Covering arrays: new generalizations for software testing applications

Organizers:
Lucia Moura (University of Ottawa) and Brett Stevens (Carleton University)

Covering arrays are combinatorial designs that are used for testing systems
such as software, circuits and networks, where failures can be caused by the
interaction between their components or parameters. New generalizations of
these objects employ techniques from design theory, graph homomorphisms,
combinatorial group testing, among other fields. This minisymposium highlights
current research that addresses some of the challenges that arise in real testing
situations. Models under study incorporate graphs and hypergraphs to select
relevant interactions to be tested, specification of forbidden interactions, and
the ability to locate faulty interactions. This session will be closed by a talk
discussing empirical data from applications and other challenges to be faced.

e Adaptive algorithms for locating faulty interactions
Lucia Moura (University of Ottawa)
Abstract:
Locating arrays are recent generalizations of covering arrays that can de-
termine the exact locations of faulty interactions in a system. In this talk,
we look at pairwise interactions and represent faulty interactions by edges
of a graph. Under certain assumptions on the structure of this graph, we
give an efficient adaptive algorithm that locates all errors. The algorithm
is able to handle some cases in which locating arrays do not exist. This is
joint work with Conrado Martinez, Daniel Panario and Brett Stevens.

e Covering arrays avoiding forbidden configurations
Peter Danziger (Ryerson University)
Abstract:
In this talk we consider designing covering arrays when certain pairs of
factors are prohibited from our test suites. Such situations arise naturally
when certain configurations of the test parameters are to be avoided. For
example, in drug testing certain pairs of drugs may have known interac-
tions and produce unwanted side effects. We show that in the case where
the alphabet size g > 2, the problem of designing a covering array avoid-
ing a specified configuration is NP complete. We also consider possible
solutions for g = 2. This is joint work with Eric Mendelsohn, Lucia Moura
and Brett Stevens.

e Covering arrays on graphs
Karen Meagher (University of Waterloo)
Abstract:
In this talk I will describe a generalization of covering arrays, covering
arrays on graphs. The original motivation for this generalization was for
improving applications of covering arrays to testing systems and networks,



but this extension also gives us new ways to study covering arrays. In
particular, the addition of a graph structure to covering arrays makes it
possible to use methods from graph theory to study these designs. In this
talk, I will describe a family of graphs called the qualitative independence
graphs. Understanding these graphs will help understand covering arrays
on graphs and standard covering arrays.

Constructions for optimal mixed covering arrays on graphs and
hypergraphs

Christine Cheng (University of Wisconsin-Milwaukee)

Abstract:

Let 7 be a set of n parameters and O be a collection of subsets of Z.
Suppose each I € T has k(I) data values. A test case is an n-tuple
(t1,t2,...,t,), where t; is a data value of I;, i = 1,...,n. In this talk, we
present families of (Z, O, k) for which an optimal test suite that covers all
combinations of each O € O (i.e., an optimal mixed covering array on a
hypergraph) can be constructed efficiently.

Empirical results and practical extensions: using covering arrays
to test configurable software

Myra Cohen (University of Nebraska-Lincoln)

Abstract:

Covering arrays can be used for software interaction testing to detect faults
caused by combinations of configuration options or features. In this talk
we present empirical studies that examine the effectiveness of covering ar-
rays for testing highly configurable software systems. We discuss common
features of these systems that render covering array models infeasible and
suggest extensions to the model of a covering array to make them more
applicable to the software testing application domain.



