BIBDs and Group Testing

Lucia Moura

School of Electrical Engineering and Computer Science University of Ottawa Iucia@eecs.uottawa.ca

Winter 2017

Review BIBDs

Definition (Balanced Incomplete Block Design)

Let v,k and λ be positive integers such that $v>k\geq 2$. A (v,k,λ) -BIBD is a design (V,\mathcal{B}) such that

- |V| = v,
- lacksquare every pair of distinct points is contained in exactly λ blocks.

We learned that in a (v, k, λ) -BIBD every point appears in $r = \frac{\lambda(v-1)}{k-1}$ blocks, and there are

$$b = \frac{vr}{k} = \frac{\lambda(v^2 - v)}{k^2 - k}$$
 blocks.

So a (v, k, λ) -BIBD can be written (v, b, r, k, λ) -BIBD where r and b are determined by the other 3 parameters.

Example: a $(v = 7, b = 14, r = 6, k = 3, \lambda = 2)$ -BIBD

v=7 points arranged in blocks of size k=3 such that every pair of points appear in $\lambda=2$ blocks

every point appears in $r=\frac{\lambda(v-1)}{k-1}=\frac{6}{2}$ blocks, and there are $b=\frac{vr}{k}=\frac{7\times 6}{3}=\lambda\frac{(v^2-v)}{k^2-k}$ blocks.

Necessary conditions for the existence of a (v, k, λ) -BIBD

If there exist a (v, k, λ) -BIBD then

$$k-1 \mid \lambda(v-1)$$

 $k(k-1) \mid \lambda v(v-1)$
 $v \leq b$ (Fisher's inequality)

Note: symbol | means "divides".

These necessary conditions are not always sufficient.

Incidence matrices

Definition

The incidence matrix M of a (v,b,r,k,λ) -BIBD (V,\mathcal{B}) is a $v\times b$ 01-matrix, with rows indexed by the points and columns indexed by the blocks and such that $M_{i,j}=1$ if $i\in B_j$ and $M_{i,j}=0$ if $i\not\in B_j$

For the previous (7, 14, 6, 3, 2)-design, we have M:

	123456789abcbde
1	10001011010001
2	11000101101000
3	01100010110100
4	10110000011010
5	01011000001101
6	00101101000110
7	00010110100011

Incidence matrices

Definition

Let M be the incidence matrix of a BIBD. The dual design is the design corresponding to the transpose of the incidence matrix M^T .

In general this design this is not a BIBD, unless v=b.

	1234567
1	1101000
2	0110100
3	0011010
4	0001101
5	1000110
6	0100011
7	1010001
8	1100010
9	0110001
а	1011000
b	0101100
С	0010110
d	0001011
е	1000101

Group Testing

A blood test application:

- test a large number of blood samples for a rare disease
- because tests are expensive we combine several samples in a group before testing
- a NEGATIVE result means none of the samples in the group is positive
- a POSITIVE result means at least one of the samples in the group is positive

Group testing aims at identifying the positive samples with a small number of tests, making it more efficient than testing the samples individually.

Adaptive and non-adaptive group testing

Adaptive GT: go doing tests and using the results of previous tests to choose new tests.

Advantage:

efficiency; avoiding unnecessary tests.

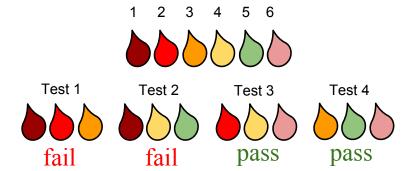
Classical method: binary splitting $O(d \log n)$ for n items and d defectives (positive blood samples)

Non adaptive GT: all the tests are decided ahead of time. Advantages:

- potentially less overhead (tests can be organized in a convenient manner)
- tests can be performed in parallel (important if the time to set up a test is long).

Method: Test schedule can be created using combinatorial designs.

Non adaptive group testing: example



Group Testing: applications

- Biological applications, DNA applications (see CGT book by Du and Hwang 1999).
- Batch verification of digital signatures using signature aggregation and CGT (Zaverucha and Stinson 2010).
- Locating modifications on signed documents (Bardini Idalino et al. 2015)

Nonadaptive group testing schedule

Definition

Let X be a set of m elements called samples and $\mathcal A$ a set of n subsets of X called tests. A non-adaptive group testing algorithm (m,n)-NAGTA has threshold d if the results of tests uniquely identifies any group of up to d defective (positive) items.

Example: $X = \{1, 2, 3, 4, 5, 6\}$ and

$$\mathcal{A} = \{\{1, 2, 3\}, \{1, 4, 5\}, \{2, 4, 6\}, \{3, 5, 6\}\}\$$

This is a (6,4)-NAGTA. Let's determine its threshold d.

Consider the (6,4)-NAGTA with $X=\{1,2,3,4,5,6\}$ and

$$\mathcal{A} = \{A_1 = \{1, 2, 3\}, A_2 = \{1, 4, 5\}, A_3 = \{2, 4, 6\}, A_4 = \{3, 5, 6\}\}.$$

Suppose the set of defectives is $U \subseteq (X)$.

Let's consider the tuple of results $R(U)=(r_1,r_2,r_3,r_4)$ where $r_i=1$ if $A_i\cap U\neq\emptyset$ (set A_i contains a defective item) and $r_i=0$, otherwise.

For example: $U = \{1, 4\}$ R(U) = (1110).

Note that another set of cardinality 2, $U' = \{2,4\}$ yields R(U') = R(U).

From this we conclude the threshold d < 2.

Is the threshold d = 1?

Is the threshold d=1 for this example?

(6,4)-NAGTA with $X=\{1,2,3,4,5,6\}$ and

$$\mathcal{A} = \{A_1 = \{1, 2, 3\}, A_2 = \{1, 4, 5\}, A_3 = \{2, 4, 6\}, A_4 = \{3, 5, 6\}\}.$$

Sets U of cardinality at most d=1 and their results:

So the threshold of this (6,4)-NAGTA is d=1.

$\mid U \mid$	R(U)
Ø	(0000)
{1}	(1100)
{2}	(1010)
{3}	(1001)
{4}	(0110)
{5}	(0101)
{6}	(0011)

Since all result vectors are distinct, the result vector will uniquely identify the set U of defectives, if $|U| \leq 2$.

BIBDs and Group Testing Lucia Moura

A construction of NAGTAs using BIBDs

Construction

Let (Y,\mathcal{B}) be a (v,b,r,k,1)-BIBD, and let (X,\mathcal{A}) be the dual incidence structure (i.e. the design whose transpose is the incidence matrix of (Y,\mathcal{B})). We use (X,\mathcal{A}) as a (b,v)-NAGTA. We will show d=k-1

Example: (Y, \mathcal{B}) is the (9, 3, 1)-BIBD we have seen before:

$$\mathcal{B} = \{123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357\}$$

$$(X, \mathcal{A})$$
 is a $(12, 9)$ -NAGTA with

$$A_1 = \{1, 4, 7, 10\}, A_2 = \{1, 5, 8, 11\}, A_3 = \{1, 6, 9, 12\}$$

$$A_4 = \{2, 4, 9, 11\}, A_5 = \{2, 5, 7, 12\}, A_6 = \{2, 6, 8, 10\}$$

$$A_7 = \{3, 4, 8, 12\}, A_8 = \{3, 5, 9, 10\}, A_9 = \{3, 6, 7, 11\}$$

Let's look at incidence matrix of the (9,3,1)-BIBD:

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	B_{10}	B_{11}	B_{12}
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

This gives a (12,6)-NAGTA with d=2.

(b,v)-NAGTAs with threshold k-1 from (v,k,1)-BIBDs

Theorem

If there exists a (v, b, r, k, 1)-BIBD, then there exists a (b, v)-NAGTA with threshold k-1.

Proof. Consider the given construction and let U with $|U| \le k-1$ and let r(U) be the result vector. First, note that

 $U \subseteq X \setminus \bigcup_{\{A_i \in \mathcal{A}: r_i = 0\}} A.$

We claim that since the NAGTA is the dual of a BIBD with $\lambda=1$,

 $U = X \setminus \bigcup_{\{A_i \in \mathcal{A}: r_i = 0\}} A.$

This is true, otherwise there exists $x \notin U$ such that $x \notin \bigcup_{\{A_i \in \mathcal{A}: r_i = 0\}} A$. In other words $x \notin U$ and $r_i = 1$ for every A_i such that $x \in A_i$.

There are k such sets and each of them must contain an element of U. But since $\lambda=1$ each of these elements that occur together with x in a block must be all different. So $|U| \geq k$, contradicting our assumption. \square

Algorithm to identify U from the (b, v)-NAGTA results

```
Algorithm IDENTIFY (R(U))
        U \leftarrow \emptyset:
        for i \leftarrow 1 to b do
            M[i] \leftarrow 1:
        for j \leftarrow 1 to v do
            if r_i = 0 then
               for each x \in A_i do M[x] \leftarrow 0;
        for i \leftarrow 1 to b do
            if M[i] = 1 then U \leftarrow U \cup \{i\};
        if |U| < k-1 then return U
           else return("the positive subset has size at least k");
```

References

- T. Bardini Idalino, L. Moura, R.F. Custodio and D. Panario, Locating modifications in signed data for partial data integrity, Information Processing Letters 115 (2015), 731–737.
- D-Z Du and F.K. Hwang, "Combinatorial group testing and its applications", 2nd ed, 1999.
- D. R. Stinson, "Combinatorial Designs: Constructions and Analysis", 2004.
- G. M. Zaverucha and D. R. Stinson. Group testing and batch verification. Lecture Notes in Computer Science 5973 (2010), 140-157. (ICITS 2010 Proceedings.)