈ V (G). If y = u, then clique Cj ∈ C

contains u. Consequently, C∗j = Cj ∪{v} covers e′. Otherwise, if y 6= u, we know that

e′ = {v, y} ∈ E(G) if and only if {u, y} ∈ E(G). Moreover, {u, y} ∈ E(G − {v}) so

there exists some clique, say Cl ∈ C, that covers edge {u, y}. Clearly, C∗l = Cl ∪ {v}

covers edge {v, y}. We conclude that C∗ forms an ECC of G, so θ′(G) ≤ N .

By Proposition 3.1.6 we have N = θ′(G−{v}) ≤ θ′(G) since V (G)\{v} ⊆ V (G),

and so θ′(G) = θ′(G− {v}).

The next small result indicates that we may remove all isolated vertices of a

graph without changing its ECC number.

Proposition 3.1.12 (Gyárfás [15]) Let G be a simple graph on q vertices and let n

be the number of non-isolated vertices of G. Then θ′(G) = θ′(Gn), where Gn denotes

the graph obtained from G by removing all isolated vertices.

Proof: Let Gn = G − {v ∈ V (G)|dG(v) = 0}. By Proposition 3.1.6, we have

θ′(Gn) ≤ θ′(G). Now, let C = {C1, ..., CN} be an optimal ECC of Gn. Let e = {u, v}

be any edge of G. Then, in particular, the ends of e are non-isolated vertices of G,

so e must be an edge of Gn. Thus, there exists some clique, say Ce ∈ C, that covers

e. Since e was an arbitrary edge of G, we see that C is an ECC of G. Therefore,

θ′(G) ≤ N = θ′(Gn).

Now we come to Gyárfás’ theorem which gives a lower bound on the ECC number

of a graph containing no isolated vertices, and no pair of equivalent vertices.

Theorem 3.1.13 (Gyárfás [15]) Let G be a simple graph on n vertices. If G contains

no isolated vertices and no equivalent vertices then θ′(G) ≥ log2(n+ 1).

3.2. Edge-disjoint ECCs 53

Proof: Let G be a simple graph on n vertices, and assume that G contains no

isolated vertices and no equivalent vertices. Let C = {C1, ..., CN} be an ECC of G. For

each vertex x ∈ V (G), let I(x) denote the index set of the cliques of C that cover the

edges incident with x. Since G contains no isolated vertices, we must have I(x) 6= Ø

for all x ∈ V (G). For x, y ∈ V (G) such that x 6= y we claim that I(x) 6= I(y). If

{x, y} 6∈ E(G), then the claim is true since no clique in C can contain both vertices x

and y. Thus I(x) and I(y) must be disjoint. Otherwise, if {x, y} ∈ E(G) then since

x and y are not equivalent there exists a vertex z ∈ V (G) such that z is adjacent

to exactly one of the vertices x and y. Assume without loss of generality that z is

adjacent to x but not to y. That is, {z, x} ∈ E(G) and {z, y} 6∈ E(G). Let Ci ∈ C be

a clique that covers edge {z, x}. Then y 6∈ Ci since {z, y} 6∈ E(G) and consequently,

we have index i ∈ I(x) but i 6∈ I(y) which implies that I(x) 6= I(y).

Therefore, the sets I(x) are distinct non-empty subsets of [1, N] and we have

|V (G)| ≤ 2N − 1. In other words, n+ 1 ≤ 2N which proves that log2(n+ 1) ≤ N .

3.2 Edge-disjoint ECCs

There are several variations of the edge clique cover problem. Firstly, let us give the

definition of an edge-disjoint ECC of a graph.

Definition 3.2.1 An edge-disjoint ECC of a graph G is an ECC of G, say C, such

that every edge of G is covered by exactly one clique in C. If C is an edge-disjoint

ECC of a graph G such that for every edge-disjoint ECC, C′ of G we have |C| ≤ |C′|,

then we say that C is optimal. For a given graph G, we denote the size of an optimal

edge-disjoint ECC of G by θed(G). This number is called the edge-disjoint ECC

number of G.

3.2. Edge-disjoint ECCs 54

As with ECCs, Remark 3.1.2 also applies to edge-disjoint ECCs since we can

always cover any simple graph by its collection of edges. Obviously since each edge

in such an ECC belongs only to the one clique containing its ends, we have a trivial

edge-disjoint ECC for any graph. Thus, for any simple graph G we have

θed(G) ≤ |E(G)|.

In the following theorem, Erdös, Goodman, and Pósa [12] give us another upper

bound on the edge-disjoint ECC number. Their result uses the next little lemma.

Lemma 3.2.2 For any positive integer n we have bn2/4c = b(n− 1)2/4c+ bn/2c.

Theorem 3.2.3 (Erdös, Goodman and Pósa, [12]) Any simple graph G on n ≥ 2

vertices satisfies θed(G) ≤ bn2/4c. Furthermore, an edge-disjoint ECC attaining this

bound need only contain 2-cliques and 3-cliques.

Proof: We prove the statement by induction on n, the number of vertices. For

n = 2 there are only two simple graphs on 2 vertices, either the compete graph K2

or the empty graph K2. Clearly θed(K2) = 1 ≤ b22/4c, and θed(K2) = 0 ≤ b22/4c.

For the induction step, we assume the statement is true for all graphs on less than

or equal to n − 1 vertices, and we prove that it must also be true for graphs on n

vertices. Let G be any simple graph on n vertices. We have two cases.

First, if G contains at least one vertex, say x1, such that dG(x1) ≤ bn/2c, then by

the induction hypothesis, the graph G− {x1} satisfies θed(G− {x1}) ≤ b(n− 1)2/4c.

The only other edges of G we need to cover are those incident with x1. Therefore we

can cover all edges of G with at most b(n− 1)2/4c+ bn/2c cliques which by Lemma

3.2.2 means θed(G) ≤ bn2/4c.

Otherwise, if G contains no vertices of degree less than or equal to bn/2c then

every vertex v ∈ V (G) satisfies dG(v) > bn/2c. Let x1 be the vertex of G of minimum

degree δ(G) = dG(x1) = t. Then t = bn/2c + r for some integer r > 0. Label the

3.2. Edge-disjoint ECCs 55

vertices of G that are adjacent to x1 as y1, y2, ..., yt and let Y = {y1, ..., yt}. We claim

that G[Y] must contain r independent edges, that is, G[Y] must contain r edges such

that no two edges are adjacent. First, observe that 2r ≤ t since t = bn/2c+r ≤ n−1.

Now, assume by way of contradiction that G[Y] has only m ≤ r − 1 independent

edges which without loss of generality we label {y1, y2}, {y3, y4}, ..., {y2m−1, y2m}. By

assumption, y2m+1 is incident with at least bn/2c+r edges in G since δ(G) = bn/2c+r.

In particular, y2m+1 can be adjacent to at most 2m of the vertices y1, y2, ..., y2m, and

to at most n− t vertices of G that are not in Y . Moreover, y2m+1 cannot be adjacent

to any yq ∈ Y if 2m+ 2 ≤ q ≤ t, since our assumption is that G[Y] contains at most

m independent edges. Thus,

dG(y2m+1) ≤ 2m+ n− t

≤ 2(r − 1) + n− t, since m ≤ r − 1;

= 2r − 2 + n− (bn/2c+ r), since t = bn/2c+ r;

= n− bn/2c+ r − 2

< bn/2c+ r = δ(G),

contradicting our hypothesis that the minimum degree of G is δ(G) = bn/2c + r.

Therefore, we must conclude that G[Y] contains at least m ≥ r independent edges.

Now, without loss of generality, we label the r independent edges of G[Y] as

E ′ = {{y1, y2}, {y3, y4}, ..., {y2r−3, y2r−2}, {y2r−1, y2r}}. Denote by G′ the subgraph of

(G − {x1}) with vertex set V (G′) = V (G − {x1}) and edge set E(G′) = E(G) \ E ′.

Then G′ is a graph on n− 1 vertices. By the induction hypothesis, G′ can be covered

by at most b(n − 1)2/4c 2-cliques and 3-cliques that are pairwise edge-disjoint. The

remaining edges of G left uncovered at this point are the r independent edges in

E ′ and the edges incident with x1. Indeed, these edges can be covered with the 3-

cliques C1 = {x1, y1, y2}, C2 = {x1, y3, y4}, ..., Cr = {x1, y2r−1, y2r} and the 2-cliques

Ci = {x1, yi} where i ∈ [2r + 1, t]. It is easy to see that for 1 ≤ i ≤ r + (t − 2r) the

3.2. Edge-disjoint ECCs 56

G :

x1

x2

x3

x4

Figure 3.1: Example of an edge-disjoint ECC

The graph G satisfies θ′(G) = 2 since C = {{x1, x2, x4}, {x1, x3, x4}} is an ECC of

G; however, θed(G) = 3 as is depicted by the three types of edges.

cliques Ci are pairwise edge-disjoint. Therefore,

θed(G) ≤ b(n− 1)2/4c+ r + t− 2r

= b(n− 1)2/4c − r + (bn/2c+ r), since t = bn/2c+ r;

= bn2/4c, by Lemma 3.2.2.

Again, by considering Kk,2 for n = 2k even, or K(k,k+1) for n = 2k+1 odd, we see that

the number bn2/4c in the above theorem cannot be replaced by any smaller number.

Remark 3.2.4 For any simple graph G, we always have θ′(G) ≤ θed(G) since every

edge-disjoint ECC of G is in particular an ECC of G. Equality holds, for example, for

any graph G satisfying ω(G) = 2, in which case the only ECC of G is the collection

of edges. Equality also holds for any graph G that is the disjoint union of cliques.

Strict inequality holds for example in the graph in Figure 3.1.

Remark 3.2.5 By the graph in Figure 3.1, we also see that Proposition 3.1.7 does

not hold for edge-disjoint ECCs. We cannot assume without loss of generality that

all cliques of an optimal edge-disjoint ECC of a graph be maximal with respect to set

inclusion.

However, the following result from Orlin [31] tells us that if a graph has the

property that all of its edges each belong to a unique maximal clique of the graph,

3.2. Edge-disjoint ECCs 57

then the graph has a unique edge-disjoint ECC containing all of the maximal cliques.

Proposition 3.2.6 (Orlin [31]) Let G be a simple graph with the property that every

edge of G belongs to a unique maximal (with respect to set inclusion) clique. Then

θed(G) = N , where N is the number of distinct maximal cliques of G. Furthermore,

G has a unique optimal edge-disjoint ECC.

Proof: Let G be a simple graph with the property that every one of its edges

belongs to a unique maximal clique. For each e ∈ E(G), let Ce denote the unique

maximal clique that covers edge e. If C is any clique that covers edge e we must

have C ⊆ Ce, otherwise e would belong to more than one clique that is maximal

with respect to set inclusion. Moreover, for any other edge e′ such that the ends of

e′ belong to Ce, we must have that Ce = Ce′ , for if Ce′ is the unique maximal clique

that covers e′ then we have Ce ⊆ Ce′ ; however, Ce is maximal with respect to set

inclusion so we must have Ce = Ce′ .

Let C = {C1, ..., CN} be an optimal edge-disjoint ECC of G. Suppose further

that for some edge e ∈ E(G) we have Ce 6∈ C. Choose a minimal index set I ⊆ [1, N]

such that for every edge e′ joining two vertices of Ce, there is some i ∈ I such that

clique Ci covers e′. We can do this since every edge of G must be covered by some

clique in C, so in particular, all edges of G[Ce] must be covered by some collection of

cliques of C. Thus Ce ⊆
⋃
i∈I Ci.

By maximality of Ce, every edge e′ joining two vertices of Ce has the property

that Ce is the unique maximal clique of G that covers e′. By minimality of I, for

each i ∈ I the clique Ci covers at least one edge e′ that joins two vertices of Ce. By

maximality of Ce, we must have Ci ⊆ Ce for all i ∈ I. Therefore,
⋃
i∈I Ci ⊆ Ce,

and we can obtain a smaller edge-disjoint ECC of G by replacing the collection of

cliques Ci such that i ∈ I with the single clique Ce. This contradicts the optimality

of C, so the assumption that Ce 6∈ C is wrong. We conclude that for every edge

e ∈ E(G) the unique maximal clique Ce covering the edge e must belong C. Conse-

3.3. Uniform ECCs 58

quently, {Ce|e ∈ E(G)} is the unique optimal edge-disjoint ECC of G and it contains

N cliques, where N is the number of distinct maximal cliques.

Again, we get the same result for edge-disjoint ECCs as we did for ECCs in

Proposition 3.1.6.

Proposition 3.2.7 (Orlin [31]) If G is a graph and V ′ ⊆ V (G), then θed(G) ≥

θed(G[V ′]).

3.3 Uniform ECCs

Another variation on the ECC problem is the restriction of size of all the cliques.

Definition 3.3.1 [11] Let G be a simple graph and k be an integer. An ECC of G,

C, is said to be k-uniform if every clique in C has size k. We call C a k-ECC of G for

short. We define the k-uniform ECC number of G to be the size of a minimum

k-ECC of G if it exists, or +∞ if one does not exist, and denote it by θ′k(G). An

ECC of G is said to be uniform if it is k-uniform for some integer k.

Indeed, every simple graph admits a uniform ECC. Simply take the collection

of 2-cliques of the graph and we have a 2-uniform ECC. However, with the added

constraint that an ECC need be k-uniform for some k ≥ 3, we see that not every

graph admits a k-ECC. Here we show two necessary conditions.

Proposition 3.3.2 Let k be a positive integer. If a graph G admits a k-uniform

ECC, then the clique number of G must be greater than or equal to k. That is, if

θ′k(G) 6= +∞ then ω(G) ≥ k.

Proof: Let C = {C1, ..., CN} be a k-ECC of G. Then Ci is a k-clique of G, for

1 ≤ i ≤ N . Hence, ω(G) ≥ k.

3.3. Uniform ECCs 59

Proposition 3.3.3 Let G be a simple graph and let k ≥ 2 be an integer. If G

admits a k-uniform edge clique cover then |E(G)| ≥ n(k−1)
2

, where n is the number of

non-isolated vertices of G.

Proof: If G admits a k-uniform edge clique cover then in particular, every non iso-

lated vertex of G must belong to at least one k-clique. Thus,
∑

v∈V (G) d(v) ≥ n(k−1).

By Lemma 1.4.1 we have n(k − 1) ≤ 2|E(G)|.

As with Proposition 3.1.8, when both ends of an edge belong to a unique k-clique,

that k-clique must be present in every k-ECC of the graph.

Proposition 3.3.4 Let G be a simple graph and let k be a positive integer. If both

ends of an edge e ∈ E(G) belong to a unique k-clique of G, say Ce, then the clique

Ce must be contained in every k-uniform ECC of G.

Comparing the k-uniform ECC number of a graph G to its ECC number, we

always have θ′(G) ≤ θ′k(G), since θ′k(G) = +∞ if a k-ECC of G does not exist, and

if θ′k(G) 6= +∞, then every k-uniform ECC of G is in particular an ECC of G. Strict

inequality holds, for example, in the case where G = Kn for some n > k. Then

θ′(Kn) = 1 < θ′k(Kn). Now, suppose for a graph G we know that G admits a k-

uniform ECC, then when do we have equality? That is, when does θ′(G) = θ′k(G)

hold? The following results answer a few cases for the above question.

Proposition 3.3.5 Let k be a positive integer, and let G be a simple graph. If

for every clique of G, C, there exists a k-clique of G, C ′, such that C ⊆ C ′, then

θ′(G) = θ′k(G).

Proof: Let C = {C1, ..., CN} be an optimal ECC of G. By assumption, for each

Ci ∈ C there is a k-clique of G, say C ′i, such that Ci ⊆ C ′i. Clearly, C′ = {C ′1, ..., C ′N}

forms an optimal k-uniform ECC of G. Thus, θ′(G) = θ′k(G).

3.3. Uniform ECCs 60

Corollary 3.3.6 Let k be a positive integer. Then θ′(K(g1,...,gk)) = θ′k(K(g1,...,gk)).

Proof: Without loss of generality, label the vertices of K(g1,...,gk) as xi,ji where

1 ≤ i ≤ k and ji ∈ [0, gi − 1], so that the partite sets are of the form Pi = {xi,ji|ji ∈

[0, gi − 1]}.

We claim that any clique C of K(g1,...,gk) sits inside a k-clique of K(g1,...,gk). If

C = {xi1,j1 , ..., xil,jl} is a clique of K(g1,...,gk), then observe that we must have ip 6= iq

whenever p 6= q, since any pair of adjacent vertices of K(g1,...,gk) must belong to two

distinct partite sets. Now C ′ = C∪{xi,0|i ∈ [1, k]\{i1, ..., il}} is a k-clique of K(g1,...,gk)

since C ′ contains exactly one vertex from each of the partite sets of K(g1,...,gk), and

clearly we have C ⊆ C ′. By Proposition 3.3.5, θ′(K(g1,...,gk)) = θ′k(K(g1,...,gk)).

The next result holds for triangle-free graphs.

Proposition 3.3.7 If a simple graph G satisfies ω(G) = 2, then θ′(G) = θ′2(G).

Proof: If ω(G) = 2, then every edge of G is contained in a unique maximal clique,

namely the 2-clique containing its ends. Thus θ′(G) = |E(G)| = θ′2(G).

Even for graphs containing triangles, equality holds for 3-uniform ECCs whenever

the clique number of the graph equals 3 provided the graph admits a 3-uniform ECC.

Proposition 3.3.8 Let G be a simple graph satisfying ω(G) = 3. Furthermore,

assume that G admits a 3-ECC, that is, assume θ′3(G) 6= +∞. Then θ′(G) = θ′3(G).

Proof: Let C = {C1, ..., CN} be an optimal clique-maximal ECC of a graph G.

Since ω(G) = 3 then clearly we have |Ci| ∈ {2, 3} for 1 ≤ i ≤ N . By assumption,

θ′3(G) 6= +∞ so we know that each edge of G can be covered by some 3-clique of G.

In other words, every 2-clique of G is contained in at least one 3-clique of G. Thus,

every Ci ∈ C must be a clique of size 3 at least. Since 3 is also the maximum possible

size of a clique of G we must have that every Ci ∈ C is a clique of size 3. Thus C is a

3.3. Uniform ECCs 61

3-uniform ECC of G and we conclude that θ′(G) = θ′3(G).

The statement that a graph G satisfies θ′(G) = θ′k(G) whenever ω(G) = k and

θ′k(G) 6= +∞, however, does not hold in general.

Theorem 3.3.9 Let k ≥ 4 and m ≥ 1 be integers. Then there exists a graph G such

that ω(G) = k and θ′k(G) = θ′(G) +m.

Proof: For k = 4 we provide an example given in Figure 3.2. In fact, this example

can be generalized for all values of k ≥ 5 as follows. Form a (k − 1)-clique on k − 1

vertices which we label u1, u2, ..., uk−1. Call this clique C0. For each of the
(
k−1
2

)
edges

of C0, add k− 2 extra vertices and form a k-clique with the k− 2 vertices added and

the two ends of the corresponding edge of C0. Call these k-cliques C1, C2, ..., C(k−1
2).

Assume without loss of generality that C1 = {u1, u2, x1, ..., xk−2}, so that the

vertices x1, ..., xk−2 correspond to the k − 2 vertices added to form a k-clique with

edge {u1, u2} of C0. Similarly assume C2 = {u3, u4, y1, ..., yk−2}. Next, add vertex z1

and join z1 to vertices u2, x1, ..., xk−2 of C1, so that C(k−1
2)+1 = {z1, u2, x1, ..., xk−2} is

a k-clique. Similarly, add vertices z2, z3 and z4 and join z2 to each vertex in C1 \{u2},

join z3 to each vertex in C2 \ {u3}, and join z4 to each vertex in C2 \ {u4}, so

that C(k−1
2)+2 = {u1, z2, x1, ..., xk−2}, C(k−1

2)+3 = {z3, u4, y1, ..., yk−2}, and C(k−1
2)+4 =

{u3, z4, y1, ..., yk−2} are k-cliques. Call the resulting graph G[k]. It is easy to check

that χ(G[k]) = k, ω(G[k]) = k and θ′k(G
[k]) 6= +∞. Moreover, each k-clique Ci for

3 ≤ i ≤
(
k−1
2

)
+4 contains the ends of an edge that belongs to a unique maximal clique

of the graph, namely the clique Ci itself. By Proposition 3.1.8 every optimal clique-

maximal ECC of G[k] must contain the cliques C3, ..., C(k−1
2)+4. The only edges left

uncovered are {u1, u2} and {u3, u4} which can be covered by a single (k−1)-clique C0.

Thus C = {C0, C3, C4, ..., C(k−1
2)+4} is an optimal ECC of G[k] and θ′(G[k]) =

(
k−1
2

)
+3.

However, in an optimal k-uniform ECC of G[k], edges {u1, u2} and {u3, u4} must be

3.3. Uniform ECCs 62

G:

a

bc

d

ef

gh

i

jk

lm

Figure 3.2: Example of a graph G with ω(G) = 4, θ′4(G) 6= +∞ and θ′4(G) = θ′(G)+1.

The graph G satisfies ω(G) = 4. Furthermore, G admits a 4-uniform ECC since each

edge e ∈ E(G) has the property that both its ends belong to some 4-clique of G. The

five thick edges each belong to a unique maximal clique of G. By Proposition 3.1.8, all

those unique maximal cliques must be present in every optimal clique-maximal ECC

of G. The only edges of G left uncovered after all the thick edges are covered, are the

two edges {a, b}, and {a, c}, which can be covered with a single extra 3-clique, namely,

{a, b, c}. Thus, θ′(G) = 6. However, the two edges {a, b}, and {a, c} do not belong

to a common 4-clique, hence they must be covered separately in an optimal 4-ECC of

G. Thus, θ′4(G) = 7.

3.3. Uniform ECCs 63

G:

a

bc

d

e

f

g

h

i

j

Figure 3.3: Example of a graph G with ω(G) = 4, but θ′3(G) = θ′(G)

covered by two separate k-cliques, namely C1 and C2. Thus θ′k(G
[k]) = θ′(G[k]) + 1.

For every integer m ≥ 1 we can take the disjoint union of m copies of the graph

G[k]. Denote this union by m ·G[k]. It is easy to see that the graph m ·G[k] satisfies

θ′k(m ·G[k]) = θ′(m ·G[k]) +m.

In fact, regardless of a graph G having ω(G) > k, equality between θ′(G) and

θ′k(G) can still hold. See Figure 3.3 for a particular example.

Theorem 3.3.10 Let n > k ≥ 3 be integers. There exists a graph G such that

ω(G) = n and θ′k(G) = θ′(G).

Proof: Take a complete graph on n vertices labeled v1, ..., vn. For each edge

{vi, vj}, 1 ≤ i < j ≤ n, add k − 2 new vertices labeled vi,j1 , v
i,j
2 , ..., v

i,j
k−2, and add

edges so that Ci,j = {vi, vj, vi,j1 , ..., v
i,j
k−2} forms a k-clique. Refer to the resulting

graph as G[k,n]. In each k-clique Ci,j, there is an edge whose ends belong to a

unique maximal clique of G[k,n], namely the clique Ci,j itself. It is easy to see that

C = {Ci,j|1 ≤ i < j ≤ n} forms an optimal ECC of G[k,n]. Moreover, ω(G[k,n]) = n.

Since each Ci,j ∈ C is a k-clique, we have θ′k(G
[k,n]) = θ′(G[k,n]).

3.3. Uniform ECCs 64

In the following proposition, we prove that if G admits a k-uniform ECC for

some k ≥ 3, then G also must admit an l-uniform ECC for all l such that 2 ≤ l ≤ k.

Proposition 3.3.11 Let G be a simple graph and let k ≥ 3 be a positive integer. If

θ′k(G) 6= +∞ then θ′k−1(G) 6= +∞.

Proof: We prove the statement by proving the contrapositive. Suppose for k ≥ 3

thatG does not admit a (k−1)-uniform ECC. Then there exists an edge e ∈ E(G) such

that the ends of e do not both belong to a common (k−1)-clique of G. Consequently,

the ends of e do not both belong to a common k-clique of G; hence, θ′k(G) = +∞.

In the following results, we give upper bounds on the k-uniform ECC number.

Proposition 3.3.12 Let k ≥ 4 be a positive integer and let G be a simple graph

such that ω(G) = k and θ′k(G) 6= +∞. Then

θ′k(G) ≤
(
k − 1

2

)
θ′(G).

Proof: Let C = {C1, ..., Cθ′(G)} be an optimal ECC of G. Without loss of gener-

ality, assume that C is clique-maximal. Since ω(G) = k, any clique Ci ∈ C must be a

clique of size k or smaller. That is, |Ci| ≤ k for all Ci ∈ C. Let

p := |{Ci ∈ C|Ci is a k-clique}|

q := |{Ci ∈ C|Ci is a clique of size k − 1 or smaller}|.

Then p + q = θ′(G) and we have 0 ≤ q ≤ θ′(G), and 0 ≤ p ≤ θ′(G). Since we can

form a k-uniform ECC of G by taking the p k-cliques from C and adding at most(
k−1
2

)
q extra k-cliques obtained by breaking up the q cliques of size k − 1 or smaller,

3.3. Uniform ECCs 65

we have

θ′k(G) ≤ p+

(
k − 1

2

)
q

= (θ′(G)− q) +

(
k − 1

2

)
q since p = θ′(G)− q;

= θ′(G) +

[(
k − 1

2

)
− 1

]
q

≤ θ′(G) +

[(
k − 1

2

)
− 1

]
θ′(G) since q ≤ θ′(G);

=

(
k − 1

2

)
θ′(G).

Below is another simple upper bound on the k-uniform ECC number, based on

the number of edges of the graph.

Proposition 3.3.13 Let G be a simple graph and let k ≥ 2 be a positive integer. If

G admits a k-uniform ECC then

θ′k(G) ≤ |E(G)| −
(
k

2

)
+ 1.

Proof: Let C = {C1, ..., Cθ′k(G)} be an optimal k-uniform ECC of G. Then C1

covers
(
k
2

)
edges of G and for i = 2, ..., θ′k(G), clique Ci must cover at least one edge

of G not already covered by any of the cliques C1, ..., Ci−1. Otherwise, Ci would be

unnecessary and this would violate the optimality of C. Therefore, we must have

|E(G)| ≥
(
k

2

)
+ θ′k(G)− 1.

3.4. Partial ECCs 66

3.4 Partial ECCs

Another type of edge clique cover that we may wish to consider is that of a subset of

the edge set of a given graph. In a proof on the complexity of various graph covering

problems, Orlin [31] addressed the complexity of determining the minimum number

of cliques of a graph that cover a specified subset of the edges. For convenience, we

refer to this type of problem as a partial ECC. In this section, we give the definition

of a partial ECC as well as a few properties. We also extend the definition to apply

to other types of ECCs, namely edge-disjoint ECCs and uniform ECCs.

Definition 3.4.1 Let G be a simple graph and let E ′ ⊆ E(G) be a subset of edges

of G. We call a collection of cliques of G, C, a partial ECC of (G,E ′) if for every

edge e ∈ E ′ there is some clique Ce ∈ C that covers e. A partial ECC of (G,E ′) is

said to be optimal if it contains the minimum possible number of cliques, and the

minimum number is denoted by θ′(G,E ′), and called the partial ECC number of

(G,E ′).

Observe that a partial ECC of a graph G exists for every nonempty subset E ′ of

edges of G and we have θ′(G,E ′) ≤ |E ′|.

Proposition 3.4.2 For any simple graph G and any subset of edges E ′ ⊆ E(G), we

have θ′(G,E ′) ≤ θ′(G).

Proof: Let E ′ ⊆ E(G) and let C = {C1, ..., CN} be an optimal ECC of G. Then

C′ = {Ci ∈ C|Ci covers some edge e ∈ E ′} is a partial ECC of (G,E ′) and we have

θ′(G,E ′) ≤ |C′| ≤ |C| = θ′(G).

The notion of partial ECCs can also be extended to edge-disjoint ECCs as well

as uniform ECCs.

3.4. Partial ECCs 67

Definition 3.4.3 Let G be a simple graph and let E ′ ⊆ E(G). A partial edge-

disjoint ECC of (G,E ′) is a collection of pairwise edge-disjoint cliques of G, C, such

that for every edge e ∈ E ′ there exists some clique Ce ∈ C that covers e. We denote

by θed(G,E ′) the minimum possible number of cliques in a partial edge-disjoint ECC

of (G,E ′), and we call this number the partial edge-disjoint ECC number of

(G,E ′).

Again, we always have θed(G,E ′) ≤ |E ′| for every subset of edges E ′ ⊆ E(G).

Furthermore, it is easy to see that we have θed(G,E ′) ≤ θed(G) for every subset of

edges E ′.

Definition 3.4.4 Let k be a positive integer. For a simple graph G and a subset of

edges E ′ ⊆ E(G), a partial k-uniform ECC of (G,E ′) is a collection of k-cliques

of G, say C, such that for every edge e ∈ E ′ there is some k-clique Ce ∈ C that covers

e. We denote by θ′k(G,E
′) the minimum possible number of k-cliques in a partial k-

uniform ECC of (G,E ′) if it exists; otherwise, we let θ′k(G,E
′) = +∞. This number

is called the partial k-uniform ECC number of (G,E ′).

As with k-uniform ECCs, we see that not every graph admits a partial k-uniform

ECC. However, whenever a graph G satisfies θ′k(G) 6= +∞ we also have θ′k(G,E
′) 6=

+∞ for every subset of edges E ′ ⊆ E(G). In the example shown in Figure 3.4, we see

that a graph G can have the property that θ′k(G) = +∞ but for some proper subset

of edges E ′ we may have θ′k(G,E
′) 6= +∞.

In general, we always have θ′k(G,E
′) ≤ θ′k(G) for every subset E ′ of edges of the

graph.

Proposition 3.4.5 Let k be a positive integer and let G be a simple graph. For any

subset of edges E ′ ⊆ E(G), we have θ′k(G,E
′) ≤ θ′k(G).

Proof: First suppose θ′k(G) 6= +∞. Then let C = {C1, ..., CN} be an optimal

k-ECC of G. The collection of k-cliques C′ = {Ci ∈ C|Ci covers some edge e ∈ E ′} is

3.5. ECCs and Node Clique Covers 68

G : a b c d

Figure 3.4: Example of graph with θ′3(G,E
′) = 1 and θ′3(G) = +∞.

The graph G clearly does not admit a 3-uniform ECC since the ends of the edge {a, b}

are not contained in any 3-clique of the graph. Thus we have θ′3(G) = +∞. However,

the subset of edges E ′ = {b, c, d} satisfies θ′3(G,E
′) = 1.

a partial k-ECC of (G,E ′) and we have θ′k(G,E
′) ≤ |C′| ≤ |C| = θ′k(G).

Otherwise, we have θ′k(G) = +∞ in which case we either have θ′k(G,E
′) = L for

some positive integer L ≤ +∞ or we also have θ′k(G,E
′) = +∞.

If a partial k-ECC of (G,E ′) does exist, then we always have θ′k(G,E
′) ≤ |E ′|.

3.5 ECCs and Node Clique Covers

The ECC problem is concerned with covering all edges of a graph by cliques. Another

closely related clique covering problem is called the node clique cover problem. Several

authors have considered various aspects of the relationship between these problems

(see for example [2, 22, 31]). In this section, we look at the relationships between

ECCs and node clique covers, as well as the graph colouring problem.

Definition 3.5.1 Let G be a simple graph. A collection of cliques of G, say C =

{C1, ..., CN}, is called a node clique cover (NCC) of G if for every vertex v ∈ V (G)

there is some clique Ci ∈ C such that v ∈ Ci. An NCC of G is said to be optimal

if it contains the least possible number of cliques. We denote by θ(G) the number of

cliques in an optimal NCC of a graph G and call this number the NCC number of

G.

3.5. ECCs and Node Clique Covers 69

It is easy to see that every simple graph G admits an NCC, and we have θ(G) ≤

|V (G)| since the collection of 1-cliques of G forms a trivial NCC. The next result

gives us another upper bound.

Proposition 3.5.2 Let G be a simple graph. Then θ(G) ≤ |V (G)| − ω(G) + 1.

Proof: Let C1 be an ω(G)-clique of G. Then the collection of cliques C =

{C1}∪{{v}|v ∈ V (G)\C1} forms an NCC of G, and we have |C| = 1+ |V (G)|−ω(G).

Therefore, θ(G) ≤ |V (G)| − ω(G) + 1.

The following proposition tells us that any optimal NCC of a graph G can always

be assumed without loss of generality to have (vertex-)disjoint cliques.

Proposition 3.5.3 Let G be a simple graph. Then there exists an optimal NCC of

G in which any two distinct cliques are disjoint.

Proof: Let C = {C1, ..., CN} be an optimal NCC of a simple graph G. We define

a new collection C′ = {C ′1, ..., C ′N} such that C ′1 = C1 and for 2 ≤ i ≤ N , take

C ′i = Ci \ {v ∈ V (G)|v ∈ Cj for some index j < i}.

Then C ′i ⊆ Ci for 1 ≤ i ≤ N so each C ′i ∈ C′ is a clique of G. Moreover, if v ∈ V (G),

then v is contained in at least one clique in C. Choose Ci ∈ C with the lowest index

i such that v ∈ Ci. Then by construction we have v ∈ C ′i. Moreover, v 6∈ C ′j for any

index j > i by construction of C ′j. Thus, C ′i ∩ C ′j = Ø if i 6= j, so C′ is a NCC of G

in which any two distinct cliques are disjoint. Lastly, since |C′| ≤ |C| = θ(G), we see

that C′ is optimal.

Brigham and Dutton [2] give several results relating the NCC number to the

ECC number. In their results, it is assumed that all graphs are connected, simple

graphs. The first result gives an upper bound on θ′(G) in terms of the number of

3.5. ECCs and Node Clique Covers 70

vertices of G, the NCC number of G as well as the sizes of the cliques in a particular

optimal NCC.

Theorem 3.5.4 (Brigham and Dutton [2]) Let G be a simple connected graph on

n vertices. Let C = {C1, ..., Cθ(G)} be an optimal NCC of G such that the cliques in

C are pairwise disjoint. For 1 ≤ i ≤ θ(G), let ni = |Ci|. Furthermore assume the

cliques are indexed so that ni ≤ ni+1 for i = 1, 2, ..., θ(G)− 1. Then

θ′(G) ≤ (n+ 1)θ(G)−
θ(G)∑
i=1

ini.

Proof: For 1 ≤ i < j ≤ θ(G), let ni,j be the number of edges having one end in

Ci and the other end in Cj. Then we can cover all edges of G by the θ(G) cliques in

C and for 1 ≤ i < j ≤ θ(G) we add ni,j 2-cliques to cover each edge with one end in

Ci and the other end in Cj. Thus

θ′(G) ≤ θ(G) +

θ(G)−1∑
i=1

θ(G)∑
j=i+1

ni,j.

Observe that the number of cliques necessary to cover the edges incident with a single

vertex in Ci to any vertex in Cj is exactly one. Therefore we can cover the ni,j edges

having one end in Ci and the other end in Cj by min{ni, nj} cliques. By assumption,

the cliques are indexed so that ni ≤ nj whenever i < j. Consequently, we can replace

3.5. ECCs and Node Clique Covers 71

ni,j by ni to obtain

θ′(G) ≤ θ(G) +

θ(G)−1∑
i=1

θ(G)∑
j=i+1

ni

= θ(G) +

θ(G)−1∑
i=1

ni[θ(G)− i], since

θ(G)∑
j=i+1

ni = ni[θ(G)− i];

= θ(G) + θ(G)

θ(G)−1∑
i=1

ni −
θ(G)−1∑
i=1

ini

≤ θ(G) + nθ(G)−
θ(G)−1∑
i=1

ini, since

θ(G)−1∑
i=1

ni ≤ n;

= (n+ 1)θ(G)−
θ(G)−1∑
i=1

ini.

The next result is better in the sense that it gives an upper bound on the ECC

number of a graph in terms of the number of vertices and the NCC number only. For

it, we require the following lemma.

Lemma 3.5.5 Let {a1, ..., al} be a set of l > 0 positive real numbers indexed so that

a1 ≤ a2 ≤ · · · ≤ al. Then
l∑

i=1

iai ≥
1

2
(l + 1)

l∑
i=1

ai.

Proof: We prove the lemma by induction on l. For l = 1, the statement holds.

Assume the equation holds for any positive integer l > 0. Now, let a1, ..., al, al+1 be

3.5. ECCs and Node Clique Covers 72

l + 1 positive real numbers indexed so that a1 ≤ a2 ≤ · · · ≤ al ≤ al+1. Then

l+1∑
i=1

iai =
l∑

i=1

iai + (l + 1)al+1

≥ 1

2
(l + 1)

l∑
i=1

ai +
l+1∑
i=1

al+1 by induction hypothesis;

=
1

2
(l + 1)

l∑
i=1

ai +
1

2

l+1∑
i=1

al+1 +
1

2

l+1∑
i=1

al+1

≥ 1

2
(l + 1)

l∑
i=1

ai +
1

2
(l + 1)al+1 +

1

2

l+1∑
i=1

ai since al+1 ≥ ai for 1 ≤ i ≤ l;

=
1

2
(l + 1)

l+1∑
i=1

ai +
1

2

l+1∑
i=1

ai

=
1

2
(l + 2)

l+1∑
i=1

ai.

Using Lemma 3.5.5 as well as Theorem 3.5.4, Brigham and Dutton [2] give the

following bound on θ′(G).

Theorem 3.5.6 (Brigham and Dutton [2]) Let G be a simple connected graph on n

vertices. Then

θ′(G) ≤ θ(G) +
1

2
n(θ(G)− 1).

Proof: Using the same notation as in Theorem 3.5.4, we have

θ′(G) ≤ (n+ 1)θ(G)−
θ(G)∑
i=1

ini.

Since n1, ..., nθ(G) are positive real numbers and indexed so that n1 ≤ · · · ≤ nθ(G), we

have
θ(G)∑
i=1

ini ≥
1

2
[θ(G) + 1]

θ(G)∑
i=1

ni by Lemma 3.5.5;

=
1

2
[θ(G) + 1]n since

θ(G)∑
i=1

ni = n.

3.5. ECCs and Node Clique Covers 73

Therefore,

θ′(G) ≤ (n+ 1)θ(G)− 1

2
n[θ(G) + 1] = θ(G) +

1

2
n[θ(G)− 1].

We now show that the problem of finding an optimal NCC of a simple graph

G is equivalent to finding an optimal proper vertex colouring of the complement G.

Consequently, we have θ(G) = χ(G) for all simple graphs G.

Proposition 3.5.7 For a simple graph G and its complement G, we have θ(G) =

χ(G).

Proof: Let C = {C1, ..., CN} be an optimal NCC of a simple graph G. By

Proposition 3.5.3, we may assume that the cliques in C are pairwise disjoint. In the

complement G, each Ci ∈ C is an independent set and each vertex of G is contained

in exactly one of these independent sets. It is easy to see that C forms a proper

N -vertex colouring of G when we colour vertex v colour i whenever v ∈ Ci. Thus

θ(G) = N ≥ χ(G). Similarly, if C′ = {C ′1, ..., C ′M} is an optimal vertex colouring of

G, each C ′i ∈ C′ forms an independent set of G, hence a clique of G. It is easy to see

that C′ forms an NCC of G and so we have M = χ(G) ≥ θ(G).

Chapter 4

Covering Arrays as Edge Clique

Cover Problems

In this chapter, we relate the edge clique cover problem to covering arrays. In par-

ticular, we show the equivalence between ECCs of k-partite graphs and the various

covering array structures.

4.1 Orthogonal arrays

Here we show that an OA(N ; 2, k, g) is equivalent to an edge-disjoint k-ECC of a

complete k-partite graph having parts of size g, although this equivalence is known

(see p. 161-162 in [7]).

Proposition 4.1.1 Let Kk,g be a complete k-partite graph with k parts of size g

each. An orthogonal array A = OA(N ; 2, k, g), of strength t = 2, is equivalent to C,

an edge-disjoint k-ECC of Kk,g, with |C| = N .

Proof: Let the vertices of Kk,g be labeled as vi,ai where i ∈ [1, k] and ai ∈ [0, g−1]

so that the partite sets of Kk,g are of the form Pi = {vi,ai |ai ∈ [0, g−1]} for 1 ≤ i ≤ k.

74

4.1. Orthogonal arrays 75

First we show that the existence of an OA(N ; 2, k, g) implies the existence of an edge-

disjoint k-ECC of Kk,g having N cliques. Let A be an OA(N ; 2, k, g). Take any

row of A, say Rl = (Rl(1), ..., Rl(k)), and consider the corresponding set of vertices

Cl := {v1,Rl(1), v2,Rl(2), ..., vk,Rl(k)}. For 1 ≤ l ≤ N , the set of vertices Cl forms a

k-clique of Kk,g since Cl contains exactly one vertex from each of the partite sets of

Kk,g. Hence, every pair of vertices in Cl is joined by an edge. Furthermore, we claim

that C = {C1, ..., CN} forms an edge-disjoint k-ECC of Kk,g. Let {vi,ai , vj,aj} be any

edge of Kk,g. Necessarily we have i 6= j. Consider the ith and jth columns of A. By

the properties of A we know that there exists exactly one row of A, say Rl such that

Rl(i) = ai and Rl(j) = aj. Thus, exactly one k-clique in C, namely Cl, contains both

the vertices vi,ai and vj,aj . Therefore, C covers the edge {vi,ai , vj,aj} exactly once.

Since {vi,ai , vj,aj} is an arbitrary edge of Kk,g, we see that C forms an edge-disjoint

k-ECC of G and we have |C| = N .

Conversely, we show that the existence of an edge-disjoint k-ECC of size N of

Kk,g implies the existence of an OA(N ; 2, k, g). If C = {C1, ..., CN} is an edge-disjoint

k-ECC of Kk,g, then each k-clique Cl such that l ∈ [1, N], can contain at most one

vertex from each partite set Pi since no two vertices from one partite set are adjacent.

Moreover, each clique Cl ∈ C must contain k vertices, hence exactly one vertex from

each partite set. Thus, each clique Cl ∈ C is of the form Cl = {v1,Cl(1), ..., vk,Cl(k)}

where Cl(i) ∈ [0, g − 1] for 1 ≤ i ≤ k. Now we form an N × k array A with N rows

of the form Rl = (Cl(1), ..., Cl(k)). We claim that A forms an OA(N ; 2, k, g). Take

any two distinct columns, i and j, and take any pair (a, b) ∈ [0, g − 1] × [0, g − 1].

Then in Kk,g there exists a unique clique, say Cl ∈ C, containing the vertices vi,Cl(i)

and vj,Cl(j) where Cl(i) = a and Cl(j) = b. Consequently, there exists a unique row

of A, namely Rl = (Cl(1), ..., Cl(k)), such that Cl(i) = a and Cl(j) = b. Therefore, in

any N × 2 subarray of A, every pair (a, b) ∈ [0, g − 1] × [0, g − 1] occurs in exactly

one row. We conclude that A is an OA(N ; 2, k, g).

4.2. Covering Arrays and Mixed Covering Arrays 76

K3,2:

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

an OA(4; 2, 3, 2):

0
1
1
0

0
1
0
1

0
0
1
1

Figure 4.1: Equivalence of an OA(4; 2, 3, 2) and an edge-disjoint 3-ECC of K3,2

The vertices of K3,2 are labeled as described in the proof of Proposition 4.1.1 and the

edge-disjoint k-ECC of K3,2 is pictured by the different types of edges. Each edge type

shows the three edges covered by a given 3-clique.

We illustrate this equivalence with an example shown in Figure 4.1.

4.2 Covering Arrays and Mixed Covering Arrays

Here we prove that the existence of an MCA(N ; 2, k, (g1, ..., gk)) is equivalent to the

existence of a k-uniform ECC, containing N cliques, of the complete k-partite graph

K(g1,...,gk).

Theorem 4.2.1 There exists an MCA(N ; 2, k, (g1, ..., gk)) if and only if there exists

a k-uniform ECC, containing N cliques, of K(g1,...,gk).

Proof: Let A be an MCA(N ; 2, k, (g1, ..., gk)). Label the vertices of K(g1,...,gk) as

vi,ai where i ∈ [1, k] and ai ∈ [0, gi − 1] for 1 ≤ i ≤ k, so that the partite sets of

K(g1,...,gk) are of the form Pi = {vi,ai |ai ∈ [0, gi − 1]}. Take row Rl = (Rl(1), ..., Rl(k))

of A and recall that Rl(i) ∈ [0, gi − 1] for 1 ≤ i ≤ k. For 1 ≤ l ≤ N , let Cl =

{v1,Rl(1), v2,Rl(2), ..., vk,Rl(k)}. Clearly Cl forms a k-clique of K(g1,...,gk) since Cl contains

exactly one vertex from each partite set of K(g1,...,gk). We claim that the collection

of cliques C = {C1, ..., CN} is a k-uniform ECC of K(g1,...,gk). By construction, each

4.2. Covering Arrays and Mixed Covering Arrays 77

clique Cl ∈ C is a k-clique so we need only show that all edges of K(g1,...,gk) are covered.

Let e ∈ E(K(g1,...,gk)) be any edge. Then e is of the form {vi,ai , vj,aj} for some i 6= j.

By definition, the array A must contain some row, say Rl = (Rl(1), ..., Rl(k)) such

that Rl(i) = ai and Rl(j) = aj. Therefore, the k-clique Cl contains the vertices vi,ai

and vj,aj and hence covers edge e. Since e was arbitrary, all edges of K(g1,...,gk) are

covered by some clique in C. Thus there exists C, a k-uniform ECC of K(g1,...,gk), such

that |C| = N .

Now, let C = {C1, ..., CN} be a k-uniform ECC of K(g1,...,gk). Using the same no-

tation as above we see that each Cl ∈ C is of the form Cl = {v1,Cl(1), v2,Cl(2)..., vk,Cl(k)}

where Cl(i) ∈ [0, gi − 1], since any k-clique of K(g1,...,gk) must contain exactly one

vertex from each partite set. Define an array A with N rows of the form Rl =

(Cl(1), Cl(2), ..., Cl(k)). Select any two distinct columns of A, say column i and col-

umn j, and choose any pair (ai, aj) ∈ [0, gi− 1]× [0, gj − 1]. In C there exists a clique

Cl that covers edge {vi,ai , vj,aj}, in which case we have Cl(i) = ai and Cl(j) = aj.

Consequently, row Rl of A satisfies Rl(i) = Cl(i) = ai and Rl(j) = Cl(j) = aj. Since

the choice of (i, j) and (ai, aj) was arbitrary, A is an MCA(N ; 2, k, (g1, ...gk)).

As a consequence we see that finding MCAN(2, k, (g1, ..., gk)) is in fact equivalent

to finding θ′(K(g1,...,gk)).

Corollary 4.2.2 MCAN(2, k, (g1, ..., gk)) = θ′k(K(g1,...,gk)) = θ′(K(g1,...,gk)).

Proof: By Theorem 4.2.1 we get θ′k(K(g1,...,gk)) = MCAN(2, k, (g1, ..., gk)). More-

over, by Corollary 3.3.6 we have θ′k(K(g1,...,gk)) = θ′(K(g1,...,gk)).

The equivalence of constant alphabet covering arrays and k-uniform ECCs of Kk,g

is a direct consequence of Theorem 4.2.1 since a mixed covering array with constant

alphabet sizes is a covering array.

4.2. Covering Arrays and Mixed Covering Arrays 78

Corollary 4.2.3 There exists a CA(N ; 2, k, g) if and only if there exists a k-uniform

ECC of Kk,g, say C, such that |C| = N .

Corollary 4.2.4 CAN(2, k, g) = θ′k(Kk,g) = θ′(Kk,g).

Given the equivalence between covering arrays and k-uniform ECCs of complete

k-partite graphs we can translate results for ECCs into results for covering arrays

and vice versa. The next result from Orlin [31] gives a recursive bound on the ECC

number of the complete equipartite graph Kk,2.

Proposition 4.2.5 (Orlin [31]) Let k ≥ 2 be an integer. Then

θ′(Kk,2) ≤ θ′(Kk−1,2) + 1.

Proof: Denote the vertices of Kk,2 as v1, v2, ..., vk, u1, u2, ..., uk so that the partite

sets are of the form Pi = {ui, vi} for 1 ≤ i ≤ k. Let C = {C1, ..., CN} be an optimal

clique-maximal ECC of Kk−1,2. Then each maximal (with respect to set inclusion)

clique contains either vertex vi or ui but not both. Hence, each Ci ∈ C contains exactly

k − 1 vertices. Since for each i, vertices vi and ui are symmetric, it is thus possible

to relabel vertices so that C1 = {v1, v2, ..., vk−1}. Now let C∗ = {C∗1 , ..., C∗N , C∗N+1}

where C∗1 = {v1, v2, ..., vk}, C∗N+1 = {u1, u2, ..., uk−1, vk}, and for i = 2, ..., N we let

C∗i = Ci ∪ {uk}. We claim that C∗ is an ECC of Kk,2. The cliques C∗1 , ..., C
∗
N cover

all edges of the form {ui, uj} for 1 ≤ i < j ≤ k − 1, {vi, vj} for 1 ≤ i < j ≤ k − 1,

and {ui, vj} for i 6= j, 1 ≤ i, j ≤ k − 1 since C is an ECC of Kk−1,2. Furthermore,

C∗2 , ..., C
∗
N cover edges {ui, uk} and {vi, uk} for 1 ≤ i ≤ k− 1. Clique C∗1 covers edges

{vi, vk} for 1 ≤ i ≤ k − 1, and clique C∗N+1 covers edges {ui, vk} for 1 ≤ i ≤ k − 1.

Thus C∗ is an ECC of Kk,2 and we have |C∗| = θ′(Kk−1,2) + 1.

The above theorem gives the following upper bound on the ECC number of

complete equipartite graphs having partite sets of size 2.

4.3. Covering Arrays Avoiding Forbidden Edges 79

Corollary 4.2.6 (Orlin [31]) For k ≥ 3 the graph Kk,2 satisfies θ′(Kk,2) ≤ k + 1.

Proof: The statement is true by induction on k, the fact that θ′(K3,2) = 4 and

Proposition 4.2.5.

Indeed, we can now improve on Orlin’s bound, which is linear in k, using the

exact value for binary strength 2 covering arrays given by Rényi [32] for N even, and

independently by Kleitman and Spencer [21] and Katona [20], for all N (see Theorem

1.2.4), which is known to be in O(log2 k).

Corollary 4.2.7 Let k be a positive integer. Then

θ′(Kk,2) = θ′k(Kk,2) = min

{
N ∈ Z|

(
N − 1

bN
2
c − 1

)
≥ k

}
.

4.3 Covering Arrays Avoiding Forbidden Edges

The next theorem gives us the equivalence between a CAFE(N,G), where G ∈

G(g1,...,gk), and a k-uniform ECC of the complement of G| (recall that G| denotes

the graph obtained from G by adding edges of the form {vi,ai , vi,bi} for 1 ≤ i ≤ k and

ai 6= bi with ai, bi ∈ [0, gi − 1]).

Theorem 4.3.1 (Danziger et. al. [11]) Let k be a positive integer and let G ∈

G(g1,...,gk) be a forbidden edges graph. Then there exists a CAFE(N,G) if and only if

there exists a k-uniform ECC, containing N cliques, of the graph G|.

Proof: Let A be a CAFE(N,G). Then, the N rows of A, Rl = (Rl(1), ..., Rl(k)),

1 ≤ l ≤ N , form k-tuples avoiding G. By Lemma 2.3.2, the set of vertices

Cl = {v1,Rl(1), v2,Rl(2), ..., vk,Rl(k)} is an independent set of G and of G|. When we

take the complement of G|, any independent set of G| is a clique of G| (see Propo-

sition 1.4.2). We claim that the collection of k-cliques C = {C1, ..., CN} forms a

k-uniform ECC of G|. Let {vi,ai , vj,aj} ∈ E(G|). Then i 6= j and {vi,ai , vj,aj} 6∈ E(G|),

4.3. Covering Arrays Avoiding Forbidden Edges 80

and consequently, we have {vi,ai , vj,aj} 6∈ E(G). Therefore, there exists a row of A,

say Rl = (Rl(1), ..., Rl(k)) such that Rl(i) = ai and Rl(j) = aj. Then the clique

Cl = {v1,Rl(1), v2,Rl(2), ..., vk,Rl(k)} is a k-clique of G| that covers edge {vi,ai , vj,aj}. We

conclude that C is a k-uniform ECC, containing N cliques, of G|.

Conversely, letG| be the complement of some forbidden edges graphG ∈ G(g1,...,gk).

Suppose C = {C1, ..., CN} is a k-uniform ECC of G|. Each Cl ∈ C is of the form

Cl = {v1,Cl(1), v2,Cl(2), ..., vk,Cl(k)} where for 1 ≤ i ≤ k, Cl(i) ∈ [0, gi − 1], since any

k-clique of G| can contain only one vertex from each factor. Now, define an array

A with N rows of the form Rl = (Cl(1), ..., Cl(k)) for 1 ≤ l ≤ N . Let i, j ∈ [1, k]

such that i 6= j. Suppose {vi,ai , vj,aj} 6∈ E(G). Then {vi,ai , vj,aj} 6∈ E(G|) since

i 6= j and consequently, we have {vi,ai , vj,aj} ∈ E(G|). By definition, there exists

some k-clique, say Cl ∈ C, that covers edge {vi,ai , vj,aj}. Thus, row Rl of A satisfies

Rl(i) = Cl(i) = ai and Rl(j) = Cl(j) = aj. Therefore A covers all non-forbidden

interactions of G. Moreover, any row Rl = (Cl(1), ..., Cl(k)) forms a k-tuple avoid-

ing G since Cl is clearly an independent set of G and |Cl| = k. Therefore, A is a

CAFE(N,G).

Corollary 4.3.2 (Danziger et. al. [11]) Let G ∈ G(g1,...,gk) be a forbidden edges

graph. Then CAFEN(G) = θ′k(G
|) ≥ θ′(G|).

In fact, Danziger et. al. [11] prove that the CAFE number of a binary forbidden edges

graph, G ∈ Gk,2, is equal to the ECC number of G| provided that G is consistent.

In the following section, we address the particular case of G ∈ Gk,2. Equality in the

bound of Corollary 4.3.2, however, is not necessarily the case for g ≥ 3. In Figure

4.2, we give an example for g = 3, where CAFEN(G) = θ′k(G
|) > θ′(G|).

Subsequently, we give a necessary condition for a CAFE to exist, as well as some

new upper bounds on the CAFE number, based on its relationship with the k-ECC

number.

4.3. Covering Arrays Avoiding Forbidden Edges 81

G :
v1,0

v1,1

v1,2

v2,0 v2,1 v2,2

v3,0

v3,1

v3,2

v4,0 v4,1 v4,2

a CAFE(7, G):

0 0 0 0
1 0 2 1
2 2 2 1
2 2 1 2
0 1 1 0
0 0 1 0
2 0 2 1

G| :

v2,0

v3,1v1,2

v2,2

v1,0v3,2

v4,0v4,1

v4,2

v2,1

v3,0v1,1

Figure 4.2: A graph G ∈ G4,3 such that CAFEN(G) > θ′(G|).

In G|, the thick edges are edges whose ends belong to unique maximal cliques, corre-

sponding to the first 5 rows of the CAFE(7, G). There remain two edges of G| left

to cover, namely {v1,2, v2,0} and {v2,0, v3,1}. These edges can be covered by a sin-

gle extra 3-clique, {v1,2, v2,0, v3,1}, so θ′(G|) = 6. In a 4-ECC of G|, we require two

separate 4-cliques to cover {v1,2, v2,0} and {v2,0, v3,1}, namely {v1,2, v2,0, v3,2, v4,1} and

{v1,0, v2,0, v3,1, v4,0}, respectively. Thus 7 = θ′4(G
|) = CAFEN(G) > θ′(G|) = 6.

4.3. Covering Arrays Avoiding Forbidden Edges 82

Proposition 4.3.3 Let G ∈ G(g1,...,gk) and assume that every vertex vi,ai ∈ V (G)

has at least one vertex vj,aj ∈ V (G) such that i 6= j and {vi,ai , vj,aj} 6∈ E(G). That

is, every vertex of G is the “end” of at least one non-forbidden interaction. Then

CAFEN(G) 6= +∞ implies

|E(G)| ≤
∑

1≤i<j≤k

gigj −
(
k − 1

2

) k∑
i=1

gi.

Proof: We have CAFEN(G) = θ′k(G
|) by Corollary 4.3.2. By Proposition 3.3.3,

θ′k(G
|) 6= +∞ implies |E(G|)| ≥ n(k−1)

2
, where n is the number of non-isolated vertices

of G|. By our assumption, n =
∑k

i=1 gi. Therefore,

|E(G|)| =
∑

1≤i<j≤k

gigj − |E(G)| ≥
(
k − 1

2

) k∑
i=1

gi.

Equivalently, |E(G)| ≤
∑

1≤i<j≤k

gigj −
(
k − 1

2

) k∑
i=1

gi.

The following result gives an upper bound on the CAFE number, and for k ≥ 3,

it is a strict improvement on the upper bound given by [11] (see Proposition 2.4.1).

Proposition 4.3.4 Let G ∈ G(g1,...,gk). If CAFEN(G) 6= +∞, then

CAFEN(G) ≤
∑

1≤i<j≤k

gigj − |E(G)| −
(
k

2

)
+ 1.

Proof: If CAFEN(G) 6= +∞, then we have

CAFEN(G) = θ′k(G
|), by Corollary 4.3.2;

≤ |E(G|)| −
(
k

2

)
+ 1, by Proposition 3.3.13;

=
∑

1≤i<j≤k

gigj − |E(G)| −
(
k

2

)
+ 1.

4.4. Binary CAFEs 83

Here we translate the upper bound of Proposition 3.3.12 into another upper

bound for the CAFE number.

Proposition 4.3.5 Let k ≥ 4 and let G ∈ G(g1,...,gk). If CAFEN(G) 6= +∞ then,

CAFEN(G) ≤
(
k − 1

2

)
θ′(G|).

Proof:

CAFEN(G) = θ′k(G
|) ≤

(
k − 1

2

)
θ′(G|) by Proposition 3.3.12.

The following proposition, tells us that for consistent forbidden edges graphs

G ∈ G(g1,g2,g3), having k = 3 factors, the CAFE number of G is equal to the ECC

number of G|.

Proposition 4.3.6 Let G ∈ G(g1,g2,g3) be a consistent forbidden edges graph with

k = 3 factors. Then CAFEN(G) = θ′3(G
|) = θ′(G|).

Proof: By Corollary 4.3.2, we have CAFEN(G) = θ′3(G). If G contains no non-

forbidden edges, that is, if G| is empty, then CAFEN(G) = θ′3(G) = θ′(G|) = 0. It

is easy to see that for G ∈ G(g1,g2,g3), if G is consistent and has at least one non-

forbidden interaction, then ω(G|) = 3. In this case, by Proposition 3.3.8, we have

θ′3(G
|) = θ′(G|), so CAFEN(G) = θ′(G|).

4.4 Binary CAFEs

In this section, we look at a particular type of forbidden edges graphs, namely those

in Gk,2 having CAFEs with binary alphabets (g = 2). We present a theorem by

4.4. Binary CAFEs 84

Danziger et. al. [11] which tells us that the CAFE number of a consistent graph

G ∈ Gk,2 is equal to the ECC number of the graph G|. We also look at a special case

of consistent binary forbidden edges graphs, namely those that are bipartite, and give

several results by Danziger et. al. [11].

Theorem 4.4.1 (Danziger et. al. [11]) Let G ∈ Gk,2 be a binary forbidden edges

graph. If G is consistent, then CAFEN(G) = θ′(G|).

Proof: Given any clique C = {vi1,a1 , vi2,a2 , ..., viq ,aq} in G|, we show that if q < k

then C can be extended into a k-clique. Let j ∈ [1, k] \ {i1, ..., iq}. Suppose neither

vertex from factor j can be added to C and still induce a clique. Then we must have

vertices vil,al , vim,am ∈ C such that {vil,al , vj,0} 6∈ E(G|) and {vim,am , vj,1} 6∈ E(G|).

This would mean that in G we have {vil,al , vj,0} ∈ E(G|) and {vim,am , vj,1} ∈ E(G|)

but {vil,al , vim,am} 6∈ E(G|). By Proposition 2.3.6, this would mean that G is not

consistent, a contradiction. Therefore, we must always be able to add to C at

least one vertex from each factor j ∈ [1, k] \ {i1, ..., iq} and still induce a clique.

In other words, we can extend any clique of G| into a k-clique. Consequently, we have

θ′(G|) = θ′k(G
|) = CAFEN(G) for any consistent binary forbidden edges graph G.

The above theorem is an improvement on Corollary 4.3.2 since the ECC number

of a graph is always less than or equal to its k-uniform ECC number.

We now look at a special case of consistent binary forbidden edges graphs, namely

those that are bipartite. The following results tell us that if G ∈ Gk,2 is consistent

and bipartite, then there is a CAFE(n,G) with two disjoint rows.

Lemma 4.4.2 (Danziger et. al. [11]) Let G ∈ Gk,2 be consistent. Then G is bipartite

if and only if G| is bipartite.

Proof: Clearly, if G| is bipartite, then with the same partition of vertices G is

also bipartite, since G = G| \ {{vi,0, vi,1} ∈ E(G|)|1 ≤ i ≤ k}.

4.4. Binary CAFEs 85

We need to show that if G is bipartite, then so is G|. Assume G is bipartite.

Then G is 2-colourable and contains no odd cycles. We claim that there exists a 2-

colouring of G which has the desired property that within each factor the two vertices

are given different colours.

Suppose by way of contradiction that there is a factor j where both its vertices

are forced to have the same colour. This means that there must be an even length path

in G from vj,0 to vj,1. Let vj,0q1q2 · · · q2r+1vj,1 be the shortest even path connecting

vj,0 to vj,1. Then {vj,0, q1} ∈ E(G) and {q2r+1, vj,1} ∈ E(G). Because G is consistent,

we must have {q1, q2r+1} ∈ E(G) also. This, however, implies that q1q2 · · · q2r+1 is an

odd cycle of G, contradicting the fact that G is bipartite. Thus, it must be possible

to colour the vertices of each factor j differently. Consequently, G| is bipartite.

Corollary 4.4.3 (Danziger et. al. [11]) Let G ∈ Gk,2 be consistent. Then G is

bipartite if and only if for some n, G admits a CAFE(n,G) containing two disjoint

rows.

Proof: Assume G is bipartite. By Lemma 4.4.2, G| is bipartite, so there exists a

2-colouring of G|, say {C1, C2}, and we have exactly one vertex from each factor in

C1 and the other vertex from that factor in C2. Furthermore, C1 and C2 correspond

to independent sets of G of size k, hence they correspond to k-tuples avoiding G.

Consequently, a CAFE(n,G) exists with the rows corresponding to C1 and C2, which

are disjoint.

Next, if G admits a CAFE(n,G) with two disjoint rows, then these rows corre-

spond to two disjoint independent sets of size k each. In other words, we can colour

G with two colours, according to these independent sets, so G is bipartite.

The following result for bipartite graphs is based on an algorithm given in [11],

which produces a CAFE for a consistent binary forbidden edges graph. We omit

the algorithm and the proof of its correctness here. The algorithm first removes

4.4. Binary CAFEs 86

“forced” or “redundant” factors of G, yielding the reduced graph, for which we give

the definition below.

Definition 4.4.4 Let G ∈ Gk,2 be consistent. We call G reduced if

1. G has no factor i and value a ∈ [0, 1] such that {vi,a, vj,b} ∈ E(G) for all

j ∈ [1, k] \ {i} and all b ∈ [0, 1], and

2. G has no pair of factors i and j and values a, b ∈ [0, 1] such that {vi,a, vj,b} ∈

E(G) and {vi,1−a, vj,1−b} ∈ E(G) (factors i and j with parallel edges).

Note that part 1. in the definition of reduced is equivalent to G having no factor i

such that {vi,a, vj,0} ∈ E(G) and {vi,a, vj,1} ∈ E(G) for some j ∈ [1, k] \ {i}, since G

is assumed to be consistent.

Indeed, a CAFE(n,G) of a consistent graph G ∈ Gk,2 that is not reduced has

columns which are forced and/or redundant. Consider a graph G ∈ Gk,2 with a vertex

vi,a such that {vi,a, vj,b} ∈ E(G) for all j ∈ [1, k] \ {i} and for all b ∈ [0, 1]. Then

column i of a CAFE(n,G) is forced to take the value 1− a in every row since vi,a is

incompatible with all other factors. We can reduce G by simply removing factor i. In

this case we can focus on finding a CAFE(n,G− {vi,0, vi,1}) and we can always add

back the “missing” column i consisting of the forced values of factor i, later in order

to obtain a CAFE(n,G).

Similarly, if G contains two factors i and j with parallel edges, then in each row

of a CAFE(n,G), the value in column i forces the value in column j and vice versa,

essentially making column j redundant whenever column i is already present. In this

case, we can reduce G by removing factor j and focus on finding a CAFE(n,G −

{vj,0, vj,1}). We could then add back the “missing” column j by looking at column i

and deducing the forced values, thus yielding a CAFE(n,G).

Theorem 4.4.5 (Danziger et. al. [11]) Let G ∈ Gk,2 be consistent and let k′ ≤ k be

the number of factors left after G is reduced. Let T be a k-tuple avoiding G, and let

4.4. Binary CAFEs 87

G1 be the graph obtained by removing all edges incident to the vertices corresponding

to T . Then, CAFEN(G) ≤ k′ + 1 + m ≤ k + 1 + m, where m is the size of an ECC

of G1.

As a consequence of this theorem and the properties given above for bipartite binary

forbidden edges graphs, we get the following result.

Corollary 4.4.6 (Danziger et. al. [11]) Let G ∈ Gk,2 be consistent and bipartite.

Let k′ ≤ k be the number of factors left after G is reduced. Then CAFEN(G) ≤

k′ + 2 ≤ k + 2.

Proof: Since G is bipartite, so is G| by Lemma 4.4.2, so there is a 2-colouring,

{C1, C2}, of G|. In Theorem 4.4.5, we can choose T to be the k-tuple corresponding

to the vertices of one of these colour classes, in which case, G1 will be empty, and

m = θ′(G1) = 1. By Theorem 4.4.5, CAFEN(G) ≤ 1 + k′ +m = k′ + 2 ≤ k + 2.

Corollary 4.4.7 (Danziger et. al. [11]) Let G ∈ Gk,2 be consistent, and let k′ ≤

k be the number of factors left after G is reduced. Suppose the factor-connected

components of the reduced version of G are G1, ..., Gs, with k′i factors in Gi. If each

Gi is bipartite, then

CAFEN(G) ≤ CAN(2, s, 2) + max
1≤i≤s

{k′i} − 1.

Proof: Let i ∈ [1, s]. By Corollary 4.4.6, we can build Ci, a CAFE(k′i + 2, Gi),

since Gi is bipartite. Moreover, Ci contains two disjoint rows corresponding to the 2-

colouring of Gi. Indeed, these two particular rows form a CAFE1(2, Gi). Therefore, in

Theorem 2.5.1, we can take Pi to be an array with these two rows, and we can take Ai

to be the array obtained by removing these two rows from the array Ci, so that ai = k′i.

Then, by Theorem 2.5.1, we have CAFEN(G) ≤ CAN(2, s, 2) + max{k′1, ..., k′s}.

Since without loss of generality the first row of the array M , the CA(m; 2, s, 2),

is a row of all zeros, we see that the construction given here produces a CAFE(n,G)

4.5. Partial Covering Arrays Avoiding Forbidden Edges and Testing Applications 88

with the first row repeated. Removing this unnecessary row, we get CAFEN(G) ≤

CAN(2, s, 2) + max{k′1, ..., k′s} − 1.

4.5 Partial Covering Arrays Avoiding Forbidden

Edges and Testing Applications

Now that we have seen the problems of covering arrays translated into the language of

k-ECCs, we may wish to consider some new generalizations of covering arrays based

on k-ECC problems. Perhaps of interest is the following problem.

Given a testing problem TP(k; (g1, ..., gk)) we may specify a list of forbidden

pairwise interactions to the problem as well as a list of non-forbidden interactions for

which we do not care whether or not we cover those interactions in any test. The

idea for this generalization stems from the so called covering arrays on graphs which

are motivated by the fact that not every pair of factors in a given testing problem

interact (see [29]). Consequently, there is no need to cover every interaction between

two non-interacting or independent factors. Thus we can reduce the number of tests

required by allowing certain interactions to be labeled for optional coverage.

We now define a new structure given the same motivation as above. However,

the interactions for which we deem coverage as optional need not occur between all

values of two given factors. That is, we do not require knowledge that factor i and

factor j do not interact; instead, we simply want a list of pairwise interactions for

which coverage is necessary.

Definition 4.5.1 Let G ∈ G(g1,...,gk), and let I be a subset of the non-forbidden inter-

actions (non-edges) of G, referred to as the necessary interaction set. A partial

covering array avoiding forbidden edges of (G, I), denoted PCAFE(N ;G, I), is

an N × k array A such that

4.5. Partial Covering Arrays Avoiding Forbidden Edges and Testing Applications 89

1. every row of A forms a k-tuple avoiding G;

2. for every interaction I ∈ I there exists a row of A that covers I.

The partial CAFE number, denoted PCAFEN(G, I), is the minimum integer N

such that a PCAFE(N ;G, I) exists, if a partial CAFE of (G, I) exists, or +∞ oth-

erwise.

In other words, a PCAFE(N ;G, I) is equivalent to a partial k-uniform ECC of

(G|, EI) of size N , where EI = {{vi,ai , vj,aj}|{(i, ai), (j, aj)} ∈ I} ⊆ E(G|). We can

also think of a partial CAFE graph as a complete k-partite graph K(g1,....,gk) with its

edge set partitioned into three classes: the edges that must be covered, the forbidden

edges, and the edges for which coverage is optional.

Theorem 4.5.2 Let k be a positive integer and let G ∈ G(g1,...,gk). There exists

a PCAFE(N ;G, I) if and only if there exists a partial k-ECC of (G|, EI) where

EI = {{vi,ai , vj,aj}|{(i, ai), (j, aj)} ∈ I} ⊆ E(G|).

Proof: Let A be a PCAFE(N ;G, I). Then every row Ri = (Ri(1), ..., Ri(k))

corresponds to an independent set, Ci = {v1,Ri(1), ..., vk,Ri(k)}, of G. Since Ci contains

exactly one vertex from each factor, Ci forms a k-clique of G|. Let e = {vi,ai , vj,aj} ∈

EI . Then, there is an interaction I = {(i, ai), (j, aj)} ∈ I and there exists a row of

A, say Rl, such that Rl(i) = ai and Rl(j) = aj. Consequently, the corresponding

k-clique, Cl = {v1,Rl(1), ..., vk,Rl(k)}, covers e. Therefore, C = {C1, ..., CN} is a partial

k-ECC of (G|, EI).

Now, let C = {C1, ..., CN} be a partial k-ECC of (G|, EI). Define an array A,

with rows R1, ..., RN such that Rl(i) = ai whenever vi,ai ∈ Cl. Since each Cl ∈ C

contains exactly one vertex from each factor, it is easy to see that each row Rl of A

forms a k-tuple avoiding G. Let I = {(i, ai), (j, aj)} ∈ I. Then e = {vi,ai , vj,aj} ∈ EI
and there must exist a clique, say Cl ∈ C, that covers e. Consequently, row Rl covers

I. Since I was arbitrary, we see that A is a PCAFE(N ;G, I).

4.5. Partial Covering Arrays Avoiding Forbidden Edges and Testing Applications 90

Corollary 4.5.3 Let G ∈ G(g1,...,gk), let I be the necessary interaction set for G, and

let EI = {{vi,ai , vj,aj}|{(i, ai), (j, aj)} ∈ I} ⊆ E(G|). Then,

1. PCAFEN(G, I) = θ′k(G
|, EI);

2. PCAFEN(G, I) ≤ CAFEN(G);

3. if PCAFEN(G, I) 6= +∞, then PCAFEN(G, I) ≤ |I|.

Proof:

1. Immediate from Theorem 4.5.2.

2. Since θ′k(G
|, EI) ≤ θ′k(G

|) by Proposition 3.4.2, and since θ′k(G
|) = CAFEN(G)

by Corollary 4.3.2, we get PCAFEN(G, I) ≤ CAFEN(G).

3. We have θ′k(G
|, EI) = PCAFEN(G, I) 6= +∞, so θ′k(G

|, EI) ≤ |EI | = |I|.

Hartman and Raskin [16] proposed the need for covering array extension in test-

ing applications. A set of regression tests may already exist for a given testing prob-

lem and we would like to add the minimum number of extra tests needed in order

to achieve pairwise coverage. In this case, we can check all the pairwise interactions

which are already covered by the regression tests, and let I be the set of remaining

pairwise interactions. Although forbidden interactions are not specifically mentioned

in this particular application, we can still use a PCAFE having no forbidden inter-

actions, and with necessary interaction set I as indicated. One other application to

motivate the study of such an object was indicated in [18]. In some software testing

applications, the tester runs tests on a testing problem, say TP(k; (g1, ..., gk)) to cover

all pairwise interactions. After these tests are already run, new values are then added

to certain factors of the problem. Thus we would like to cover the new interactions

added to the problem with as few tests as possible, but coverage of the “old” in-

teractions is optional. In this case, the necessary interaction set is the set of “new”

4.5. Partial Covering Arrays Avoiding Forbidden Edges and Testing Applications 91

G:

v1,0

v1,1

v1,2

v2,0
v2,1

v2,2

v3,0

v3,1

v3,2

v3,3

v4,0

v4,1 v5,0

v5,1

a PCAFE(3; Ĝ, I):

0 0 3 0 0
1 1 3 1 1
0 2 3 0 0

Figure 4.3: The forbidden edges graph G ∈ G(3,3,4,2,2) of the augmented mobile
phone product line testing problem, with the dotted edges corresponding to I, and a
PCAFE(3;G, I)

interactions. The set of forbidden interactions of the augmented testing problem is

simply a superset of the forbidden interactions of the original problem.

Let us illustrate partial CAFEs with the testing problem of the mobile phone

product line given in Table 2.1. Assume that software testers have run the ten

tests of the mobile phone product line testing problem, corresponding to the CAFE

of the graph Ĝ, given in Figure 2.4. After these tests are run, a new value for

factor 3 has been added, say value 3: “4 megapixels” camera. Moreover, the 4

megapixels camera requires a colour display, resulting in a new forbidden interaction

{(1, 2), (3, 3)}. We now have an augmented testing problem, a TP(5, (3, 3, 4, 2, 2)).

Rather than redoing the tests of this problem from scratch, we only care about the

new interactions corresponding to the added value, namely the necessary interaction

set I = {{(i, ai), (3, 3)}|i ∈ [1, 5], i 6= 3, ai ∈ [0, gi − 1]} . The forbidden edges graph

G ∈ G(3,3,4,2,2) corresponding to the augmented testing problem of the mobile phone

product line is shown in Figure 4.3. We have PCAFEN(G, I) ≥ 3 because the three

4.5. Partial Covering Arrays Avoiding Forbidden Edges and Testing Applications 92

dotted edges joining vertices of factor 2 to v3,3 can only be covered by three distinct

rows. Consequently, the PCAFE(3;G, I) given in Figure 4.3 is optimal.

Chapter 5

Computational Complexity of

Covering Array Problems

In this chapter, we look at the complexity of the underlying decision problems related

to covering array structures. In Section 5.1, we consider the decision problems most

closely related to covering array structures and the previously known results on their

complexity. In Sections 5.2 and 5.3, we prove the NP-completeness of g-CAFEN, for

g ≥ 2. In Section 5.4, we prove that the partial CAFE problem is NP-complete. In

Section 5.5, we prove the NP-completeness of the uniform and partial uniform ECC

problems. Section 5.6 gives a review of complexity results related to error-locating

arrays. In Sections 5.7 and 5.8, we show that the decision problem for the language

g-ELAN is NP-complete for g ≥ 2.

5.1 Decision Problems Related to CAFEs and Pre-

vious Results

Since we are mainly concerned with the problem of finding an optimal CAFE(n,G) for

a graph G ∈ G(g1,...,gk), we consider the complexity of the decision problems associated

93

5.1. Decision Problems Related to CAFEs and Previous Results 94

to the following languages defined in [11]:

AVOID = {G ∈ G(g1,...,gk) | there exists a k-tuple avoiding G},

ONE-COVER&AVOID = {G ∈ G(g1,...,gk) | for some n there exists a CAFE1(n,G)},

COVER&AVOID = {G ∈ G(g1,...,gk) | for some n there exists a CAFE(n,G)},

CAFEN = {(G,N) ∈ G(g1,...,gk) × Z | there exists a CAFE(N,G)}.

Furthermore, for each language L defined above, we use the notation g-L to

describe the language where the graph input G is of the particular form G ∈ Gk,g.

For example, 2-AVOID = {G ∈ Gk,2| there exists a k-tuple avoiding G.}

Based on the close relationship between the ECC problem and covering array

problems described in the last chapter, we also explore the complexity of the decision

problem associated to ECCs, given by the language ECCN defined below. We also

consider the language associated to the NCC problem. Recall that we use G to denote

the set of all finite simple graphs.

ECCN = {(G,N) ∈ G× Z | θ′(G) ≤ N}

NCCN = {(G,N) ∈ G× Z | θ(G) ≤ N}

We now look at some results regarding the complexities of these languages. The

following theorem from Danziger et. al. [11] establishes that some of the decision

problems for the binary (i.e. g = 2) versions of the above languages are in the class

P, whereas, others where g ≥ 3 are shown to be NP-complete. We follow the main

steps of their proof, and fill in the details.

Theorem 5.1.1 (Danziger et. al. [11])

1. 2-AVOID ∈ P .

5.1. Decision Problems Related to CAFEs and Previous Results 95

2. g-AVOID is NP-complete for g ≥ 3 and so AVOID is NP-complete.

3. 2-ONE-COVER&AVOID and 2-COVER&AVOID are in P.

4. (g + 1)-ONE-COVER&AVOID and (g + 2)-COVER&AVOID are NP-complete

for g ≥ 3, and so are ONE-COVER&AVOID and COVER&AVOID.

5. g-CAFEN is NP-complete for g ≥ 5, and so CAFEN is NP-complete.

For convenience, we separate the individual results into the next five propositions

for which we present detailed proofs.

Proposition 5.1.2 2-AVOID ∈ P.

Proof: In order to prove that 2-AVOID belongs to the class P, by Lemma 1.5.2

it is enough to show that 2-AVOID ≤P 2-SAT, since 2-SAT ∈ P . Let G ∈ Gk,2 be a

graph that is an instance for 2-AVOID. Associate to each vertex vi,ai ∈ V (G) a literal

li,ai such that li,ai = xi if ai = 0, or else li,ai = ¬xi if ai = 1. Associate to each edge

{vi,ai , vj,aj} ∈ E(G) a clause (¬li,ai ∨ ¬lj,aj). Now let f be the reduction function so

that f(G) = ϕ is the conjunction of these clauses. That is, let

f(G) = ϕ =
∧

{vi,ai ,vj,aj }∈E(G)

(¬li,ai ∨ ¬lj,aj).

Clearly f(G) can be computed in polynomial time with respect to the size of the input

graph G. Furthermore, we claim that G ∈ 2-AVOID if and only if f(G) = ϕ ∈ 2-SAT.

First, let G ∈ 2-AVOID. Then there exists a k-tuple, say T = (a1, a2, ..., ak), that

avoids G, in which case the set of vertices I = {v1,a1 , v2,a2 , ..., vk,ak} is an independent

set of G. Let V be a valuation for ϕ such that V (li,ai) = T if and only if vi,ai ∈ I. Now

suppose {vi,ai , vj,aj} ∈ E(G). Then it is not possible for both vertices vi,ai and vj,aj

to belong to I simultaneously. Assume without loss of generality that vi,ai 6∈ I. Then

V (li,ai) = F by definition of V and consequently we have (¬V (li,ai) ∨ ¬V (lj,aj)) ≡

(T ∨ ¬V (lj,aj)) ≡ T . Since {vi,ai , vj,aj} ∈ E(G) was an arbitrary edge of G, we see

that each clause of ϕ is true under V . Thus, V (ϕ) = T so f(G) = ϕ ∈ 2-SAT.

5.1. Decision Problems Related to CAFEs and Previous Results 96

Now let f(G) = ϕ ∈ 2-SAT. So there exists a valuation V such that V (ϕ) = T .

Let I = {vi,ai|V (li,ai) = T}. Suppose vi,ai and vj,aj both belong to I and furthermore

assume by way of contradiction that e = {vi,ai , vj,aj} ∈ E(G). Then the clause

associated to e would be false under the valuation V , and consequently we would have

V (ϕ) = F , a contradiction. Therefore, every pair of vertices in I are not adjacent in

G. Hence I is an independent set of G and thus (a1, ..., ak) forms a k-tuple avoiding

G. Therefore, G ∈ 2-AVOID.

Proposition 5.1.3 g-AVOID is NP-complete for g ≥ 3 and so AVOID is NP-complete.

Proof: It is easy to see that 3-AVOID ∈ NP. To prove that 3-AVOID is NP-

complete, we show that 3-SAT ≤P 3-AVOID, since 3-SAT is NP-complete [19]. Let

ϕ = (l1,0∨ l1,1∨ l1,2)∧ · · ·∧ (lk,0∨ lk,1∨ lk,2) be a formula that is an instance for 3-SAT

with k clauses with three literals each. Build a k-partite graph f(ϕ) = G with three

vertices labeled vi,0, vi,1 and vi,2 per partite set for 1 ≤ i ≤ k. Let {vi,ai , vj,aj} be

an edge of G if and only if i 6= j and li,ai = ¬lj,aj . If ϕ ∈ 3-SAT then there exists

a valuation, say V , such that V (ϕ) = T . So for each i ∈ [1, k] there is li,ai such

that V (li,ai) = T . Select one vertex vi,ai per part such that V (li,ai) = T to obtain a

collection I = {v1,a1 , ..., vk,ak} of k vertices of G. For i 6= j, if vi,ai and vj,aj both belong

to I then li,ai 6= ¬lj,aj since V (li,ai) = V (lj,aj) = T . Therefore, {vi,ai , vj,aj} 6∈ E(G),

so I is an independent set of G. Consequently, (a1, ..., ak) forms a k-tuple avoiding

G, so f(ϕ) = G ∈ 3-AVOID.

Now suppose f(ϕ) = G ∈ 3-AVOID. Then there exists a set of vertices I =

{v1,a1 , ..., vk,ak} that is an independent set of size k of G. Thus, for every pair of

vertices vi,ai , vj,aj ∈ I we have {vi,ai , vj,aj} 6∈ E(G) which means that li,ai 6= ¬lj,aj .

Then the valuation V such that V (li,ai) = T whenever vi,ai ∈ I satisfies ϕ. Thus

ϕ ∈ 3-SAT.

Proposition 5.1.4 2-ONE-COVER&AVOID and 2-COVER&AVOID are in P.

5.1. Decision Problems Related to CAFEs and Previous Results 97

Proof: First we show that 2-COVER&AVOID is in P. Let G ∈ Gk,2 and let

{vi,ai , vj,aj} be any pair of vertices of G such that {vi,ai , vj,aj} 6∈ E(G) and i 6= j.

Define a new graph G{vi,ai ,vj,aj } to be the graph obtained from G by replacing each

vertex in factors i and j with two copies of vi,ai and vj,aj , respectively, as well as a

copy of their incident edges. Then we claim that G{vi,ai ,vj,aj } ∈ 2-AVOID if and only

if there exists a k-tuple avoiding G that covers {vi,ai , vj,aj}.

Suppose that (a1, ..., ak) is a k-tuple avoiding G that covers {vi,ai , vj,aj}. Then

clearly I = {v1,a1 , ..., vk,ak} is an independent set ofG{vi,ai ,vj,aj } and henceG{vi,ai ,vj,aj } ∈

2-AVOID. Conversely, if G{vi,ai ,vj,aj } ∈ 2-AVOID then there exists a k-tuple (a1, ..., ak)

avoiding G{vi,ai ,vj,aj }. Thus I = {v1,a1 , ..., vk,ak} is an independent set of G{vi,ai ,vj,aj }.

By construction of G{vi,ai ,vj,aj }, the only choice for vertices from factors i and j are vi,ai

and vj,aj respectively. Therefore, I is an independent set of G{vi,ai ,vj,aj } that covers

{vi,ai , vj,aj}. It is easy to see that I is also an independent set of G.

We conclude that if G{vi,ai ,vj,aj } ∈ 2-AVOID for every non-edge {vi,ai , vj,aj} 6∈

E(G), then for every non-edge {vi,ai , vj,aj} 6∈ E(G) there exists a k-tuple avoiding

G that covers {vi,ai , vj,aj}, in which case we have G ∈ 2-COVER&AVOID. If, on

the other hand, G{vi,ai ,vj,aj } 6∈ 2-AVOID for some non-edge {vi,ai , vj,aj} 6∈ E(G),

then there is no k-tuple avoiding G that covers {vi,ai , vj,aj} in which case G 6∈

2-COVER&AVOID. Since 2-AVOID ∈ P we have shown that a polynomial num-

ber of calls (at most |E(G|)| ≤ 2k(k − 1) calls) to a polynomial-time algorithm that

solves 2-AVOID solves 2-COVER&AVOID, so 2-COVER&AVOID ∈ P.

Now, we can similarly show that 2-ONE-COVER&AVOID is in P. LetG ∈ Gk,2 be

an instance for 2-ONE-COVER&AVOID. LetG{vi,ai} be the graph obtained fromG by

replacing both vertices of the ith factor with copies of vi,ai and a copy of the edges inci-

dent with vi,ai in G. In a similar way, we can show that G ∈ 2-ONE-COVER&AVOID

if and only if G{vi,ai} ∈ 2-AVOID for every vertex vi,ai ∈ V (G) such that there exists

vj,aj with i 6= j such that {vi,ai , vj,aj} 6∈ E(G). From this it follows that 2-ONE-

COVER&AVOID ∈ P.

5.1. Decision Problems Related to CAFEs and Previous Results 98

G′: G

v1,0

v1,g−1

vk,0

vk,g−1

v1,g vk,g

vk+1,0

vk+1,g−1

vk+1,g

· · ·

· · ·

· · ·

...
...

...

Figure 5.1: The graph G′ of Proposition 5.1.5

Proposition 5.1.5 (g+1)-ONE-COVER&AVOID and (g+2)-COVER&AVOID are

NP-complete for g ≥ 3, and so are ONE-COVER&AVOID and COVER&AVOID.

Proof: Let g ≥ 3 be a positive integer. It is easy to see that (g + 1)-ONE-

COVER&AVOID belongs to the class NP. To prove that (g+1)-ONE-COVER&AVOID

is NP-complete, we show that g-AVOID ≤P (g + 1)-ONE-COVER&AVOID in the fol-

lowing way. Let G be an instance for g-AVOID. Append to G one new factor indexed

by k + 1 with vertices vk+1,0, vk+1,1, ..., vk+1,g−1. Add a new vertex vi,g per factor

i ∈ [1, k + 1]. Add edges {vk+1,0, vi,g} for 1 ≤ i ≤ k. Refer to the new graph as G′

(see Figure 5.1).

In G′ we can cover vi,ai for 1 ≤ i ≤ k and ai ∈ [0, g] by a (k + 1)-tuple T

where Ti = ai and for l ∈ [1, k + 1] \ {i} we let Ti = g. Similarly we can cover

vk+1,i for 1 ≤ i ≤ g. To cover vk+1,0 we are forced to use vertices of G that form a

k-tuple avoiding G, in order to form a (k + 1)-tuple avoiding G′ that covers vk+1,0.

Thus G′ ∈ (g+1)-ONE-COVER&AVOID if and only if we can find a (k + 1)-tuple T

5.1. Decision Problems Related to CAFEs and Previous Results 99

covering vk+1,0 and avoiding G′ which in turn is equivalent to the first k components

of T avoiding G.

Let g ≥ 4 be a positive integer. We prove that (g + 1)-COVER&AVOID is NP-

complete by showing that g-ONE-COVER&AVOID ≤P (g + 1)-COVER&AVOID.

Let G ∈ Gk,g be an instance for g-ONE-COVER&AVOID. Build G′ to be an instance

for (g + 1)-COVER&AVOID by appending to G one new factor indexed by k + 1

with vertices vk+1,0, vk+1,1, ..., vk+1,g−1. Add a new vertex vi,g to each factor i ∈ [1, k].

Furthermore, add edges joining vk+1,0 to each vi,g for 1 ≤ i ≤ k.

By construction, covering a pair {vi,ai , vj,aj} for 1 ≤ i < j ≤ k + 1 where

(j, aj) 6= (k + 1, 0) while avoiding G′ can be easily done using a (k + 1)-tuple T with

Ti = ai, Tj = aj and Tl = g for l ∈ [1, k + 1] \ {i, j}.

To cover a pair of the form {vi,ai , vk+1,0} it is necessary to find a (k + 1)-tuple T

such that Ti = ai, Tj 6= g for all j ∈ [1, k], and Tk+1 = 0. This is equivalent to finding

a k-tuple avoiding G that covers vertex vi,ai . Therefore, G′ ∈ (g+1)-COVER&AVOID

if and only if G ∈ g-ONE-COVER&AVOID. It is easy to verify that (g + 1)-

COVER&AVOID belongs to the class NP, and since g-ONE-COVER&AVOID is NP-

complete for g ≥ 4, we conclude that (g + 1)-COVER&AVOID is NP-complete for

g ≥ 4.

Proposition 5.1.6 g-CAFEN is NP-complete for g ≥ 5, and so CAFEN is NP-

complete.

Proof: It is easy to see that g-CAFEN belongs to the class NP. Therefore,

to show that g-CAFEN is NP-complete for g ≥ 5 it is sufficient to prove that g-

COVER&AVOID ≤P g-CAFEN. Let G be an instance for g-COVER&AVOID. Then

G ∈ g-COVER&AVOID if and only if there exists a CAFE(n,G) for some positive

integer n. Since by Proposition 2.4.1 we have CAFEN(G) ≤ g2
(
k
2

)
for any graph

G ∈ Gk,g such that CAFEN(G) 6= +∞, we must have G ∈ g-COVER&AVOID if and

only if there exists a CAFE(g2
(
k
2

)
, G) if and only if (G, g2

(
k
2

)
) ∈ g-CAFEN.

5.1. Decision Problems Related to CAFEs and Previous Results 100

The complexity results given in the following section use a reduction from the

decision problem ECCN which Kou, Stockmeyer and Wong [22] prove to be NP-

complete. Their result is given in the following proposition, and is based on a reduc-

tion from the NCC problem. As already shown, an NCC of a given graph is simply

a vertex colouring of its complement, and is known to be NP-complete [19]. In the

proof of the next proposition we show that NCCN polynomially reduces to ECCN,

establishing the NP-completeness of ECCN.

Theorem 5.1.7 (Kou, Stockmeyer, and Wong [22]) ECCN is NP-complete.

Proof: It is easy to see that ECCN belongs to the class NP. We show that

NCCN ≤P ECCN. Let (G,N) be an instance for NCCN. Suppose that G has ε edges

and ν vertices. Label the vertices of G as V (G) = {v1, ..., vν}. Let G′ be the graph

obtained from G by adding ε+1 new vertices, which we label u1, u2, ..., uε+1, and edges

joining each vertex ui to all the vertices of the original graph G, for 1 ≤ i ≤ ε + 1.

Moreover, let N ′ = N(ε+ 1) + ε. Then we claim that (G,N) ∈ NCCN if and only if

(G′, N ′) ∈ ECCN.

First, let (G,N) ∈ NCCN. Then there is an NCC of G, say C = {C1, ..., CN},

that covers all the vertices of G. Then in G′, we can cover the ν edges incident with

vertex ui by the cliques C1 ∪ {ui}, C2 ∪ {ui}, ..., CN ∪ {ui}, for 1 ≤ i ≤ ε + 1. The

edges of G′ having both ends in V (G) can be covered by ε 2-cliques, namely, the ends

of each edge of the original graph G. Therefore, θ′(G′) ≤ N(ε + 1) + ε = N ′ and

hence (G′, N ′) ∈ ECCN.

Next we show that if (G,N) 6∈ NCCN then (G′, N ′) 6∈ ECCN. Suppose (G,N) 6∈

NCCN. Then θ(G) ≥ N + 1. Then for each vertex ui of G′ where 1 ≤ i ≤ ε + 1, we

require enough cliques to cover all the edges incident with ui. Since G′ is constructed

so that each ui is adjacent to all of the vertices in V (G) = {v1, ..., vν}, and so that

ui is not adjacent to any other uj for i 6= j, the only clique of G′ which covers the

5.1. Decision Problems Related to CAFEs and Previous Results 101

edge {ui, vj} must be of the form {ui} ∪Cj where Cj is a clique of the original graph

G containing the vertex vj. Indeed, since ui is adjacent to every vj ∈ V (G) the

fewest number of Cj’s which do the trick is θ(G) ≥ N + 1. Thus we require at least

(ε + 1)(θ(G)) ≥ (ε + 1)(N + 1) cliques in order to cover all the edges of the form

{ui, vj} in G′. We conclude that θ′(G′) ≥ (ε+ 1)(N + 1) = N(ε+ 1) + ε+ 1 ≥ N ′+ 1

and so (G′, N ′) 6∈ ECCN.

Orlin [31] also published another proof of the NP-completeness of the ECCN

decision problem in 1977, which was discovered independently. Moreover, “the proofs

are similar in nature although far from identical” [31]. Orlin’s result addresses the

complexity of determining the R-bicontent of a bipartite graph G, which is equal to

the minimum number of complete bipartite subgraphs of G (with edge repetitions

allowed) whose union includes all of the edges of G, and the R-content of a graph G,

which is equal to its ECC number.

Theorem 5.1.8 (Orlin [31]) The following five problems are all NP-complete.

1. Determine the fewest number of cliques which cover all of the vertices of graph

a G (decision problem: NCCN).

2. Determine the fewest number of complete bipartite subgraphs of a bipartite

graph G which are sufficient to cover a specified subset of edges of G.

3. Determine the R-bicontent of a bipartite graph G.

4. Determine the R-content of a graph G, that is, determine θ′(G) (decision prob-

lem: ECCN).

5. Determine the minimum number of cliques of a graph G that cover a specified

subset of edges E ′ ⊆ E(G). That is, find the partial ECC number of (G,E ′).

5.2. NP-Completeness of 2-CAFEN 102

5.2 NP-Completeness of 2-CAFEN

In contrast to the results by Danziger et. al. [11] that the decision problems re-

lated to the feasibility of CAFEs with binary alphabets, namely 2-AVOID, 2-ONE-

COVER&AVOID, and 2-COVER&AVOID, all belong to the class P, we now show

that the decision problem related to the optimization of CAFEs for g = 2, 2-CAFEN,

is NP-complete. We use the closely related ECC problem, which was shown to be

NP-complete by Kou, Stockmeyer, and Wong [22] (see Theorem 5.1.7), and inde-

pendently by Orlin [31]. Our proof polynomial-time reduces 2-CAFEN from ECCN,

using Construction 1 defined below.

Remark 5.2.1 Throughout this chapter we always assume that the original graph

G is nonempty. That is, we assume that G contains at least one edge. Since an empty

graph, Kν , satisfies θ′(Kν) = 0, we can verify that (Kν , N) ∈ ECCN in polynomial

time, for any positive integer N . It is therefore less trivial to consider nonempty

graphs.

Construction 1 Let G be a simple nonempty graph on ν vertices, and let k ≥ 2 be

the number of non-isolated vertices of G. We construct another simple graph, GUV ,

on 2(k + 2) vertices such that θ′(G) + 2 = CAFEN(GUV).

Step 1. If G contains any isolated vertices, remove them to obtain a new graph Gk on

k non-isolated vertices, which we denote by {v1, v2, ..., vk}. If G contains no

isolated vertices, then ν = k and G = Gk.

Step 2. Take the complement, Gk, of Gk.

Step 3. Add two extra vertices, vk+1 and vk+2, and add edges joining vk+1 to each

vi for 1 ≤ i ≤ k. Moreover, join the vertex vk+2 to all vertices vi for 1 ≤

i ≤ k + 1. Refer to the resulting graph as GV and denote its vertex set as

V = {v1, v2, ..., vk, vk+1, vk+2}.

5.2. NP-Completeness of 2-CAFEN 103

ui

vi

uj

vj NGV
(vj)

NGV
(vi)

Figure 5.2: Across Edge Rule

The across edge {vi, uj} ∈ E(GUV) if and only if NGV (vj) ⊆ NGV (vi). The dotted

lines represent non-edges of GUV and the thick edges represent all the edges incident

to vi and vj, respectively, joining vi and vj to their respective neighbours. Whenever

NGV (vj) ⊆ NGV (vi), the constraints imposed on the point vi are stricter than, or equal

to the constraints imposed on the point vj. Thus, if a k-tuple exists that covers the

point vi (the one value of the ith factor), we can always choose vj for the value of the

jth factor.

Step 4. Construct the graphGUV fromGV by adding the vertex set U = {u1, u2, ..., uk+2}

to GV , and adding edges according to the Across Edge Rule.

For convenience we also use the following definition.

Definition 5.2.2 Any edge joining a vertex in U to a vertex in V , we refer to as an

across edge. Any pair of vertices ui ∈ U and vj ∈ V which are not joined to each

other by an edge we refer to as an across non-edge.

Across Edge Rule: We add the across edge {vi, uj} to GUV if and only if i 6= j and

the neighbourhood of vj in GV is a subset of the neighbourhood of vi in GV . That is,

{vi, uj} ∈ E(GUV) if and only if i 6= j and NGV (vj) ⊆ NGV (vi). See Figure 5.2.

In summary, from an arbitrary simple graph G, Construction 1 gives GUV , having

vertex set V (GUV) = U ∪ V and the edge set E(GUV) comprised of the edges of Gk

as well as the edges joining vk+1 to each vi for 1 ≤ i ≤ k, the edges joining vk+2 to

5.2. NP-Completeness of 2-CAFEN 104

each vi, 1 ≤ i ≤ k + 1, and any across edge added according to the above rule. This

is done via a sequence of graphs

G→ Gk → Gk → GV → GUV

where the notation G → G′ denotes that G′ is constructed from G, by some step of

Construction 1.

We illustrate this process with a simple example.

Example 1 Consider the following graph, G, on ν = 4 vertices.

a b c dG :

In this case k = 3. We remove the isolated vertex d. Then we take the complement

and obtain Gk.

a b cGk:

We then add the vertices v4 and v5 and relabel the vertices a, b, and c to v1, v2, and

v3, respectively. We join the vertex v4 to each of the vertices v1, v2, v3, and we join

the vertex v5 to each of the vertices v1, v2, v3, v4 which results in the graph GV .

v1 v2 v3 v4 v5GV :

We list the neighbourhoods of the vertices in GV :

•NGV (v1) = {v3, v4, v5} •NGV (v2) = {v4, v5}

•NGV (v3) = {v1, v4, v5} •NGV (v4) = {v1, v2, v3, v5}

•NGV (v5) = {v1, v2, v3, v4}

Finally we add the vertex set U = {u1, ..., u5} and add all the required across edges,

which yields the final graph GUV . According to the Across Edge Rule, we add the

following edges.

5.2. NP-Completeness of 2-CAFEN 105

• NGV (v2) ⊆ NGV (v1)⇒ {v1, u2} ∈ E(GUV)

• NGV (v2) ⊆ NGV (v3)⇒ {v3, u2} ∈ E(GUV)

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

GUV :

Now, let us observe a few properties of GUV .

Proposition 5.2.3 Let G be a simple nonempty graph, and let GUV be the graph

obtained from G using Construction 1. Let i ∈ [1, k + 2]. Then,

1. {vi, uk+1} 6∈ E(GUV), and {vi, uk+2} 6∈ E(GUV),

2. {ui, vk+1} 6∈ E(GUV) and {ui, vk+2} 6∈ E(GUV),

3. if i 6∈ {k + 1, k + 2}, then NGV (vi) 6= V \ {vi}.

Proof: If {vi, vj} ∈ E(GUV) then vj ∈ NGV (vi) and vj 6∈ NGV (vj). So, NGV (vi) 6⊆

NGV (vj), which implies {vj, ui} 6∈ E(GUV). Since {vi, vk+1} ∈ E(GUV) for each

i ∈ [1, k + 2] \ {k + 1} and {vi, vk+2} ∈ E(GUV) for each i ∈ [1, k + 1], we obtain 1.

and 2. The fact that Gk contains no isolated vertices implies 3.

The following result gives an equivalent statement for the Across Edge Rule.

Corollary 5.2.4 For two distinct vertices vi, vj ∈ V , {vi, uj} ∈ E(GUV) if and only

if {vi, vj} ∈ E(Gk) and NGk(vi) \ {vj} ⊆ NGk(vj) \ {vi}.

5.2. NP-Completeness of 2-CAFEN 106

Lemma 5.2.5 Let G be a simple graph. Then I = {u1, u2, ..., uk, uk+1, vk+2} is the

only independent set of size k + 2 of GUV that contains both vertices uk+1 and vk+2,

and I ′ = {u1, u2, ..., uk, vk+1, uk+2} is the only independent set of size k + 2 of GUV

that contains the vertices vk+1 and uk+2.

Proof: By construction, {ui, uj} 6∈ E(GUV) for 1 ≤ i < j ≤ k + 2. Hence

{u1, u2, ..., uk, uk+1} is an independent set of GUV . By Proposition 5.2.3, we know

that {vk+2, ui} 6∈ E(GUV) for 1 ≤ i ≤ k + 1. Thus, I = {u1, u2, ..., uk, uk+1, vk+2} is

an independent set of size k + 2. To show that I is the only such independent set,

simply observe that vk+2 is adjacent to all vi for 1 ≤ i ≤ k + 1. The argument for I ′

is the same.

Remark 5.2.6 The graph GUV corresponds to a forbidden edges graph for an in-

stance of the binary CAFE problem having k+ 2 factors with two values each. More

specifically, we have GUV ∈ Gk+2,2, and the vertex ui of GUV represents the zero value

for the ith factor of the CAFE, and the corresponding vertex, vi, represents the one

value for the ith factor. According to the notation used in [11] and in Definition 2.2.1,

the vertex vi of GUV represents the vertex vi,1 and the vertex ui represents vi,0 where

1 ≤ i ≤ k+2. Given an interaction I = {(i, ai), (j, aj)}, we refer to I as a zero-zero,

zero-one, or one-one interaction, if ai = aj = 0, {ai, aj} = {0, 1}, or ai = aj = 1,

respectively. Moreover, if I is not forbidden, that is, if {vi,ai , vj,aj} 6∈ E(GUV), then

we call I a required interaction.

Lemma 5.2.7 Let G be a simple graph and let A be a CAFE(n,GUV). Then each

row of A, Ri, corresponds to an independent set of GUV , namely Ii = {vj|Ri(j) =

1} ∪ {uj|Ri(j) = 0} and |Ii| = k + 2.

Proof: By Remark 5.2.6, the vertex uj is equivalent to the vertex vj,0, and vj is

equivalent to vj,1. If Ri = (Ri(1), ..., Ri(k + 2)) is a row of a CAFE(n,GUV), then by

definition, Ri forms a (k+ 2)-tuple avoiding GUV . By Lemma 2.3.2, Ii = {vj|Ri(j) =

5.2. NP-Completeness of 2-CAFEN 107

1} ∪ {uj|Ri(j) = 0} is an independent set of GUV and |Ii| = k + 2.

Lemma 5.2.8 Let G be a simple graph. A required one-one interaction of the graph

GUV corresponds to an edge of the original graph G.

Proof: Let {(i, 1), (j, 1)} be a required one-one interaction ofGUV . Then {vi, vj} 6∈

E(GUV) and i 6= j. Since vk+1 is adjacent to each vertex in V \ {vk+1}, and similarly,

vk+2 is adjacent to every vertex in V \ {vk+2}, we must have i, j 6∈ {k + 1, k + 2}.

Therefore, the non-edge {vi, vj} corresponds to a non-edge between two vertices in

V \ {vk+1, vk+2}, which in turn, corresponds exactly to a non-edge of the graph Gk.

Consequently, {vi, vj} ∈ E(Gk), and so {(i, 1), (j, 1)} corresponds to an edge of the

original graph G.

We now show that Construction 1 produces GUV , a forbidden edges graph for an

instance of the binary CAFE problem, that is consistent.

Proposition 5.2.9 Let G be a simple graph. Then the graph GUV is consistent.

Proof: By Proposition 2.3.6, there are only two possible forbidden induced sub-

graphs for binary CAFEs. Since GUV is a loopless binary CAFE graph and also has

the property that none of its zero vertices ui are joined by any edge, there are only

three possibilities for an inconsistency to occur.

First, by condition 2. of Proposition 2.3.6, if for some i 6= j we have {vi, uj} ∈

E(GUV) and {vi, vj} ∈ E(GUV). However, this would never occur because the across

edge {vi, uj} would not be added when computing GUV since NGV (vj) 6⊆ NGV (vi).

By condition 1. of Proposition 2.3.6, GUV would not be consistent, if for three

distinct indices i, j, l ∈ [1, k + 2] we have {vi, ul} ∈ E(GUV), {vj, vl} ∈ E(GUV),

and {vi, vj} 6∈ E(GUV). However, since the across edge {vi, ul} is an edge of GUV ,

we know that NGV (vl) ⊆ NGV (vi). This is a contradiction since vj ∈ NGV (vl) but

vj 6∈ NGV (vi). Thus, GUV cannot contain such an inconsistency.

5.2. NP-Completeness of 2-CAFEN 108

By condition 1. of Proposition 2.3.6, we could also have an inconsistency if for

three distinct indices i, j, l ∈ [1, k+ 2] we have {vi, ul} ∈ E(GUV), {vl, uj} ∈ E(GUV),

but {vi, uj} 6∈ E(GUV). By the Across Edge Rule, we have NGV (vl) ⊆ NGV (vi) and

NGV (vj) ⊆ NGV (vl). Therefore, we have NGV (vj) ⊆ NGV (vi), and so {vi, uj} must be

an edge of GUV . Therefore, GUV is consistent.

Now that we know GUV is consistent, it remains to show that CAFEN(GUV) =

θ′(G) + 2. For this purpose we need the following corollary which tells us that it is

always possible to build a row for the CAFE by taking ones for the values of the

factors corresponding to the vertices in a maximal clique of G and zeros for all the

remaining factors.

Proposition 5.2.10 Let C be a clique of G that is maximal with respect to set

inclusion such that |C| > 1. Then the set of vertices I = {vi ∈ V |vi ∈ C} ∪ {ui ∈

U |vi 6∈ C} forms an independent set of size k + 2 of the graph GUV .

Proof: Let C be clique of G that is maximal (with respect to set inclusion) such

that |C| > 1. Since |C| > 1, C must contain the ends of at least one edge of G, thus,

C is a clique of Gk, the graph obtained from G by removing all isolated vertices (see

Step 1. of Construction 1), that is maximal. Therefore, in the complement, Gk, C

is an independent set that is maximal. From Gk, we obtain GV by adding the two

vertices vk+1 and vk+2, which are joined by an edge to every other vertex in V (see

Step 3. of Construction 1). In particular, this means that vk+1 and vk+2 are both

adjacent to each of the vertices in C. Thus, the independent set C of Gk cannot be

extended to include either vk+1 or vk+2 in GV . Thus C is a maximal independent set

of GV . To show that the set of vertices I = {vi ∈ V |vi ∈ C} ∪ {ui ∈ U |vi 6∈ C} is an

independent set of GUV , we need to prove that there are no across edges of the form

{vi, uj} such that vi ∈ C and vj 6∈ C. Such an edge would prevent us from extending

C to include the vertices uj such that vj 6∈ C.

5.2. NP-Completeness of 2-CAFEN 109

Let vi ∈ C and let vj 6∈ C. Since vj 6∈ C and C is maximal there must be

an edge in GV joining vj to at least one vertex in C. Suppose vi is joined by an

edge to vj. Then if {vi, uj} is an across edge of GUV , then GUV would contain an

inconsistency, contradicting Proposition 5.2.9. Suppose that vj is adjacent to some

other vertex vl ∈ C, vl 6= vi. We know that {vi, vl} 6∈ E(GUV) because vi, vl ∈ C and

C is an independent set. Thus, if {vi, uj} is an across edge of GUV we would again

have an inconsistency in GUV , contradicting Proposition 5.2.9. We conclude that for

every vi ∈ C and each vj ∈ V such that vj 6∈ C the graph GUV does not contain the

across edge {vi, uj}. Therefore, we can extend the independent set C to include each

such vertex uj ∈ U whenever vj 6∈ C. It is easy to see that I as defined forms an

independent set of GUV and |I| = k + 2 since |V | = k + 2.

Theorem 5.2.11 Let G be a simple graph and let GUV be the graph obtained from

G by applying Construction 1. Then θ′(G) + 2 = CAFEN(GUV).

Proof: First we show that CAFEN(GUV) ≤ θ′(G) + 2. Suppose for some posi-

tive integer N , G satisfies θ′(G) = N . Let C = {C1, ..., CN} be an optimal clique-

maximal ECC of G. By Proposition 5.2.10, for 1 ≤ i ≤ N , we can build a row,

Ri = (Ri(1), Ri(2), ..., Ri(k + 2)), corresponding to each clique Ci ∈ C, by taking

Ri(j) = 1 whenever vj ∈ Ci and Ri(j) = 0 whenever vj 6∈ Ci.

Since GUV is constructed so that vk+1 and vk+2 are both joined by an edge to

every other vertex in V , we see that covering all interactions of the form {vi, vj}

where i, j ∈ [1, k] is sufficient to cover all the required one-one interactions of GUV .

Since the required one-one interactions of GUV correspond exactly to the edges of the

original graph G, we see that the N rows, R1, ..., RN do indeed cover the required

one-one interactions of GUV .

Note that every row Ri corresponding to the clique Ci ∈ C must also cover the

interaction {uk+1, uk+2} since vk+1 6∈ Ci and vk+2 6∈ Ci for each Ci ∈ C.

5.2. NP-Completeness of 2-CAFEN 110

(a)

vi vj

ui uj

(b)

vi vj

ui uj

vl

ul

Figure 5.3: Theorem 5.2.11: Case 1: {vi, vj} 6∈ E(GUV)

Now, we build another row, RN+1, corresponding to the independent set IN+1 =

{u1, ..., uk+1, vk+2}, possible by Lemma 5.2.5. The row RN+1 is sufficient to cover all

the required zero-zero interactions between the vertices u1, ..., uk+1, as well as all the

required interactions of the form {ui, vk+2} where 1 ≤ i ≤ k + 1.

We also build the row RN+2 corresponding to the independent set IN+2 =

{u1, ..., uk, vk+1, uk+2}, possible by Lemma 5.2.5. The row RN+2 is sufficient to cover

all the required zero-zero interactions of the form {ui, uk+2}, as well as all the required

interactions of the form {ui, vk+1} where 1 ≤ i ≤ k or i = k + 2.

Up to this point we have N + 2 rows sufficient to cover all required zero-zero

interactions and all required one-one interactions of GUV . Therefore, the only concern

left is that some required zero-one interaction has been missed. That is, some of the

across non-edges of the form {vi, uj} such that 1 ≤ i ≤ k and 1 ≤ j ≤ k+ 2 might be

left uncovered at this point. We claim that the rows R1, R2, ..., RN , RN+1, RN+2 are

sufficient to cover all the across non-edges of GUV . Let vi ∈ V and uj ∈ U be two

vertices that are not joined to each other by an edge in GUV . We have two possible

cases.

Case 1: {vi, vj} 6∈ E(GUV) (see Figure 5.3 (a)). By the Across Edge Rule, we know that

NGV (vj) 6⊆ NGV (vi), otherwise {vi, uj} would be an edge of GUV . Hence, there

exists a vertex vl ∈ NGV (vj) such that vl 6∈ NGV (vi) (see Figure 5.3 (b)). This

means that {vi, vl} is a non-edge corresponding to a required one-one interaction

5.2. NP-Completeness of 2-CAFEN 111

(a)

vi vj

ui uj

vi vj

ui uj

vl

ul

(b)

Figure 5.4: Theorem 5.2.11: Case 2: {vi, vj} ∈ E(GUV)

and therefore was already covered by some row Rp, p ∈ [1, N] (the dotted edges

in Figure 5.3 (b)). The row Rp must also cover {vi, uj}.

Case 2: {vi, vj} ∈ E(GUV) (see Figure 5.4 (a)). If i = k + 1, we are done since row

RN+2 covers all required interactions of the form {vk+1, uj} where 1 ≤ j ≤ k

or j = k + 2. Similarly, if i = k + 2 we are done since the row RN+1 covers all

required interactions of the form {vk+2, uj} where 1 ≤ j ≤ k + 1.

If 1 ≤ i ≤ k then by Proposition 5.2.3 we know that NGV (vi) 6= V \ {vi}. So

there is a vertex vl ∈ V such that vl 6∈ NGV (vi). Thus {vi, vl} 6∈ E(GUV) is a

required one-one interaction and its coverage by one of the rows Rp, p ∈ [1, N]

forces the across non-edge {vi, uj} to be covered (see Figure 5.4 (b)).

In summary, in both cases we see that the N + 2 rows Ri, 1 ≤ i ≤ N + 2 cover all

the across non-edges of the graph GUV as well as all the non-edges between vertices

in V , and the non-edge {uk+1, uk+2}. The single row RN+1 covers required zero-zero

interactions of the form {ui, uk+1} where 1 ≤ i ≤ k and is the only row that covers

the required interaction {vk+2, uk+1}. The single row RN+2 covers required zero-zero

interactions of the form {ui, uk+2} where 1 ≤ i ≤ k and is the only row that covers the

required interaction {vk+1, uk+2}. Together these N +2 rows are sufficient to produce

a CAFE(N + 2, GUV). Hence, we have CAFEN(GUV) ≤ N + 2 whenever θ′(G) = N .

5.2. NP-Completeness of 2-CAFEN 112

Next we show that θ′(G) + 2 ≤ CAFEN(GUV). Suppose we have an optimal

CAFE(N,GUV) with N rows. By Lemma 5.2.5, the only row which can cover

the interaction {uk+1, vk+2} is the one corresponding to the independent set I1 =

{u1, ..., uk+1, vk+2}. Call this row R1. Furthermore, the only row which can cover

the interaction {vk+1, uk+2} is the one corresponding to the independent set I2 =

{u1, ..., uk, vk+1, uk+2}. Call this row R2. Since neither R1 nor R2 cover any one-one

interactions, we observe that the remaining N−2 rows of the optimal CAFE(n,GUV)

must be sufficient to cover all the one-one interactions of GUV . Call these remaining

N − 2 rows R3, ..., RN , and name the corresponding independent sets of GUV of size

k+2, I3, ..., IN , respectively. Then for 3 ≤ i ≤ N , we have an independent set Ci ⊆ Ii

where Ci = {vj|vj ∈ Ii and j ∈ [1, k]}. Thus, each Ci is an independent set of GUV

containing only vertices from the set {v1, ..., vk}. In other words, each Ci corresponds

to a clique of the original graph G, and C3, ..., CN cover all the edges of G. Therefore,

N − 2 ≥ θ′(G). Equivalently, θ′(G) + 2 ≤ CAFEN(GUV).

Corollary 5.2.12 2-CAFEN is NP-complete.

Proof: Let N be a positive integer and let G be a simple graph. By Theorem

5.2.11, we have (G,N) ∈ ECCN if and only if (GUV , N + 2) ∈ 2-CAFEN. Since it is

easy to see that 2-CAFEN ∈ NP, and ECCN is NP-complete, we need only observe

that GUV can be computed in polynomial time with respect to the size of the input

graph G. Removing any isolated vertices takes time O(ν). Adding the vertices vk+1

and vk+2 and joining vk+1 and vk+2 to each other vertex in V takes time O(k). It

takes time O(k) to add the vertex set U . For each of the k vertices vi ∈ V , it takes

time O(k2) to find NGV (vi). Then, there are O(k2) pairs of vertices in V for which

we must compare their neighbourhoods, taking time O(k2) each. Since k ≤ ν, the

overall time required to compute GUV is O(ν4). Therefore, ECCN ≤P 2-CAFEN, so

2-CAFEN is NP-complete.

5.2. NP-Completeness of 2-CAFEN 113

Given the intractability of 2-CAFEN, the next step is to look for decent approx-

imation algorithms. For example, given a graph G ∈ Gk,2, is there a polynomial-time

algorithm A such that the output of A, denoted by A(G), is guaranteed to satisfy

A(G) ≤ c · CAFEN(G) for a constant c ? Unfortunately, the answer is no. We use

the following result given by Lund and Yannakakis [27], to relate the approximability

of the ECC number to that of the binary CAFE number.

Theorem 5.2.13 (Lund and Yannakakis [27]) There exists a δ > 0 such that there

does not exist a polynomial-time approximation algorithm A that satisfies A(G) ≤

νδθ′(G) for all simple graphs G on ν vertices, unless P = NP.

Proposition 5.2.14 There exists a δ′ > 0 such that there does not exist a polynomial-

time approximation algorithm A′ that satisfies A′(G) ≤ kδ
′
CAFEN(G) for all G ∈ Gk,2

and for all k ≥ 4, unless P = NP.

Proof: Let δ > 0 be the constant from Theorem 5.2.13, let δ′ = δ
3
> 0 and

suppose there exists a polynomial-time approximation algorithm A′ such that A′(G) ≤

kδ
′
CAFEN(G) for all G ∈ Gk,2. Let G be a graph for which we want to approximate

θ′(G). We can assume without loss of generality that ν = |V (G)| ≥ max{2, 2 3
δ } and

θ′(G) ≥ 2, as the other cases can be dealt with in polynomial time. Then, we can

apply A′ to the graph GUV , obtained from G by Construction 1, and we obtain a

5.3. NP-Completeness of g-CAFEN 114

polynomial-time approximation algorithm A defined by

A(G) = A′(GUV)

≤ kδ
′
CAFEN(GUV) by assumption;

≤ kδ
′
(θ′(G) + 2) by Theorem 5.2.11;

≤ kδ
′
(2θ′(G)) since θ′(G) ≥ 2;

≤ 2(ν + 2)δ
′
θ′(G) since k ≤ ν + 2;

≤ 2(ν2)δ
′
θ′(G) since ν + 2 ≤ ν2 for all ν ≥ 2;

≤ (ν
δ
3)(ν2δ

′
)θ′(G) since ν ≥ 2

3
δ by assumption;

= (ν2δ
′+ δ

3)θ′(G)

= νδθ′(G) since δ′ =
δ

3
.

By Theorem 5.2.13, we must have P = NP.

5.3 NP-Completeness of g-CAFEN

In, Danziger et. al. [11] the NP-completeness of the decision problems for 2-CAFEN,

3-CAFEN, and 4-CAFEN are left unresolved (see Theorem 5.1.1). In the previous

section, we showed 2-CAFEN is NP-complete. The following result proves the NP-

completeness of g-CAFEN, for g ≥ 3. Recall that the decision problem g-CAFEN is

defined

g-CAFEN := {(G,N) ∈ Gk,g × Z | CAFEN(G) ≤ N}.

Proposition 5.3.1 For g ≥ 2 we have g-CAFEN ≤P (g + 1)-CAFEN.

Proof: Let G ∈ Gk,g be a graph that is an instance for g-CAFEN. Without loss of

generality, assume the vertices of G are labeled as vi,a where i ∈ [1, k] and a ∈ [0, g−1].

5.4. NP-Completeness of PARTIAL-CAFEN 115

Construct a new graph G′ from G as follows. Add a new vertex, vi,g, to each

factor i ∈ [1, k]. Add edges of the form {vi,g, vj,a} for all i 6= j, i, j ∈ [1, k] and for all

a ∈ [0, g− 1]. Moreover, add edges of the form {vi,g, vj,g} for all i 6= j, i, j ∈ [1, k]. So

G′ ∈ Gk,g+1.

Clearly the non-forbidden interactions of G′ correspond exactly to the non-

forbidden interactions of G, thus CAFEN(G) = CAFEN(G′). Therefore (G,N) ∈

g-CAFEN if and only if (G′, N) ∈ (g + 1)-CAFEN. It is easy to see that G′ can be

computed from G in polynomial time with respect to the size of the graph G, and

thus, g-CAFEN ≤P (g + 1)-CAFEN.

Corollary 5.3.2 For g ≥ 2 the decision problem associated with the language g-

CAFEN is NP-complete.

Proof: It is easy to see that for any g ≥ 2, g-CAFEN belongs to the class NP.

We prove the claim by induction on g, using Corollary 5.2.12 for the base case g = 2,

and Proposition 5.3.1 for the induction step.

5.4 NP-Completeness of PARTIAL-CAFEN

Using the NP-completeness of CAFEN and g-CAFEN for g ≥ 2, established in the

previous sections, we now address the complexity of the following language, which

addresses the existence of a partial CAFE of a specified size. Recall that we use

the notation EI to denote the subset of edges of G| corresponding to the necessary

interaction set I. That is, EI = {{vi,ai , vj,aj}|{(i, ai), (j, aj)} ∈ I} ⊆ E(G|).

PARTIAL-CAFEN = {(G,N,EI) ∈ G(g1,...,gk)×Z×P(E(G|))| PCAFEN(G, I) ≤ N}

We also define the language g-PARTIAL-CAFEN to be the subset of PARTIAL-

CAFEN, where the graph input G belongs to the family Gk,g.

5.5. NP-Completeness of UNIFORM-ECCN 116

Proposition 5.4.1 g-PARTIAL-CAFEN is NP-complete for g ≥ 2, and so is PARTIAL-

CAFEN.

Proof: Let g ≥ 2. We can easily verify that PARTIAL-CAFEN and g-PARTIAL-

CAFEN belong to the class NP. Moreover, g-CAFEN ≤P g-PARTIAL-CAFEN since

(G,N) ∈ g-CAFEN if and only if (G,N,E(G|)) ∈ g-PARTIAL-CAFEN. Since, g-

CAFEN is NP-complete we have that g-PARTIAL-CAFEN is also NP-complete.

5.5 NP-Completeness of UNIFORM-ECCN

We now look at the language that decides if a given graph admits a k-uniform ECC,

defined below:

UNIFORM-ECCN = {(G, k,N) ∈ G× Z× Z | θ′k(G) ≤ N}.

Proposition 5.5.1 UNIFORM-ECCN is NP-complete.

Proof: Let (G,N) be a graph-integer pair that is an instance for 2-CAFEN. So

G ∈ Gk,2 for some positive integer k ≥ 2. If (G,N) ∈ 2-CAFEN then CAFEN(G) =

θ′k(G
|) ≤ N . Consequently, we have (G|, k,N) ∈ UNIFORM-ECCN. Otherwise, if

(G,N) 6∈ 2-CAFEN then CAFEN(G) > N hence θ′k(G) > N and so (G|, k,N) 6∈

UNIFORM-ECCN. Thus 2-CAFEN ≤P UNIFORM-ECCN. It is easy to verify that

(G|, k,N) can be computed from (G,N) in polynomial time with respect to the size of

the input graph G. Moreover, we have UNIFORM-ECCN ∈ NP, hence UNIFORM-

ECCN is NP-complete.

We may also wish to consider the following language that decides if a given subset

of edges E ′ of a graph G admits a partial k-uniform ECC of (G,E ′).

PARTIAL-UNIFORM-ECCN = {(G, k,N,E ′) ∈ G×Z×Z×P(E(G))|θ′k(G,E ′) ≤ N}

5.6. Previous Results on the Complexity of ELAs 117

Proposition 5.5.2 The decision problem for the language PARTIAL-UNIFORM-

ECCN is NP-complete.

Proof: It is easy to check that PARTIAL-UNIFORM-ECCN belongs to the

class NP. Let (G, k,N) be an instance for UNIFORM-ECCN. Clearly (G, k,N) ∈

UNIFORM-ECCN if and only if (G, k,N,E(G)) ∈ PARTIAL-UNIFORM-ECCN.

Therefore UNIFORM-ECCN ≤P PARTIAL-UNIFORM-ECCN.

5.6 Previous Results on the Complexity of ELAs

We now address the complexity of a related problem, namely the determination of

the minimum size of an ELA. Martinez et. al. [28] address the complexity of the

existence of an ELA, given its associated graph. This is not the same as the testing

problem for which an ELA is to be built from an unknown graph, but rather, we look

at a graph and would like to know if it has the properties required for an ELA to exist.

The next theorem from [28] relates the languages AVOID and COVER&AVOID to

the language LOCATE, defined below.

LOCATE = {G ∈ G(g1,...,gk) | G is locatable (an ELA(n,G) exists for some n ∈ Z) }

Recall that G is locatable if for every pair of vertices {vi,ai , vj,aj} such that i 6= j,

if e = {vi,ai , vj,aj} ∈ E(G) then there exists a k-tuple T avoiding G \ {e} such that

Ti = ai and Tj = aj. Otherwise, if {vi,ai , vj,aj} 6∈ E(G) then there exists a k-tuple

avoiding G such that Ti = ai and Tj = aj.

Theorem 5.6.1 (Martinez et. al. [28])

1. 2-LOCATE ∈ P.

2. g-LOCATE is NP-complete for g ≥ 5, and so LOCATE is NP-complete.

5.6. Previous Results on the Complexity of ELAs 118

For convenience in presenting its proof, we break up this theorem into two sep-

arate propositions.

Proposition 5.6.2 2-LOCATE ∈ P.

Proof: By Theorem 5.1.1, we have 2-COVER&AVOID ∈ P, so there is a polynomial-

time algorithm A that decides 2-COVER&AVOID. Define an algorithm A′ having

instances for 2-LOCATE as input, and values from {0, 1} as output as follows.

A′(G) =

 1, if A(G) = 1 and for every edge e ∈ E(G) we have A(G \ {e}) = 1;

0, otherwise.

It is clear that G ∈ 2-LOCATE if and only if G ∈ 2-COVER&AVOID and for every

edge e = {vi,ai , vj,aj} ∈ E(G) there exists a k-tuple T avoidingG\{e} such that Ti = ai

and Tj = aj. In other words, G ∈ 2-LOCATE if and only if G ∈ 2-COVER&AVOID

and for every edge e ∈ E(G) the graph G \ {e} is in 2-COVER&AVOID. Thus, A′

decides 2-LOCATE. Since A′ runs in polynomial time, we have 2-LOCATE ∈ P.

Proposition 5.6.3 g-LOCATE is NP-complete for g ≥ 5, and so LOCATE is NP-

complete.

Proof: First, we show that g-AVOID ≤P (g + 2)-LOCATE. Given G ∈ Gk,g,

an instance for g-AVOID, we build G′, an instance for (g + 2)-LOCATE as follows.

Append to G two new factors indexed by k+1 and k+2 with vertices vk+1,0, ..., vk+1,g−1

and vk+2,0, ..., vk+2,g−1, respectively. Add two new vertices vi,g and vi,g+1 to each factor

i ∈ [1, k + 2]. Add edges joining vertex vk+1,0 to each vi,g for factors 1 ≤ i ≤ k and

similarly add edges joining vertex vk+2,0 to vi,g+1 for factors 1 ≤ i ≤ k. Denote the

graph obtained as G′.

We claim that G ∈ g-AVOID if and only if G′ ∈ (g + 2)-LOCATE. Let

i, j ∈ [1, k + 2] be two distinct indices and let (ai, aj) ∈ [0, g + 1] × [0, g + 1]. If

{(i, ai), (j, aj)} 6= {(k + 1, 0), (k + 2, 0)} then define a (k + 2)-tuple T with Ti = ai

5.6. Previous Results on the Complexity of ELAs 119

and Tj = aj, and for all l ∈ [1, k+ 2] \ {i, j} take Tl = g if (k+ 1, 0) 6∈ {(i, ai), (j, aj)};

otherwise, if (k+ 1, 0) ∈ {(i, ai), (j, aj)} then take Tl = g+ 1. Then T avoids G′ \ {e}

if e = {vi,ai , vj,aj} ∈ E(G′) and T avoids G′ if {vi,ai , vj,aj} 6∈ E(G′). In this way, we

can cover every edge, or non-edge of G′ except the non-edge between vertices vk+1,0

and vk+2,0.

In the case where {(i, ai), (j, aj)} = {(k+ 1, 0), (k+ 2, 0)}, there exists a (k+ 2)-

tuple T avoiding G′ and such that Tk+1 = 0 = Tk+2 if and only if there exists a

k-tuple avoiding G, since T cannot use any vertex vi,g or vi,g+1 for 1 ≤ i ≤ k. There-

fore G′ ∈ (g + 2)-LOCATE if and only if G ∈ g-AVOID. Since G′ can be computed

from G in polynomial time, we have g-AVOID ≤P (g + 2)-LOCATE. By Theorem

5.1.1, since g-AVOID is NP-complete for g ≥ 3 we have that g-LOCATE is NP-

complete for g ≥ 5. This also implies that LOCATE is NP-complete.

Given a graph G and a positive integer N , we now look at the language ELAN

which addresses the existence of an ELA(n; 2, G) with n ≤ N .

ELAN = {(G,N) ∈ G(g1,...,gk) × Z | ELAN(G) ≤ N}

Let g-ELAN denote the subset of ELAN where G ∈ Gk,g and the corresponding

ELA has uniform alphabet size g.

Now, observe that if a graph G ∈ G(g1,...,gk) is locatable then

ELAN(G) ≤
∑

1≤i<j≤k

gigj

since this is the total number of pairs of vertices from any two distinct factors of

G, and an ELA(n; 2, G) requires at most one row per non-edge between two distinct

factors as well as one row per edge joining vertices from two distinct factors. From

this upper bound we get the following result.

Proposition 5.6.4 g-ELAN is NP-complete for g ≥ 5, so ELAN is NP-complete.

5.7. NP-Completeness of 2-ELAN 120

Proof: Let g ≥ 2 and let G ∈ Gk,g. Then G ∈ g-LOCATE if and only if

there exists an ELA(n; 2, G) for some positive integer n, if and only if ELAN(G) ≤

Σ1≤i<j≤k(gigj) =
(
k
2

)
g2, if and only if (G,

(
k
2

)
g2) ∈ ELAN. Clearly (G,

(
k
2

)
g2) can be

computed from G in polynomial time with respect to the size of G. By Theorem 5.6.1,

we know that g-LOCATE is NP-complete for g ≥ 5. Thus, g-ELAN is NP-complete

for g ≥ 5. This trivially implies that ELAN is NP-complete.

5.7 NP-Completeness of 2-ELAN

We now give a proof for the NP-completeness of the binary ELA decision prob-

lem, 2-ELAN, by reducing from ECCN using a similar construction as for the 2-

CAFEN problem. The proof is based on Theorem 2.6.2 which relates ELAN(G) to

CAFEN(G) for locatable graphs G ∈ G(g1,...,gk). Although one might think to use

the NP-completeness of 2-CAFEN and Theorem 2.6.2 in order to obtain the NP-

completeness of 2-ELAN, this does not work as there are graphs in G(g1,...,gk) that are

consistent but which are not locatable. Instead, in Construction 2 we reduce from

ECCN and create locatable instances for 2-ELAN.

Construction 2 Let G be a simple graph on ν vertices and let n be the number of

non-isolated vertices of G. We obtain from G another graph (HG)UV on 2(2n + 2)

vertices as follows.

Step 1. Remove all isolated vertices of G to obtain a new graph Gn on n vertices.

Throughout this section, n denotes the number of non-isolated vertices in G.

Denote the vertices of Gn as V (Gn) = {v1, v2, ..., vn}.

Step 2. Add a new set of vertices V ′ = {vn+1, vn+2, ..., v2n} and join by an edge each

vi to the corresponding vertex vn+i ∈ V ′ for 1 ≤ i ≤ n. In addition, form an

5.7. NP-Completeness of 2-ELAN 121

n-clique between all the vertices of V ′ by adding the edges {vn+i, vn+j} to the

graph for 1 ≤ i < j ≤ n. Denote this graph by HG.

Step 3. Apply Construction 1 to the graph HG.

In summary, we obtain a sequence of graphs

G→ Gn → HG → (HG)k → (HG)k → (HG)V → (HG)UV

where G→ G′ denotes that G′ was obtained from G by some step of Construction 2.

Remark 5.7.1 Since HG contains 2n non-isolated vertices by construction, when

applying Construction 1, we have HG = (HG)k, and in this case k = 2n. Moreover,

the vertices of HG are already labeled as v1, ..., v2n, so without loss of generality, we

assume that in Step 3. of Construction 2, when we obtain the graph (HG)UV from

HG, the vertices v1, ..., v2n retain their original labeling.

Let us illustrate Construction 2 with a concrete example.

Example 2 Consider the following graph G.

G: a b c

We remove the isolated vertex c and relabel the vertices a and b to v1 and v2, respec-

tively, to obtain the graph Gn. In this case, the number of non-isolated vertices of G

is n = 2.

Gn: v1 v2

Next, we obtain the graph HG from Gn by adding vertices v3 and v4 as well as the

edges {v1, v3}, {v2, v4}, and an edge to form the 2-clique {v3, v4}.

HG: v1 v2︸ ︷︷ ︸
V (Gn)

︸ ︷︷ ︸
V ′

v3 v4

5.7. NP-Completeness of 2-ELAN 122

Since HG contains no isolated vertices by construction, we have (HG)k = (HG) and

k = 2n. We then take the complement, to obtain (HG)k = HG.

HG: v1 v2 v3 v4

We obtain (HG)V by adding vertices v5 and v6, as well as the edges joining v5 to each

vi for 1 ≤ i ≤ 4, and the edges joining v6 to each vi for 1 ≤ i ≤ 5.

(HG)V : v1 v2 v3 v4 v5 v6

Lastly, we obtain (HG)UV by adding the vertex set U = {u1, u2, u3, u4, u5, u6} and

following the Across Edge Rule.

(HG)UV :

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6

The following proposition gives the relationship between the ECC number of a graph

G and the ECC number of the graph HG, obtained from G by Construction 2.

Proposition 5.7.2 For any simple graph G, the graph HG obtained in Step 2. of

Construction 2 satisfies: θ′(HG) = θ′(G)+n+1, where n is the number of non-isolated

vertices in G.

Proof: Suppose for some positive integer N we have θ′(HG) = N . Take an optimal

clique-maximal ECC of HG, say C = {C1, ..., CN}. Let Cj ∈ C be a clique that covers

the edge {vi, vn+i} for some index i ∈ [1, n]. Since by construction, vi is not adjacent

to any other vertex in V ′ aside from vn+i, the clique Cj cannot contain any vertex of

V ′ other than vn+i. Since by construction, the vertex vn+i is not adjacent to any other

vertex in V (Gn) aside from vi, the clique Cj cannot contain any vertex of V (Gn) other

5.7. NP-Completeness of 2-ELAN 123

than vi. Therefore, any clique that covers the edge {vi, vn+i} is a 2-clique containing

only the two ends vi and vn+i. Since there are n edges of this form, we must have n

cliques of C which each cover only one such edge.

Now, let Cy ∈ C be a clique that covers the edge {vn+i, vn+j} for two distinct

indices i, j ∈ [1, n]. We assume Cy is maximal with respect to set inclusion, thus Cy

must include as many vertices as possible. Since by construction, the vertex vn+i is

not adjacent to any vertex in V (Gn) aside from vi, the clique Cy cannot contain any

vertex of V (Gn) except possibly vi. However, vn+j is not adjacent to vi, so there is no

vertex in V (Gn) that belongs to Cy. Since the vertices of V ′ are all adjacent to one

another, Cy must include all such vertices. Thus, the clique Cy that covers any edge

of the form {vn+i, vn+j} for two distinct indices i, j ∈ [1, n] must by its maximality

cover the entire clique induced by the vertices of V ′.

The remaining edges of HG correspond exactly to the edges of G, and since the

cliques above only cover edges with at most one end in V (Gn), we conclude that

θ′(HG)− (n+ 1) = θ′(G).

Now, we have only to prove that the graph (HG)UV is locatable. It is sufficient

to show that (HG)UV has no across edges. For this purpose, we show the following

result.

Proposition 5.7.3 Let vi and vj be two distinct vertices of the graph HG. Then

{vi, vj} ∈ E(HG) implies NHG(vi) \ {vj} 6⊆ NHG(vj) \ {vi}.

Proof: Let vi and vj be two distinct vertices of the graph HG, and let {vi, vj} ∈

E(HG). Then there are four cases to consider.

Case 1: 1 ≤ i, j ≤ n

By the construction of HG, for the vertices vi and vj we must have the corre-

sponding vertices vn+i and vn+j in V ′. Thus we have {vi, vn+i} ∈ E(HG) and

5.7. NP-Completeness of 2-ELAN 124

{vj, vn+j} ∈ E(HG). Moreover, {vi, vn+j} 6∈ E(HG) and {vj, vn+i} 6∈ E(HG).

Thus vn+i ∈ NHG(vi)\{vj} but vn+i 6∈ NHG(vj)\{vi}. ThereforeNHG(vi)\{vj} 6⊆

NHG(vj) \ {vi}.

Case 2: 1 ≤ i ≤ n and j = n+ i

Since the graph HG is obtained from the graph Gn on the n non-isolated vertices

of the original graph G, we know that the vertex vi has at least one neighbour,

say vl such that 1 ≤ l ≤ n. Then vj = vn+i corresponds to the vertex in V ′

associated to vi and we have vl ∈ NHG(vi) \ {vn+i} but vl 6∈ NHG(vn+i) \ {vi}.

Therefore NHG(vi) \ {vj} 6⊆ NHG(vj) \ {vi}.

Case 3: 1 ≤ j ≤ n and i = n+ j

Since the graph HG is obtained from the graph Gn, we know that the vertex vj

has at least one neighbour, say vl such that 1 ≤ l ≤ n. By construction, vl has

a corresponding vertex vn+l ∈ V ′ and vn+l is joined by an edge to each vertex

in V ′. In particular, vi = vn+j corresponds to the vertex in V ′ associated to vj

and we have vn+l ∈ NHG(vn+j) \ {vj} but vn+l 6∈ NHG(vj) \ {vn+j}. Therefore

NHG(vi) \ {vj} 6⊆ NHG(vj) \ {vi}.

Case 4: n+ 1 ≤ i, j ≤ 2n

In this case, the vertices vi and vj both belong to V ′, and thus correspond to

two of the vertices of V (Gn), say vi = vn+l for some l such that 1 ≤ l ≤ n, and

similarly vj = vn+m for some m such that 1 ≤ m ≤ n. Then vl ∈ NHG(vn+l) \

{vm+l}, but vl 6∈ NHG(vn+m)\{vn+l}. Therefore, NHG(vi)\{vj} 6⊆ NHG(vj)\{vi}.

Indeed, the motivation for the construction of HG lies in the result of Proposition

5.7.3. In the following corollary, we see that the construction of HG forces no across

edges to be added to the graph (HG)UV when following the Across Edge Rule. As a

5.7. NP-Completeness of 2-ELAN 125

result, (HG)UV has safe values for each of its factors, which in turn, means that it is

locatable.

Corollary 5.7.4 Let G be any simple graph. Then the graph (HG)UV has no across

edges.

Proof: By Corollary 5.2.4, we know that for two distinct vertices vi, vj ∈ V , the

across edge {vi, uj} ∈ E((HG)UV) if and only if {vi, vj} ∈ E((HG)k) and N(HG)k(vi) \

{vj} ⊆ N(HG)k(vj) \ {vi}. Since HG has no isolated vertices by construction, we have

HG = (HG)k in this case. By Proposition 5.7.3, we know {vi, vj} ∈ E(HG) implies

NHG(vi) \ {vj} 6⊆ NHG(vj) \ {vi}, which means {vi, uj} 6∈ E((HG)UV). Since vi, vj are

arbitrary, we see that (HG)UV contains no across edges.

Corollary 5.7.5 The graph (HG)UV is locatable.

Proof: Since (HG)UV has the property that it is loopless and that none of its

zero vertices are joined to one another, and since by Corollary 5.7.4, we know that

(HG)UV has no across edges, we see that the zero vertices of (HG)UV are isolated.

Thus (HG)UV has safe values 0, ..., 0. By Proposition 2.6.4, (HG)UV is locatable.

Given that (HG)UV is locatable, we now get the following result.

Proposition 5.7.6 Let G be a simple graph, and let n be the number of non-isolated

vertices of G. Then the graph (HG)UV , obtained by Construction 2, satisfies

ELAN((HG)UV) = θ′(G)− |E(G)|+ 3n2

2
+

7n

2
+ 4.

Proof:

ELAN((HG)UV) = CAFEN((HG)UV) + |E((HG)UV)|, by Theorem 2.6.2;

= θ′(HG) + 2 + |E((HG)UV)|, by Theorem 5.2.11;

= θ′(G) + n+ 1 + 2 + |E((HG)UV)|, by Proposition 5.7.2.

5.8. NP-Completeness of g-ELAN for g ≥ 3 126

It is easy to show that

|E((HG)UV)| = 3n2

2
+

5n

2
+ 1− |E(G)|.

Therefore, ELAN((HG)UV) = θ′(G)− |E(G)|+ 3n2

2
+ 7n

2
+ 4.

Corollary 5.7.7 2-ELAN is NP-complete.

Proof: Let (G,N) be an instance for the decision problem ECCN. Then by Propo-

sition 5.7.6, (G,N) ∈ ECCN if and only if
(

(HG)UV , N − |E(G)|+ 3n2

2
+ 7n

2
+ 4
)
∈

2-ELAN. Moreover, it is easy to see that (HG)UV can be computed in polynomial time

with respect to the size of the input graph G. Therefore, we have ECCN ≤P 2-ELAN.

By the NP-completeness of ECCN, and the fact that 2-ELAN belongs to the class

NP, it follows that 2-ELAN is NP-complete.

5.8 NP-Completeness of g-ELAN for g ≥ 3

Intuitively, we now expect that g-ELAN is NP-complete for all g ≥ 2. In this section,

we extend the construction for showing the NP-completeness of 2-ELAN, in order

to prove that 3-ELAN is also NP-complete. We further extend this construction to

prove that g-ELAN is NP-complete for all g ≥ 2, thereby filling in the gaps left by

Proposition 5.6.4.

Construction 3 Let G be any simple graph. We construct another graph XG as

follows.

Step 1. Using Construction 2, obtain from G two copies of the graph (HG)UV . Refer to

the vertices of the first copy as V = {v1, ..., vk+2} and U = {u1, ..., uk+2}, and re-

name the vertex set V = {v1, ..., vk+2} of the second copy as W = {w1, ..., wk+2},

so that each wi ∈ W corresponds exactly to the vertex vi ∈ V of the second

copy of (HG)UV .

5.8. NP-Completeness of g-ELAN for g ≥ 3 127

Step 2. Identify the two vertex sets U of the two copies so that the resulting graph

contains three distinguished sets of vertices V,W, and U , and add new edges to

the graph: for every i 6= j such that 1 ≤ i, j ≤ k+ 2, add an edge joining vertex

vi ∈ V to wj ∈ W . Refer to this graph as XG.

Let us illustrate Construction 3 with an example.

Example 3 For convenience, let us use the same graph G as in Example 2. We

take two copies of (HG)UV and relabel the vertex set V of the second copy, as W =

{w1, w2, w3, w4, w5, w6}.

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6

w1 w2 w3 w4 w5 w6

u1 u2 u3 u4 u5 u6

We then identify the two copies of U , and add edges of the form {vi, wj} for vi ∈ V

and wj ∈ W whenever i 6= j. This results in the final graph of the construction, XG.

XG: v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6

w1 w2 w3 w4 w5 w6

We consider the graph XG as an instance for the 3-ELAN problem having k + 2

factors. That is, XG ∈ Gk+2,3, and we let the vertices of U represent the zero values,

the vertices of V represent the one values, and the vertices of W represent the two

values, respectively, of each of the k + 2 factors.

5.8. NP-Completeness of g-ELAN for g ≥ 3 128

Now observe that the non-edges between two distinct factors of XG occur only

between vertices of V and U , or between vertices of W and U , since XG is constructed

so that i 6= j implies that {vi, wj} ∈ E(XG) for vertices vi ∈ V and wj ∈ W .

Furthermore, the vertex set U provides safe values for each of the k+2 factors of XG,

since by the properties of (HG)UV , XG inherently has no across edges joining vertices

of V to vertices of U , and similarly, XG has no across edges joining vertices of W to

vertices of U . Thus we conclude that the graph XG is locatable. By Theorem 2.6.2,

we know that ELAN(XG) = CAFEN(XG) + |E(XG)|.

The next result relates the ECC number of the original graph G to the number

of rows required for an optimal CAFE of XG.

Proposition 5.8.1 For a simple graph G, the graph XG obtained as described in

this section satisfies CAFEN(XG) = 2× [CAFEN((HG)UV)].

Proof: First we show that 2 × [CAFEN((HG)UV)] ≤ CAFEN(XG). An optimal

CAFE of XG, in particular, requires rows to cover all interactions of the form {vi, vj}

where i 6= j and vi, vj ∈ V . By construction, any row that covers a vertex vi ∈

V cannot also cover a vertex wl ∈ W for l 6= i. Therefore, covering the {vi, vj}

interactions mentioned is equivalent to covering the {vi, vj} interactions in (HG)UV ,

and thus requires CAFEN((HG)UV)− 2 rows. Furthermore, these rows cannot cover

any interaction involving a vertex wl ∈ W . By Lemma 5.2.5, we also require two

additional rows to cover the particular interactions {vk+1, uk+2} and {vk+2, uk+1}.

We also require enough rows to cover all {wi, wj} interactions for i 6= j and wi, wj ∈

W . By the same reasoning above, this requires CAFEN((HG)UV) − 2 additional

rows. Again, we require two additional rows to cover the particular interactions

{wk+1, uk+2} and {wk+2, uk+1}. Thus, an optimal CAFE(n,XG) requires at least 2×

[CAFEN((HG)UV)] rows in order to cover the interactions mentioned. Consequently,

CAFEN(XG) ≥ 2× [CAFEN((HG)UV)].

5.8. NP-Completeness of g-ELAN for g ≥ 3 129

Next, we show that 2× [CAFEN((HG)UV)] ≥ CAFEN(XG). Cover the non-edges

between distinct factors of the first copy of (HG)UV with CAFEN((HG)UV) rows and

similarly, cover the non-edges between distinct factors of the second copy of (HG)UV .

It is easy to see that by the construction of XG these 2 × [CAFEN((HG)UV)] rows

are sufficient to cover and avoid XG. We conclude that 2 × [CAFEN((HG)UV)] ≥

CAFEN(XG).

Corollary 5.8.2 Let G be any simple graph. Then

ELAN(XG) = 2 [θ′(G)− |E(G)|] + 7n2 + 13n+ 10.

Proof: Since XG is constructed so that it has safe values for each of its factors, we

know that XG is locatable as an instance for the decision problem 3-ELAN. Therefore,

we get the following results, where n is the number of non-isolated vertices of G.

ELAN(XG) = CAFEN(XG) + |E(XG)|, by Theorem 2.6.2;

= 2[CAFEN((HG)UV)] + |E(XG)|, by Proposition 5.8.1.

It is easy to see that

|E(XG)| = 2|E((HG)UV)|+ (2n+ 2)(2n+ 1) = 7n2 + 11n+ 4− 2|E(G)|.

Therefore,

ELAN(XG) = 2[CAFEN((HG)UV)] + 7n2 + 11n+ 4− 2|E(G)|

= 2[θ′(HG) + 2] + 7n2 + 11n+ 4− 2|E(G)|, by Theorem 5.2.11;

= 2[θ′(G) + n+ 1 + 2] + 7n2 + 11n+ 4− 2|E(G)|, by Proposition 5.7.2;

= 2[θ′(G)− |E(G)|] + 7n2 + 13n+ 10.

Corollary 5.8.3 3-ELAN is NP-complete.

5.8. NP-Completeness of g-ELAN for g ≥ 3 130

Proof: Let (G,N) be an instance for ECCN, and let n be the number of non-

isolated vertices of G. By the above corollary, the pair (G,N) is in ECCN if and only

if the pair (XG, 2× [N − |E(G)|] + 7n2 + 13n+ 10) is in 3-ELAN. It is easy to see

that XG can be computed in polynomial time with respect to the original graph G.

Again, since we know that ECCN is NP-complete, and we have reduced ECCN to

3-ELAN, we have shown the NP-completeness of 3-ELAN.

In fact, in a similar way we can show that ECCN ≤P g-ELAN, for g ≥ 3.

Theorem 5.8.4 g-ELAN is NP-complete, for g ≥ 3.

Proof: Here we give a sketch of the proof. Let G be any graph. This time take

(g−1) copies of the graph (HG)UV and identify the g−1 copies of the U vertex subsets.

Denote by V1, V2, ..., Vg−1 the g − 1 copies of the vertex subsets V of each respective

copy. Label the vertices of Vi as v1,i, v2,i, ..., vk,i for i = 1, 2, ..., g− 1. Join by an edge

each vertex va,i ∈ Vi to every vb,j ∈ Vj whenever a 6= b and i 6= j, i, j ∈ {1, 2, ..., g−1}.

Denote this graph as YG.

Similarly to XG, we can show that YG is locatable based on the safe values in

the vertex set U . Thus ELAN(YG) = CAFEN(YG) + |E(YG)|. Moreover we can show

CAFEN(YG) = (g − 1)[CAFEN((HG)UV)]. It is easy to see that

|E(YG)| = (g − 1)|E((HG)UV)|+
(
g − 1

2

)
(2n+ 1)(2n+ 2).

Therefore,

ELAN(YG) = (g−1)[θ′(G)−|E(G)|]+(g−1)

[
3n2

2
+

7n

2
+ 4

]
+

(
g − 1

2

)
(2n+1)(2n+2)

and so (G,N) ∈ ECCN if and only if (YG, N
′) ∈ g-ELAN, where

N ′ = (g − 1)[N − |E(G)|] + (g − 1)

[
3n2

2
+

7n

2
+ 4

]
+

(
g − 1

2

)
(2n+ 1)(2n+ 2).

5.8. NP-Completeness of g-ELAN for g ≥ 3 131

Again, we can easily verify that g-ELAN belongs to the class NP, and clearly, YG can

be computed in polynomial time from (G,N).

Chapter 6

Conclusion

The motivation for the combinatorial designs studied in this thesis is to accommodate

a wider range of practical testing problems. In particular, we focused on the problem

of covering all pairwise interactions in the presence of constraints yielding forbidden

pairwise interactions, using a relatively new design called a CAFE. We now summa-

rize the contributions of this thesis in three main areas and discuss open problems.

Study of k-Uniform Edge Clique Covers

In light of the equivalence between CAFEs and k-uniform ECCs, we studied

k-uniform ECCs and established several small results, including some simple upper

bounds and necessary conditions for their existence. In particular we proved that the

k-ECC number of a given graph can be strictly greater than its ECC number, by

providing an example for each k; we also showed that the difference between these

numbers can be arbitrarily large for any given k (see Theorem 3.3.9). On the other

hand, we also provided an upper bound (see Proposition 3.3.12), indicating that for

k ≥ 4, a graph G such that ω(G) = k, and such that G admits a k-ECC satisfies

θ′k(G) ≤
(
k − 1

2

)
θ′(G).

In all examples of graphs we looked at, which satisfied the hypotheses of Proposition

132

133

3.3.12, we found a much tighter upper bound. We always found that θ′k(G) ≤ 2θ′(G),

perhaps indicating that a better upper bound exists relating the k-ECC number and

the ECC number, such as one that is linear in k, rather than quadratic. So, we

formulate the following conjecture.

Conjecture 1 Let k ≥ 4 and let G be a simple graph. If G admits a k-uniform

ECC, then θ′k(G) ≤ kθ′(G).

We also proved that if a graph G admits a k-uniform ECC for some k ≥ 3,

then G admits a (k− 1)-uniform ECC as well (see Proposition 3.3.11); indeed, we do

believe that the following stronger result holds.

Conjecture 2 Let k ≥ 3 be a positive integer and let G be a simple graph. If G

admits a k-uniform ECC, then θ′k(G) ≤ θ′k−1(G).

Although the CAFE number of a graph G ∈ G(g1,...,gk) is equal to the k-uniform

ECC number of G|, we feel that further study of the ECC number would be beneficial.

Better upper bounds relating the k-ECC number to the ECC number would give us

more tools to estimate the CAFE number.

Partial CAFEs and Other Generalizations to Benefit Testing Applications

We generalized CAFEs to partial CAFEs, based on the corresponding general-

ization of k-ECCs to partial k-ECCs. We defined partial CAFEs in order to address

the problem of covering a specified subset of the pairwise interactions of a testing

problem.

Partial CAFEs can be used to solve a much broader spectrum of testing problems.

For example, if we extend a testing problem by increasing the number of values of some

factors after the test suite of the original testing problem has already been performed,

we can use a partial CAFE to find the appropriate new tests to perform in order to

cover the newly added interactions. Partial CAFEs can also be used in the case of

134

regression tests (standard tests fixed a priori) and in the case of pairs of values known

a priori to not interact (as with covering arrays on graphs). Thus, partial CAFEs

allow more freedom in testing. We established some initial basic results for partial

CAFEs, but more research in this area seems promising.

As considered in this thesis, partial CAFEs can only cover and avoid pairwise

interactions. In reality, the constraints imposed on testing problems can yield for-

bidden t-way interactions for any t ∈ [1, k]. For example, constraint (C7) of Table

2.2 imposes a forbidden 3-way interaction for the mobile phone product line testing

problem. Extending partial CAFEs to incorporate forbidden t-way interactions of

various values of t would accommodate many more testing problems.

A natural generalization of partial CAFEs would be partial CAFEs which cover

all necessary t-way interactions, for strength t ≥ 2. Although, pairwise coverage is

considered to be a relatively good compromise to exhaustive testing, there may be

particular applications where covering all t-way interactions for some t ≥ 2 is desir-

able. In fact, we may wish to consider a generalization of partial CAFEs that allow

us to specify necessary interaction sets containing interactions of any given size.

Computational Complexity of Finding Optimal CAFEs

Perhaps the single most important contribution of this thesis was to establish

that 2-CAFEN is NP-complete (see Corollary 5.2.12). The construction used in this

proof also allowed us to establish the NP-completeness of g-CAFEN, g-PARTIAL-

CAFEN and g-ELAN, for all g ≥ 2. We also established a hardness of approximation

result for binary CAFEs (see Proposition 5.2.14).

The closely related ECC decision problems ECCN, PARTIAL-ECCN, UNIFORM-

ECCN, and PARTIAL-UNIFORM-ECCN are all NP-complete as well. Thus, viewing

CAFE problems by their equivalent graph theoretical problems is not necessarily any

easier. However, the correspondences established between ECC problems and CAFE

problems allows us to bring graph theoretical results and algorithms in order to ap-

135

proach CAFE problems.

In light of the computational intractability and hardness of approximation for

g-CAFEN, future research should focus on heuristic algorithms for general graphs or

the study of special families of graphs. On the application side, studies to determine

which classes of forbidden graphs occur most often in practical applications would

certainly be useful.

Appendix A

Asymptotic Definitions

In order to estimate the growth of a function, we use the following definitions. The

definitions here are taken from [33].

Definition A.0.5 Let f and g be functions from the set of integers or the set of real

numbers to the set of real numbers. We say that f(x) = O(g(x)) if there are constants

c and n0 such that |f(x)| ≤ c|g(x)| for all x > n0. We read this as “f is big-oh of

g.” The constants c and n are called witnesses to the relationship f(x) = O(g(x)).

Definition A.0.6 We say that f(x) = o(g(x)) when

lim
x→∞

f(x)

g(x)
= 0.

We read this relationship as “f is little-oh of g.”

Definition A.0.7 We say that the functions f and g are asymptotically equiva-

lent if

lim
x→∞

f(x)

g(x)
= 1.

In this case we write f(x) ∼ g(x).

136

Bibliography

[1] J. A. Bondy; U. S. R. Murty. Graph Theory With Applications. North-Holland,

New York, 1982.

[2] Robert C. Brigham; Ronald D. Dutton. On Clique Covers and Independence

Numbers of Graphs. Discrete Mathematics 44 (1983), 139–144.

[3] K. Burr; W. Young. Combinatorial Test Techniques: Table-based Automation,

Test Generation and Code Coverage. Proc. of the Intl. Conf. on Software Testing

Analysis & Review (San Diego), 1998.

[4] J. N. Cawse (editor). Experimental Design for Combinatorial and High Through-

put Materials Development. John Wiley & Sons, New York, 2003.

[5] Myra B. Cohen; Matthew B. Dwyer; Jiangfan Shi. Interaction Testing of Highly-

Configurable Systems in the Presence of Constraints, International Symposium

on Software Testing and Analysis (ISSTA) (London), 2007, 129–139.

[6] Charles J. Colbourn. Combinatorial aspects of covering arrays, Le Matematiche

(Catania) 58 (2004), 121–167.

[7] Charles J. Colbourn and Jeffrey H. Dinitz (editors). Handbook of Combinatorial

Designs, Second Edition. Chapman and Hall/CRC, 2007.

[8] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. Proceedings

Third Annual ACM Symposium on Theory of Computing, May 1971, 151–158.

137

BIBLIOGRAPHY 138

[9] Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; Clifford Stein.

Introduction to Algorithms, Second Edition. MIT Press, Montréal, 2007.

[10] S. R. Dalal; A. Jain; N. Karunanithi; J. M. Leaton; C. M. Lott; G. C. Patton;

B. M. Horowitz. Model-based Testing in Practice. Proc. of the Intl. Conf. on

Software Engineering, (ICSE ’99) (New York), 1999, 285–294.

[11] Peter Danziger; Eric Mendelsohn; Lucia Moura; Brett Stevens. Covering arrays

avoiding forbidden edges (CAFE). Theoretical Computer Science, 410 (2009),

5403–5414.

[12] Paul Erdös; A. W. Goodman; Louis Pósa. The Representation of a Graph by Set

Intersections. Canad. J. Math. 18 (1966), 106–112.

[13] Michael R. Garey; David S. Johnson. Compupters and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

[14] L. Gargano; J. Körner; U. Vaccaro. Sperner Capacities. Graphs Combin. 9

(1993), 31–46.

[15] A. Gyárfás. A Simple Lower Bound on Edge Coverings by Cliques. Discrete Math-

ematics 85 (1990) 103–104.

[16] Alan Hartman; Leonid Raskin. Problems and Algorithms for Covering Arrays.

Discrete Mathematics 284 (2004), 149–156.

[17] A. Hedayat; N. Sloane; J. Stufken. Orthogonal Arrays. Springer-Verlag, New

York, 1999.

[18] Dan Hoffman. A Perfect Marriage: Covering Arrays and Grammar-based Test

Generation, a talk given for the Ottawa-Carleton Discrete Mathematics Group

Seminar, December 3, 2008.

BIBLIOGRAPHY 139

[19] Richard Karp. Reducibility Among Combinatorial Problems. In Raymond E.

Miller; James W. Thatcher (editors). Complexity of Computer Computations.

Plenum Press, New York, 1972, 85–104.

[20] G. Katona. Two applications (for search theory and truth functions) of Sperner

type theorems. Periodica Math. 3 (1973), 19–26.

[21] D. Kleitman; J. Spencer. Families of k-independent sets. Discrete Math. 6 (1973),

255–262.

[22] L. T. Kou; L.J. Stockmeyer; C.K. Wong. Covering Edges by Cliques with Regard

to Keyword Conflicts and Intersection Graphs. Communications of the ACM 21

(1978), 135–139.

[23] D. Kuhn; M. Reilly. An Investigation into the Applicability of Design of Experi-

ments to Software Testing. Proc. 27th Annual NASA/IEEE Software Engineering

Workshop, NASA Goddard Space Flight Center, 2002, 91–95.

[24] R. Kuhn; D. Wallace; A. Gallo. Software Fault Interactions and Implications for

Software Testing. IEEE Transactions of Software Engineering 30 (2004), 418–421.

[25] L. A. Levin. Universal sorting problems Problemy Peredachi Informatsii 9(1973),

265–266. In Russian.

[26] L. Lovász. On Covering of Graphs, Theory of Graphs (Proc. Colloq., Tihany,

1966), Academic Press, New York, 1968, 231–236.

[27] Carsten Lund; Mihalis Yannakakis. On the Hardness of Approximating Min-

imization Problems. Journal of the Association for Computing Machinery 41

(1994), 960–981.

BIBLIOGRAPHY 140

[28] Conrado Martinez; Lucia Moura; Daniel Panario; Brett Stevens. Locating Errors

Using ELAs, Covering Arrays, and Adaptive Testing Algorithms. SIAM Journal

on Discrete Mathematics, to appear, 24 pages.

[29] Karen Meagher. Covering Arrays on Graphs: Qualitative Independence Graphs

and Extremal Set Partition Theory. PhD thesis, University of Ottawa, Ottawa,

2005.

[30] Lucia Moura; J. Stardom; Brett Stevens; A. Williams. Covering arrays with

mixed alphabet sizes. Journal of Combinatorial Designs 11 (2003), 413–432.

[31] James Orlin. Contentment in graph theory: covering graphs with cliques. Nederl.

Akad. Wetensch. Proc. Ser. A, 80 (1977), 406–424.

[32] A. Rényi. Foundations of Probability. Wiley, New York, 1971.

[33] Kenneth H. Rosen. Discrete Mathematics and Its Applications, Fifth Edition.

McGraw-Hill, Montreal, 2003.

[34] A. W. Williams and R. L. Probert. A Measure for Component Interaction Test

Coverage. Proc. ACS/IEEE International Conference on Computer Systems and

Applications, 2001, 301–311.

