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Symmetric Designs

Definition (Symmetric BIBD)

A BIBD with v = b (or equivalently, r = k or λ(v− 1) = k2 − k) is
called a symmetric BIBD.

Example: a (7, 3, 1)-design is symmetric.
V = {1, 2, 3, 4, 5, 6, 7}
B = {123, 145, 167, 246, 257, 347, 356}
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Symmetric Designs: an intersection property

Theorem (a symmetric design is “linked” i.e. has constant block
intersection λ)

Suppose that (V,B) is a symmetric (v, k, λ)-BIBD and denote
B = {B1, . . . , Bv}. Then, we have |Bi ∩Bj | = λ, for all
1 ≤ i, j ≤ v, i 6= j, .
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Proof: We use similar methods as in the proof of Fisher’s
inequality. Let sj be column j of the incidence matrix of the
BIBD. Let’s fix a block h, 1 ≤ h ≤ b. Using equations derived for
that other proof, we get.

∑
i∈Bh

∑
j:i∈Bj

sj =
∑

{i:i∈Bh}

((r − λ)ei + (λ, . . . , λ)) =

= (r − λ)sh + k(λ, . . . , λ) = (r − λ)sh +
b∑

j=1

λk

r
sj

We can also compute this double sum in another way∑
i∈Bh

∑
j:i∈Bj

sj =

b∑
j=1

∑
i∈Bh∩Bj

sj

=

b∑
j=1

|Bh ∩Bj |sj
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proof (cont’d)
Thus, (r − λ)sh +

∑b
j=1

λk
r sj =

∑b
j=1 |Bh ∩Bj |sj .

Since r = k and b = v, this simplifies to

(r − λ)sh +
v∑
j=1

λsj =

v∑
j=1

|Bh ∩Bj |sj .

In the other proof, we showed that span(s1, . . . , sb) = Rv.
Since v = b, {s1, . . . , sv} must be a basis of Rv
Since this is a basis, the coefficients of sj in the right and left of
the equation above must be equal. So, for j! = h we must have
|Bh ∩Bj | = λ.
Since this is true for every choice of h, |B ∩B′| = λ for all
B,B′ ∈ B. �
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Other symmetric designs and properties

Corollary (the dual of a symmetric BIBD is a symmetric BIBD)

Suppose that M is the incidence matrix of a symmetric
(v, k, λ)-BIBD. Then MT is also the incidence matrix of a
symmetric (v, k, λ)-BIBD.

Corollary (a linked BIBD must be symmetric)

Suppose that µ is a positive integer and (V,B) is a
(v, b, r, k, λ)-BIBD such that |B ∩B′| = µ for all B,B′ ∈ B. Then
(V,B) is a symmetric BIBD and µ = λ.
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Residual and derived BIBDs

Definition

Let (V,B) be a a symmetric (v, k, λ)-BIBD, and let B0 ∈ B. Its
derived design is

Der(V,B, B0) = (B0, {B ∩B0 : B ∈ B, B 6= B0})

and its residual design is

Res(V,B, B0) = (V \B0, {B \B0 : B ∈ B, B 6= B0})
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1 3 4 5 9
4 5 2 6 10
3 5 6 7 0
1 4 6 7 8
5 9 2 7 8
3 9 6 8 10
4 9 0 7 10
1 5 0 8 10
1 9 2 6 0
1 3 2 7 10
3 4 0 2 8

Theorem

Let (V,B) be a a symmetric (v, k, λ)-BIBD.
If λ ≥ 2, then Der(V,B, B0) is a (k, v − 1, k − 1, λ, λ− 1)-BIBD.
If k ≥ λ+ 2, then Res(V,B, B0) is a
(v − k, v − 1, k, k − λ, λ)-BIBD.
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Definition (projective plane)

An (n2 + n+ 1, n+ 1, 1) with n ≥ 2 is called a projective plane of
order n.

The (7, 3, 1)-BIBD is a projective plane of order 2.

Proposition

A projective plane is a symmetric BIBD.

Proof. r = n2+n
n = n+ 1 = k; b = vr

k = v = n2 + n+ 1.
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Theorem

For every prime power q ≥ 2, there exists a (symmetric)
(q2 + q + 1, q + 1, 1)-BIBD (i.e. a projective plane of order q).

Proof. Let Fq be the finite field of order q and consider V a
tridimensional (3-D) vector space over Fq. The points of the
design are the 1-D subspaces of V and let the blocks of the design
be the 2-D subspaces of V . The design makes a point incident to
a block if the 1-D subspace is contained in the 2-D subspace.

There are q3−1
q−1 = q2 + q + 1 1-D subspaces of V . So

b = q2 + q + 1. Each 2-D subspace B has q2 points including
(0,0,0); each of the q2 − 1 nonzero points together with (0,0,0)
defines a 1-D subspace of B; each of them are counted q − 1 times
one for each of the q − 1 non-zero points inside it. So, there are
q2−1
q−1 = q + 1(= k) 2-D subspaces inside B. There is a unique 2-D

subspace containing any pair of 1-D subspaces, so λ = 1. �
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Example: (13, 4, 1)-BIBD is a projective plane of order 3

(picture from Stinson 2004, Chapter 2)
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cont’d example: (13, 4, 1)-BIBD is a projective plane of
order 3

(picture from Stinson 2004, Chapter 2)
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Affine planes

Definition (affine plane)

An (n2, n, 1) with n ≥ 2 is called an affine plane of order n.

Corollary

For every prime power q ≥ 2, there exists a (q2, q, 1)-BIBD (i.e. an
affine plane of order q).

Proof: Take the residual design of a projective plane of order n. �
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Affine planes: exercise

1 Use the (13, 4, 1)−BIBD, a projective plane of order 3, to
construct a (9, 3, 1)-BIBD, an affine plane of order 3.

2 What the elements of the removed block of the projective
plane represent in terms of the blocks of the affine plane?
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Affine plane of order 3 from projective plane of order 3

How can you prove these affine planes are always resolvable?
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Points and hyperplanes of a projective geometry PGd(q)
Theorem

Let q be a prime power and d ≥ 2 be an integer. Then there exists
a symmetric (

qd+1 − 1

q − 1
,
qq − 1

q − 1
,
qd−1 − 1

q − 1

)
− BIBD.

Proof. Let V = Fd+1
q . The points are the one-dimensional

subspaces of V and the blocks correspond to the d-dimensional
subspaces of V (hyperplanes).

each nonzero point defines a one dimensional subspace
together with 0, and each line has q − 1 of those nonzero

points, so v = qd+1−1
q−1 .

using a similar argument each subspace of dimension d

contains k = qd−1
q−1 one dimensional subspaces.

each pair of one dimensional subspaces (a plane) appear

together in λ = qd−1−1
q−1 d-dimensional subspaces.
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Corollary

Let q ≥ 2 be a prime power and d ≥ 2 be an integer. There there
exists a (

qd, qd−1,
qd−1 − 1

q − 1

)
− BIBD.

In addition, if d > 2, then there exists a(
qd − 1

q − 1
,
qd−1 − 1

q − 1
,
q(qd−2 − 1)

q − 1

)
− BIBD.

Proof: These are residual and derived BIBDs from the BIBD given
in the previous theorem. �
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Necessary conditions for the existence of symmetric designs

Theorem (Bruck-Ryser-Chowla theorem, v even)

If there exists a symmetric (v, k, λ)-BIBD with v even, then k − λ
is a perfect square.

The proof involves studying the determinant of MMT , where M is
the incidence matrix of the symmetric design. See page 30-31 of
Stinson 2004.

Example: prove that a (22, 7, 2)-BIBD does not exist.

Since b = λv(v−1)
k(k−1) = 2×22×21

7×6 = 22, if it exists it would be a
symmetric design. However, k − λ = 5 is not a perfect square, so
this design does not exist.

Symmetric Designs Lucia Moura



Symmetric designs Projective Planes and Geometries

(continued) Necessary conditions for symmetric designs

Theorem (Bruck-Ryser-Chowla theorem, v odd)

If there exists a symmetric (v, k, λ)-BIBD with v odd, then there
exist integers x, y and z (not all zero) such that

x2 = (k − λ)y2 + (−1)(v−1)/2λz2.

Together with some other number theorem results, the above
theorem can be used to show a condition to rule out the existence
of some projective planes.

Theorem

Suppose that n ≡ 1, 2 (mod 4), and there exists a prime
p ≡ 3 (mod 4) such that the largest power of p that divides n is
odd. Then a projective plane of order n does not exist.

Examples: projective planes do not exist for n = 6, 14, 21, 22, 30.
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