
ITI 1121. Introduction to Computing II ∗

Marcel Turcotte
School of Electrical Engineering and Computer Science

Version of March 10, 2013

Abstract

• Queues-based algorithms
– Asynchronous processes
– Simulations
– State-space search

∗These lecture notes are meant to be looked at on a computer screen. Do not print them unless it is necessary.

Summary

Queues are implemented with arrays or linked elements.

In the case of circular arrays, modulo arithmetic is used when incrementing the
index so that the queue wraps around the array when it reaches the end.

index = (index + 1) % MAX_QUEUE_SIZE;

One must be careful to detect the case when the array gets full and avoid
overriding any elements as well as distinguishing between the full and empty
queues.

Several implementations are possible: using sentinel values, destroying the array,
using a boolean value to indicate if the queue is full/empty or to maintain a
count of the number of elements in the queue. Of course, the details of the
implementation of each method will vary with the implementation.

The operation dequeue() is sometimes called serve(); because queues are often
used in the context of client/server applications.

Asynchronous processes

Applications such as producer/consumer, client/server or sender/receiver
necessitate using a queue for asynchronous processing of the data.

Asynchronous processing means that the client and the server are not
synchronized, which would occur if the server is not ready or capable of receiving
the data at that time or speed.

Asynchronous processes:

• The client insert data into a queue (enqueue);
• The server removes data from the queue (dequeue) whenever it’s ready for

processing.

In this context, the queue is sometimes called a buffer.

Asynchronous processes

In particular, inter-process communications in operating systems work like this.

1. printer spooler ;
2. buffered i/o;
3. disk accesses;
4. sending messages (packets) across the network.

Time-shared applications

CPU

rearfront
new process

dequeue() enqueue()

All modern operating systems operate in time-shared mode. One of the frequent
techniques to share time is called round-robin. The first process in the queue is
allocated a slice of time (dequeue) after which it is suspended and put at the end
of the queue (enqueue), time is allocated for the next process.

Inter-process communications

enqueue()

client

server

dequeue()

while (true) {

while (! q.isFull()) {

q.enqueue(...);

}

}

while (true) {

while (! q.empty()) {

process(q.dequeue())

}

}

⇒ inter-process communication (IPC), buffered i/o, etc.

Applications

1. Simulations (clients arrival in a supermarket);

Customer

+getArrivalTime() : int
+getNumberOfItems() : int
+getNumberOfServedItems() : int
+serve() : void

-arrivalTime : int
-initialNumberOfItems : int
-numberOfItems : int
-MAX_NUM_ITEMS : int

Cashier

+addCustomer(c : Customer) : void
+getQueueSize() : int
+serveCustomers(currentTime : int) : void
+getTotalCustomerWaitTime() : int
+getTotalCustomersServed() : int
+getTotalItemsServed() : int

-queue : Queue
-currentCustomer : Customer
-totalCustomerWaitTime : int
-customersServed : int
-totalItemsServed : int

<<interface>>
Queue

+enqueue(obj : Object) : void
+dequeue() : Object
+isEmpty() : boolean
+size() : int

ArrayQueue

<<realize>>

2. Queue-based algorithms (breadth-first search, labyrinth).

Queue-based algorithms

Algorithm:

1. enqueue “”
2. while true

(a) s ← dequeue
(b) enqueue “s + 0”
(c) enqueue “s + 1”

What does the above algorithm do?

It generates all the possible sequences of 0s and 1s in increasing order of length,
0, 1, 00, 01, 10, 11, 000, 001, . . .

In other words the ensemble of all character strings, S, such that:

S ≡ [s← {0, 1, s′ + 0, s′ + 1}; s′ ∈ S]

new queue []

enqueue(0) [0]

enqueue(1) [0,1]

s = 0 = dequeue() [1]

enqueue(s+0 = 0+0) [1,00]

enqueue(s+1 = 0+1) [1,00,01]

s = 1 = dequeue() [00,01]

enqueue(s+0 = 1+0) [00,01,10]

enqueue(s+1 = 1+1) [00,01,10,11]

s = 00 = dequeue() [01,10,11]

enqueue(s+0 = 00+0) [01,10,11,000]

enqueue(s+1 = 00+1) [01,10,11,000,001]

s = 01 = dequeue() [10,11,000,001]

enqueue(s+0 = 01+0) [10,11,000,001,010]

enqueue(s+1 = 01+1) [10,11,000,001,010,011]

s = 10 = dequeue() [11,000,001,010,011]

enqueue(s+0 = 10+0) [11,000,001,010,011,100]

enqueue(s+1 = 10+1) [11,000,001,010,011,100,101]

Generalization

The generalization to sequences over any finite alphabet is trivial.

In particular, let’s consider the following alphabet: Σ = {L,R,U,D}.

1. enqueue “”
2. while true

(a) s ← dequeue
(b) enqueue “s + L”
(c) enqueue “s + R”
(d) enqueue “s + U”
(e) enqueue “s + D”

new queue []

enqueue("") [""]

s = "" = dequeue() []

enqueue(s+L = L) [L]

enqueue(s+R = R) [L,R]

enqueue(s+U = U) [L,R,U]

enqueue(s+D = D) [L,R,U,D]

s = L = dequeue() [R,U,D]

enqueue(s+L = L+L) [R,U,D,LL]

enqueue(s+R = L+R) [R,U,D,LL,LR]

enqueue(s+U = L+U) [R,U,D,LL,LR,LU]

enqueue(s+D = L+D) [R,U,D,LL,LR,LU,LD]

s = R = dequeue() [U,D,LL,LR,LU,LD]

enqueue(s+L = R+L) [U,D,LL,LR,LU,LD,RL]

enqueue(s+R = R+R) [U,D,LL,LR,LU,LD,RL,RR]

enqueue(s+U = R+U) [U,D,LL,LR,LU,LD,RL,RR,RU]

enqueue(s+D = R+D) [U,D,LL,LR,LU,LD,RL,RR,RU,RD]

s = U = dequeue() [D,LL,LR,LU,LD,RL,RR,RU,RD]

enqueue(s+L = U+L) [D,LL,LR,LU,LD,RL,RR,RU,RD,UL]

enqueue(s+R = U+R) [D,LL,LR,LU,LD,RL,RR,RU,RD,UL,UR]

Let’s give a meaning to those strings

What are those Ls, Rs, Us and Ds?

Let’s say that each symbol of this alphabet corresponds to a direction:

L = left;

R = right;

U = up;

D = down;

Each character string correspond to a path in a two dimensional plane.

D DR

DRR DRRU

DRRUR DRRURR

Adding obstacles

DRRURRDD DRRDRR

⇒ What are the necessary modifications to our string generating algorithm so
that it only generates valid paths? and finds the exit?

Auxiliary methods

Verifying that a path is valid: checkPath(String path).

Has the exit been found: reachesGoal(String path).

Data structures

A two dimensional array of characters:

char[][] maze;

A position is not accessible (wall) if it contains a ’#’, a cell is empty if ’ ’ and
visited if ’+’.

#+#####

#+# # #

#++ # #

#

#

checkpath(String path)

private boolean checkPath(String path) {

boolean[][] visited = new boolean [MAX_ROW][MAX_COL];

int row, col;

row = 0; // let’s assume that the entrance is found at (0,0)

col = 0;

int pos=0;

boolean valid = true;

checkpath(String path)

...

while (valid && pos < path.length()) {

char direction = path.charAt(pos++);

switch (direction) {

case LEFT:

col--;

break;

case RIGHT:

col++;

break;

case UP:

row--;

break;

case DOWN:

row++;

break;

default:

valid = false;

}

...

checkpath(String path)

// after each move, we check that the current position is valid,

// i.e. inside the maze, not inside a wall and has not been visited!

if ((row >= 0) && (row < MAX_ROW) && (col >= 0) && (col < MAX_COL))

if (visited[row][col] || grid[row][col] == WALL)

valid = false;

else

visited[row][col] = true;

else

valid = false;

} // end of while loop

return valid;

}

Are we done yet!

private boolean reachesGoal(String path) {

int row = 0;

int col = 0;

for (int pos=0; pos < path.length(); pos++) {

char direction = path.charAt(pos);

switch (direction) {

case LEFT: col--; break;

case RIGHT: col++; break;

case UP: row--; break;

case DOWN: row++; break;

}

}

return grid[row][col] == OUT;

}

Labyrinth

A queue-based algorithm to find a path through a labyrinth.

This algorithm has the property that it is guaranteed to find the shortest
path if it exists!

Our queue-based algorithm to solve the maze problem is similar to our algorithm
to generate all stings, in increasing order of length, over a finite-size alphabet.

q.enqueue("")

while (true)

s <- q.dequeue()

for each char in the alphabet

q.enqueue(s + char)

⇒ The main difference being that the elements are filtered before being put into
the queue — i.e. only valid prefixes are added to the rear of the queue.

Remarks

Our queue-based algorithm implements a state-space search known “breadth-
first-search”.

Could this algorithm be using a stack? Discuss the implications.

The stack-based algorithm implements a “depth-first-search”.

Why are these algorithms called “breadth-first-search” and “depth-first-search”
respectively?

A variant of these algorithms is called beam-search and consists in limiting the
number of solutions kept in the queue.

What would occur if no solution exist? How to detected such sitution?

""[]

""

10[]

""

10

00 01

[

]

""

1

10 11

0

00 01[]

""

1

10 11

0

00 01

000 001

[

]

""

1

10 11

0

00 01

000 001 010 011

[

]

""

1

10 11

100 101

0

00 01

000 001 010 011

[

]

""

1

10 11

100 101 110 111

0

00 01

000 001 010 011[]

""

1

10 11

100 101 110 111

0

00 01

000 001 010 011[]

The queue-based implementation of the search is called “breadth-first search”.

The search tree is built layer by layer, all the sequences on the same level (i.e.
sequences of the same length) are processed before processing the sequences of
the next level.

""[]

""

10[]

""

1

10 11

0[

]

""

1

10 11

110 111

0[

]

""

1

10 11

110 111

0[

]11101111

""

1

10 11

110 111

0[

]11101111

The stack-based implementation of the search is called “depth-first search”.

The search tree is built branch by branch, a sequence is selected and repeatedly
expanded until a dead-end occurs. The algorithm then backtracks to the next
sequence onto the stack. Hence the surname backtracking algorithm.

#I#############

#

#

#

###

##

####

##

##

############O##

