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What is Design Theory?

Combinatorial design theory deals with the arrangement of
elements into subsets satisfying some “balance” property.
Many types of combinatorial designs: block designs, Steiner triple
systems, t-designs, Latin squares, orthogonal arrays, etc.
Main issues in the theory:

Existence of designs

Construction of designs

Enumeration of designs

There are many applications of designs.

cryptography

coding theory

design of experiments in statistics

others: interconnection networks, software testing,
tournament scheduling, etc.
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Basic Definitions

Balanced Incomplete Block Designs

Definition (Design)

A design is a pair (V,B) such that

1 V is a set of elements called points.

2 B is a collection (multiset) of nonempty subsets of V called
blocks.

Definition ( Balanced Incomplete Block Design)

Let v, k and λ be positive integers such that v > k ≥ 2. A
(v, k, λ)-BIBD is a design (V,B) such that

1 |V | = v,

2 each block contains exactly k points, and

3 every pair of distinct points is contained in exactly λ blocks.
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Basic Definitions

BIBD examples

(7, 3, 1)-BIBD: (Note: we write abc to denote block {a, b, c})

V = {1, 2, 3, 4, 5, 6, 7}
B = {123, 145, 167, 246, 257, 347, 356}

(9, 3, 1)-BIBD:

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {123, 456, 789, 147, 258, 369,

159, 267, 348, 168, 249, 357}

(10, 4, 2)-BIBD

V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {0123, 0145, 0246, 0378, 0579, 0689, 1278, 1369,

1479, 1568, 2359, 2489, 2567, 3458, 3467}
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Basic Definitions

Theorem (constant replication number r)

In a (v, k, λ)-BIBD, every point is contained in exactly r = λ(v−1)
k−1

blocks.

Proof: Let (V,B) be a (v, k, λ)-BIBD. For x ∈ V , let rx denote
the number of blocks containing x. Define a set

Ix = {(y,B) : y ∈ X, y 6= x,B ∈ B, {x, y} ⊆ B}

We compute |Ix| in two ways.

There are (v − 1) ways to choose y 6= x and for each one
there are λ blocks containing {x, y}. Thus, |Ix| = λ(v − 1).

There are rx ways to choose B such that x ∈ B. For each
choice of B there are k − 1 ways to choose y 6= x, y ∈ B.
Thus, |I| = rx(k − 1).

Combining the two equations, we get rx = λ(v−1)
k−1 , which is

independent of x. �
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Basic Definitions

Theorem (number of blocks b)

A (v, k, λ)-BIBD, has exactly b = vr
k = λ(v2−v)

k2−k blocks.

Proof:
Let (V,B) be a (v, k, λ)-BIBD. Define the set

J = {(x,B) : x ∈ X,B ∈ B, x,∈ B}

Computing |J | in two ways:

There are v ways to choose x and there are r blocks
containing x. Thus, |J | = vr.

There are b ways to choose B and for each B there are k
ways to choose x ∈ B. Thus, |J | = bk.

Thus, bk = vr. This gives b = vr
k and substituting r = λ(v−1)

k−1
completes the proof. �
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Basic Definitions

Necessary conditions for existence

Corollary

If there exist a (v, k, λ)-BIBD then

λ(v − 1) ≡ 0 (mod k − 1)
λv(v − 1) ≡ 0 (mod k(k − 1))

Examples of consequences for Steiner triple systems
(note: an STS(v) is a (v, 3, 1)-BIBD)

There exist no STS(8).

An STS(v) exists only if v ≡ 1, 3 (mod 6).

Parameters (v, b, r, k, λ) satisfying the trivial necessary conditions
above are called admissible.
These necessary conditions in the theorem are not always sufficient.
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Basic Definitions

Existence table - sample of admissible parameters

(source: Colbourn and Dinitz, Handbook of Combinatorial Designs, 2006)
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Basic Definitions

Constructions: building new block designs from old

Example: Add the blocks of two (7, 3, 1)-BIBDs to form a
(7, 3, 2)-BIBD.

Example 1 Example 2
124 126
235 237
346 341
457 452
561 563
672 674
713 715

124 124
235 235
346 346
457 457
561 561
672 672
713 713

Theorem (Sum construction)

If there exists a (v, k, λ1)-BIBD and a (v, k, λ2)-BIBD then there
exists a (v, k, λ1 + λ2)-BIBD.
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Basic Definitions

Constructions: building new block designs from old

Theorem (Block complementation)

If there exists a (v, b, r, k, λ)-BIBD then there exists a
(v, b, b− r, v − k, b− 2r + λ)-BIBD.

(7,7,3,3,1)-BIBD:
124
235
346
457
561
672
713

(7,7,4,4,2)-BIBD:
3567
4671
5712
6123
7234
1345
2678
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Basic Definitions

Constructions: building new block designs from old

Theorem (Block complementation)

If there exists a (v, b, r, k, λ)-BIBD, where k ≤ v − 2, then there
exists a (v, b, b− r, v − k, b− 2r + λ)-BIBD.

Proof:
Build the design (V,B′), where B′ = {X \B : B ∈ B}.
It is easy to see that this design has v points, b blocks, block size
k′ = v − k ≥ 2 and each point appears in r′ = b− r blocks.
We just need to show that every pair of points x, y (x 6= y), occurs
in λ′ = b− 2r + λ blocks. Define
axy = |{B ∈ B′ : x, y ∈ B}|,axy = |{B ∈ B′ : x ∈ B, y 6∈ B},
axy = |{B ∈ B′ : x 6∈ B′, y ∈ B},axy = |{B ∈ B′ : x, y 6∈ B},
We get: axy = λ′, axy = axy = b− r − λ′, axy = λ and
axy + axy + axy + axy = b. Substituting we get λ′ = b− 2r+ λ. �
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Basic Definitions

Theorem (Fisher’s inequality)

In any (v, b, r, k, λ)-BIBD we must have b ≥ v.

Proof. For each block Bj in the BIBD, consider its incidence
vector sj , where (sj)i = 1 if i ∈ Bj and (sj)i = 0, otherwise. Let
S = span(sj : 1 ≤ j ≤ b), that is S is the subspace of Rv spanned

by the sj ’s: S = {
∑b

j=1 αjsj : α1, . . . , αb ∈ R}. We will prove
S = Rv; once we do that, we can conclude that since S is spanned
by b vectors and it has dimension v, then we must have b ≥ v.
To show that S = Rv, it is sufficient to show how to write each
elements of a basis of Rv as a linear combination of the vectors in
{sj : 1 ≤ j ≤ b}. We will chose the canonical basis {e1, . . . , ev}
where ei is formed by a 1 in coordinate i and zero on the other
coordinates. It is enough then to show how to write ei as a linear
combination of sj ’s. We do this in the next page.
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Basic Definitions

(continuing the proof of Fisher’s inequality)
Note that

∑b
j=1 sj = (r, . . . , r), thus

∑b
j=1

1
rsj = (1, . . . , 1).

Then, fix a point i, 1 ≤ i ≤ v. We have∑
{j:xi∈Bj}

sj = (λ, . . . , λ) + (r − λ)ei

.
We claim r − λ 6= 0. Indeed, since λ(v − 1) = r(k − 1) and v > k
we get r > λ. So, since r − λ 6= 0, we can combine the equations
and get

ei =
∑

{j:xi∈Bj}

1
r − λ

sj −
b∑

j=1

λ

r(r − λ)
sj .

So we can write every member of a basis of Rv as a linear
combination of the Sj ’s. �
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Basic Definitions

Using Fisher’s inequality

Note that we can express the same conclusion b ≥ v equivalently
as r ≥ k and λ(v − 1) > k2 − k.

Consider the parameter set of a (16, 6, 1)-BIBD. We would have
r = 3 < k. So no such design can exist.

Introduction to Block Designs Lucia Moura



Basic Definitions

Resolvable BIBDs

Definition (resolvable BIBD)

In a BIBD, a parallel class is a set of blocks where each element of
V appear in exactly one block. A (v, k, 1)-BIBD is resolvable if
their blocks can be partitioned in r paralel classes.

Example: The (9, 3, 1)-BIBD is resolvable:

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {123, 456, 789, 147, 258, 369,

159, 267, 348, 168, 249, 357}

paralel classes:
p1: 123, 456, 789,
p2: 147, 258, 369,
p3: 159, 267, 348,
p4: 168, 249, 357
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Basic Definitions

Resolvable BIBDs: example of infinite families

There exist a resolvable Steiner triple system, i.e. a
(v, 3, 1)-design, for every v ≡ 3 (mod 6).

Kirkman schoolgirl problem (1850) “Fifteen young ladies in a
school walk out three abreast for seven days in succession: it is
required to arrange them daily so that no two shall walk twice
abreast.”

Sun Mon Tue Wed Thu Fri Sat
01, 06, 11 01, 02, 05 02, 03, 06 05, 06, 09 03, 05, 11 05, 07, 13 11, 13, 04
02, 07, 12 03, 04, 07 04, 05, 08 07, 08, 11 04, 06, 12 06, 08, 14 12, 14, 05
03, 08, 13 08, 09, 12 09, 10, 13 12, 13, 01 07, 09, 15 09, 11, 02 15, 02, 08
04, 09, 14 10, 11, 14 11, 12, 15 14, 15, 03 08, 10, 01 10, 12, 03 01, 03, 09
05, 10, 15 13, 15, 06 14, 01, 07 02, 04, 10 13, 14, 02 15, 01, 04 06, 07, 10
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Basic Definitions

Resolvable BIBDs: example of infinite families

Afine planes are (n2, n, 1)-BIBDs.

Theorem

For every prime power q, there exist an afine plane with n = q.

The construction uses finite fields.

Examples: (9,3,1)-BIBD, (16,4,1), (25,5,1), etc.

Theorem

Every affine plane is resolvable.
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Threshold schemes for secret sharing

“Suppose that a bank has a vault that must be opened every day.
The bank employs three senior tellers, but they do not want to
trust any individual with the combination. Hence, they would like
to devise a system that enables any two of the three senior tellers
to gain access to the vault.” (see Stinson 2004, chapter 11.2)

Definition

Let t and w be integers such that 2 ≤ t ≤ w. A (t, w)-threshold
scheme is a method to share a secret value K among a finite set
P = {P1, P2, . . . , Pw} of w participants in such way that any group
of t or more participants can compute the value K but no group of
t− 1 (or less) can determine the secret. If no group of t− 1 or less
participants can obtain any information about the value of K from
the information they collective hold, the scheme is called perfect.
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Theorem

If there exist a resolvable (v, w, 1)-BIBD then there exist a perfect
(2, w)-threshold scheme.

A resolvable (v, w, 1)-BIBD (X,B) has r paralel classes. Suppose
the dealer D wants to share a secret K, 1 ≤ K ≤ r.

1 D choses a random block B of B contained in parallel class K.

2 The w values in B are distributed among the w participants.
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Resolvable BIBDs: perfect threshold schemes

group of w = 3 managers
any 2 can open the safe

own share reveals no info

1 2 3

4 5 6

7 8 9

Example: key b
M1 gets “5”
M2 gets “2”
M3 gets “8”

shares key
(w = 3 people) (secret)

1, 2, 3 a
4, 5, 6 a
7, 8, 9 a

1, 4, 7 b
2, 5, 8 b
3, 6, 9 b

1, 5, 9 c
2, 7, 6 c
3, 4, 8 c

1, 6, 8 d
2, 4, 9 d
3, 5, 7 d
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Justification

Two participants determine a unique block (BIBD with
λ = 1), and therefore know its resolution class (the secret K).

A share s appears in a block in each of the r resolution
classes; therefore, a participant with share s is consistent with
any of the r possible secrets.

Therefore, we have a perfect threshold scheme.
Because a (q2, q, 1)-BIBD exists for any q that is a prime power,
we can build a perfect (q, 2)-threshold schemes to share a secret
among q people. In this case, the number of possible secrets is

r = q2−1
q−1 = q + 1,
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