Symmetric Designs

Lucia Moura School of Electrical Engineering and Computer Science University of Ottawa lucia@eecs.uottawa.ca

Winter 2017

Symmetric Designs

Definition (Symmetric BIBD)

A BIBD with v = b (or equivalently, r = k or $\lambda(v - 1) = k^2 - k$) is called a *symmetric* BIBD.

Example: a (7,3,1)-design is symmetric. $V = \{1, 2, 3, 4, 5, 6, 7\}$ $\mathcal{B} = \{123, 145, 167, 246, 257, 347, 356\}$

	1234567
1	1110000
2	1001100
3	1000011
4	0101010
5	0100101
6	0011001
7	0010110

Symmetric Designs: an intersection property

Theorem (a symmetric design is "linked" i.e. has constant block intersection λ)

Suppose that (V, \mathcal{B}) is a symmetric (v, k, λ) -BIBD and denote $\mathcal{B} = \{B_1, \ldots, B_v\}$. Then, we have $|B_i \cap B_j| = \lambda$, for all $1 \leq i, j \leq v, i \neq j$, .

	1234567
1	1110000
2	1001100
3	1000011
4	0101010
5	0100101
6	0011001
7	0010110

Proof: We use similar methods as in the proof of Fisher's inequality. Let s_j be column j of the incidence matrix of the BIBD. Let's fix a block h, $1 \le h \le b$. Using equations derived for that other proof, we get.

$$\sum_{i \in B_h} \sum_{j:i \in B_j} s_j = \sum_{\{i:i \in B_h\}} ((r-\lambda)e_i + (\lambda, \dots, \lambda)) =$$
$$= (r-\lambda)s_h + k(\lambda, \dots, \lambda) = (r-\lambda)s_h + \sum_{j=1}^b \frac{\lambda k}{r}s_j$$

We can also compute this double sum in another way

$$\sum_{i \in B_h} \sum_{j:i \in B_j} s_j = \sum_{j=1}^b \sum_{i \in B_h \cap B_j} s_j$$
$$= \sum_{i=1}^b |B_h \cap B_j| s_j$$

proof (cont'd) Thus, $(r - \lambda)s_h + \sum_{j=1}^b \frac{\lambda k}{r}s_j = \sum_{j=1}^b |B_h \cap B_j|s_j$. Since r = k and b = v, this simplifies to

$$(r-\lambda)s_h + \sum_{j=1}^v \lambda s_j = \sum_{j=1}^v |B_h \cap B_j|s_j.$$

In the other proof, we showed that span $(s_1, \ldots, s_b) = \mathbb{R}^v$. Since v = b, $\{s_1, \ldots, s_v\}$ must be a basis of \mathbb{R}^v Since this is a basis, the coefficients of s_j in the right and left of the equation above must be equal. So, for j! = h we must have $|B_h \cap B_j| = \lambda$. Since this is true for every choice of h, $|B \cap B'| = \lambda$ for all $B, B' \in \mathcal{B}$. \Box

Other symmetric designs and properties

Corollary (the dual of a symmetric BIBD is a symmetric BIBD)

Suppose that M is the incidence matrix of a symmetric (v, k, λ) -BIBD. Then M^T is also the incidence matrix of a symmetric (v, k, λ) -BIBD.

Corollary (a linked BIBD must be symmetric)

Suppose that μ is a positive integer and (V, \mathcal{B}) is a (v, b, r, k, λ) -BIBD such that $|B \cap B'| = \mu$ for all $B, B' \in \mathcal{B}$. Then (V, \mathcal{B}) is a symmetric BIBD and $\mu = \lambda$.

Residual and derived BIBDs

Definition

Let (V, \mathcal{B}) be a a symmetric (v, k, λ) -BIBD, and let $B_0 \in \mathcal{B}$. Its derived design is

$$Der(V, \mathcal{B}, B_0) = (B_0, \{B \cap B_0 : B \in \mathcal{B}, B \neq B_0\})$$

and its residual design is

 $Res(V, \mathcal{B}, B_0) = (V \setminus B_0, \{B \setminus B_0 : B \in \mathcal{B}, B \neq B_0\})$

1	3	4	5	9
4	5	2	6	10
3	5	6	7	0
1	4	6	7	8
5	9	2	7	8
3	9	6	8	10
4	9	0	7	10
1	5	0	8	10
1	9	2	6	0
1	3	2	7	10
3	4	0	2	8

Theorem

Let
$$(V, \mathcal{B})$$
 be a symmetric (v, k, λ) -BIBD.
If $\lambda \geq 2$, then $Der(V, \mathcal{B}, B_0)$ is a $(k, v - 1, k - 1, \lambda, \lambda - 1)$ -BIBD.
If $k \geq \lambda + 2$, then $Res(V, \mathcal{B}, B_0)$ is a $(v - k, v - 1, k, k - \lambda, \lambda)$ -BIBD.

Symmetric Designs

200

Definition (projective plane)

An $(n^2 + n + 1, n + 1, 1)$ with $n \ge 2$ is called a *projective plane* of order n.

The (7,3,1)-BIBD is a projective plane of order 2.

Proposition

A projective plane is a symmetric BIBD.

Proof.
$$r = \frac{n^2 + n}{n} = n + 1 = k$$
; $b = \frac{vr}{k} = v = n^2 + n + 1$.

Symmetric Designs

Theorem

For every prime power $q \ge 2$, there exists a (symmetric) $(q^2 + q + 1, q + 1, 1)$ -BIBD (i.e. a projective plane of order q).

Proof. Let \mathbb{F}_q be the finite field of order q and consider V a tridimensional (3-D) vector space over \mathbb{F}_{q} . The points of the design are the 1-D subspaces of V and let the blocks of the design be the 2-D subspaces of V. The design makes a point incident to a block if the 1-D subspace is contained in the 2-D subspace. There are $\frac{q^3-1}{q-1} = q^2 + q + 1$ 1-D subspaces of V. So $b = q^2 + q + 1$. Each 2-D subspace B has q^2 points including (0,0,0); each of the $q^2 - 1$ nonzero points together with (0,0,0)defines a 1-D subspace of B; each of them are counted q-1 times one for each of the q-1 non-zero points inside it. So, there are $\frac{q^2-1}{q-1} = q + 1 (= k)$ 2-D subspaces inside B. There is a unique 2-D subspace containing any pair of 1-D subspaces, so $\lambda = 1$. \Box

▶ ★ 臣 ▶ …

Example: (13, 4, 1)-BIBD is a projective plane of order 3

(picture from Stinson 2004, Chapter 2)

$C_1 = \{000, 001, 002\}$	$B_1 = \{000, 001, 002, 010, 020, 011, 012, 021, 022\}$
$C_2 = \{000, 010, 020\}$	$B_2 = \{000, 001, 002, 100, 200, 101, 102, 201, 202\}$
$C_3 = \{000, 011, 022\}$	$B_3 = \{000, 001, 002, 110, 220, 111, 112, 221, 222\}$
$C_4 = \{000, 012, 021\}$	$B_4 = \{000, 001, 002, 120, 210, 121, 122, 211, 212\}$
$C_5 = \{000, 100, 200\}$	$B_5 = \{000, 010, 020, 100, 200, 110, 120, 210, 220\}$
$C_6 = \{000, 101, 202\}$	$B_6 = \{000, 010, 020, 101, 202, 111, 121, 212, 222\}$
$C_7 = \{000, 102, 201\}$	$B_7 = \{000, 010, 020, 102, 201, 112, 122, 211, 221\}$
$C_8 = \{000, 110, 220\}$	$B_8 = \{000, 011, 022, 100, 200, 111, 122, 211, 222\}$
$C_9 = \{000, 111, 222\}$	$B_9 = \{000, 011, 022, 101, 202, 112, 120, 210, 221\}$
$C_{10} = \{000, 112, 221\}$	$B_{10} = \{000, 011, 022, 102, 201, 110, 121, 212, 220\}$
$C_{11} = \{000, 120, 210\}$	$B_{11} = \{000, 012, 021, 100, 200, 112, 121, 212, 221\}$
$C_{12} = \{000, 122, 211\}$	$B_{12} = \{000, 012, 021, 101, 202, 110, 122, 211, 220\}$
$C_{13} = \{000, 121, 212\}$	$B_{13} = \{000, 012, 021, 102, 201, 111, 120, 210, 222\}.$

Fig. 2.2. The One-dimensional and Two-dimensional Subspaces of $(\mathbb{Z}_3)^3$

< /□ > < □

cont'd example: (13, 4, 1)-BIBD is a projective plane of order 3

(picture from Stinson 2004, Chapter 2)

$$A_{B_1} = \{C_1, C_2, C_3, C_4\}$$

$$A_{B_2} = \{C_1, C_5, C_6, C_7\}$$

$$A_{B_3} = \{C_1, C_8, C_9, C_{10}\}$$

$$A_{B_4} = \{C_1, C_{11}, C_{12}, C_{13}\}$$

$$A_{B_5} = \{C_2, C_5, C_8, C_{11}\}$$

$$A_{B_6} = \{C_2, C_6, C_9, C_{13}\}$$

$$A_{B_7} = \{C_2, C_7, C_{10}, C_{12}\}$$

$$A_{B_8} = \{C_3, C_5, C_9, C_{12}\}$$

$$A_{B_9} = \{C_3, C_6, C_{10}, C_{11}\}$$

$$A_{B_{10}} = \{C_3, C_7, C_8, C_{13}\}$$

$$A_{B_{11}} = \{C_4, C_5, C_{10}, C_{13}\}$$

$$A_{B_{12}} = \{C_4, C_6, C_8, C_{12}\}$$

$$A_{B_{13}} = \{C_4, C_7, C_9, C_{11}\}.$$

Fig. 2.3. The Blocks of the Projective Plane of Order 3

Symmetric Designs

Affine planes

Definition (affine plane)

An $(n^2, n, 1)$ with $n \ge 2$ is called an *affine plane* of order n.

Corollary

For every prime power $q \ge 2$, there exists a $(q^2, q, 1)$ -BIBD (i.e. an affine plane of order q).

Proof: Take the residual design of a projective plane of order n. \Box

Affine planes: exercise

- Use the (13,4,1) BIBD, a projective plane of order 3, to construct a (9,3,1)-BIBD, an affine plane of order 3.
- What the elements of the removed block of the projective plane represent in terms of the blocks of the affine plane?

Affine plane of order 3 from projective plane of order 3

$$\begin{array}{l} A_{B_1} = \{C_1, C_2, C_3, C_4\} \\ A_{B_2} = \{C_1 \quad C_5, C_6, C_7\} \\ A_{B_3} = \{C_1 \quad C_8, C_9, C_{10}\} \\ A_{B_4} = \{C_1 \quad C_{11}, C_{12}, C_{13}\} \\ A_{B_5} = \{C_2 \quad C_5, C_8, C_{11}\} \\ A_{B_6} = \{C_2 \quad C_6, C_9, C_{13}\} \\ A_{B_7} = \{C_2 \quad C_7, C_{10}, C_{12}\} \\ A_{B_8} = \{C_3 \quad C_5, C_9, C_{12}\} \\ A_{B_9} = \{C_3 \quad C_6, C_{10}, C_{11}\} \\ A_{B_{10}} = \{C_4 \quad C_5, C_1, C_{13}\} \\ A_{B_{12}} = \{C_4 \quad C_5, C_1, C_{13}\} \\ A_{B_{12}} = \{C_4 \quad C_6, C_8, C_{12}\} \\ A_{B_{13}} = \{C_4 \quad C_7, C_9, C_{11}\}. \end{array}$$

How can you prove these affine planes are always resolvable?

Points and hyperplanes of a projective geometry $PG_d(q)$

Theorem

Let q be a prime power and $d \ge 2$ be an integer. Then there exists a symmetric

$$\left(\frac{q^{d+1}-1}{q-1}, \frac{q^q-1}{q-1}, \frac{q^{d-1}-1}{q-1}\right) - \text{BIBD}.$$

Proof. Let $V = \mathbb{F}_q^{d+1}$. The points are the one-dimensional subspaces of V and the blocks correspond to the d-dimensional subspaces of V (hyperplanes).

- each nonzero point defines a one dimensional subspace together with 0, and each line has q-1 of those nonzero points, so $v = \frac{q^{d+1}-1}{q-1}$.
- using a similar argument each subspace of dimension d contains $k = \frac{q^d 1}{a 1}$ one dimensional subspaces.
- each pair of one dimensional subspaces (a plane) appear together in $\lambda = \frac{q^{d-1}-1}{q-1} d$ -dimensional subspaces.

Corollary

Let $q \ge 2$ be a prime power and $d \ge 2$ be an integer. There there exists a

$$\left(q^{d}, q^{d-1}, \frac{q^{d-1}-1}{q-1}\right) - \text{BIBD.}$$

In addition, if d > 2, then there exists a

$$\left(\frac{q^d-1}{q-1}, \frac{q^{d-1}-1}{q-1}, \frac{q(q^{d-2}-1)}{q-1}\right) - \text{BIBD.}$$

Proof: These are residual and derived BIBDs from the BIBD given in the previous theorem. \Box

Necessary conditions for the existence of symmetric designs

Theorem (Bruck-Ryser-Chowla theorem, v even)

If there exists a symmetric (v, k, λ) -BIBD with v even, then $k - \lambda$ is a perfect square.

The proof involves studying the determinant of MM^T , where M is the incidence matrix of the symmetric design. See page 30-31 of Stinson 2004.

Example: prove that a (22, 7, 2)-**BIBD does not exist.** Since $b = \frac{\lambda v(v-1)}{k(k-1)} = \frac{2 \times 22 \times 21}{7 \times 6} = 22$, if it exists it would be a symmetric design. However, $k - \lambda = 5$ is not a perfect square, so this design does not exist.

(continued) Necessary conditions for symmetric designs

Theorem (Bruck-Ryser-Chowla theorem, v odd)

If there exists a symmetric (v, k, λ) -BIBD with v odd, then there exist integers x, y and z (not all zero) such that

$$x^{2} = (k - \lambda)y^{2} + (-1)^{(v-1)/2}\lambda z^{2}.$$

Together with some other number theorem results, the above theorem can be used to show a condition to rule out the existence of some projective planes.

Theorem

Suppose that $n \equiv 1, 2 \pmod{4}$, and there exists a prime $p \equiv 3 \pmod{4}$ such that the largest power of p that divides n is odd. Then a projective plane of order n does not exist.

Examples: projective planes do not exist for n = 6, 14, 21, 22, 30.

• D. R. Stinson, "Combinatorial Designs: Constructions and Analysis", 2004 (Chapter 2).