
CSI 5165 Combinatorial Algorithms Winter 2018
Computer Science University of Ottawa

Homework Assignment #1 (100 points, weight 15%)
Due: Feb 14, 2018

Generating elementary combinatorial objects

1. (10 points) Simple practice with combinatorial generation algorithms
Calculate the result for the following operations. Show your work.

• Subsets:
Give the Successor and the Rank of 11010110 in the Gray code G8.

• k-subsets:
Give Rank of {3, 6, 7, 9} considered as a 4-subset of {1, . . . , 13} in lexicographic
and revolving-door order. What is the Successor in each of these orders?

• Permutations:
Find the rank and successor of the permutation [2, 4, 6, 7, 5, 3, 1] in lexicographic
and Trotter-Johnson order.

Unrank the rank r = 54 as a permutation of {1, 2, 3, 4, 5}, using the lexicographic
and Trotter-Johnson order.

2. (30 points) Another way to order the subsets of an n-set is to order them first in
increasing size, and then in lexicographic order for each fixed size. For example, when
n = 3, this ordering for the subsets of S = {1, 2, 3} is:

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

Develop unranking, ranking and successor algorithms for the subsets with respect
to this ordering.

Hint: Adapt the ideas developed for the lexicographical order of k-subsets of an n-set
to this situation. Note that efficiency will play a role in the evaluation.

3. (30 points) A derangement is a permutation [π[1], π[2], . . . , π[n]] of the set {1, 2, . . . , n}
such that π[i] 6= i, for all 1 ≤ i ≤ n. Let Dn denote the number of derangements of an
n-element set. Note that D1 = 0 and D2 = 1. To show that Dn = (n−1)(Dn−1+Dn−2),
for n ≥ 3, we can use the following argument:

We can set π[1] in n− 1 ways, namely with i = 2, 3, . . . n.
Once π[1] = i there are two possibilities:

• π[i] = 1, in which case we list all derangements of {1, . . . , n} \ {1, i} (there are
Dn−2 of them) in order to complete the current derangement.

1



• π[i] 6= 1, in which case we can rename value 1 as i list all derangements of
{1, 2, . . . , n} \ {1} (there are Dn−1 of them), and then change back i to 1 in each
of these derangements.

Use this recurrence relation (and its associate argument) to develop an algorithm to
generate all the derangements. Note that you do not need to necessarily come up
with a successor algorithm; indeed a recursive algorithm might be the easiest solution.
Ideally, you would not store several derangements in main memory at the same time,
that is, after a derangement has been generated it can be printed out; this would keep
your memory requirements in O(n) rather than exponential. You may have to keep
some n-arrays in your program in order to deal with current permutations, indexes
that are active and possible relabelings. Note that efficiency will play a role in the
evaluation.

(a) Provide a pseudocode of your algorithm (with similar level of detail as the algo-
rithms given in textbook). Please, also add any comments or extra explanations
necessary to understand why your pseudocode works.

(b) Implement our algorithm, providing a printout of the code, as well as outputs
for n = 3, 4, 5

4. (30 points) Generalized Gray codes

(a) Let m0,m1, . . .mn−1 be integer numbers greater than or equal 2. In this exercise
we want to generate all n-tuples (an−1, an−2, . . . , a1, a0) where 0 ≤ aj < mj for all
j, 0 ≤ j < n, according to the following minimal change ordering: two successive
tuples differ in exactly one component with the absolute value of their difference
equals to 1 (i.e. the component is either incremented or decremented by 1). Adapt
the binary reflected Gray code successor algorithm to the case of this generalized
Gray code. Give your algorithm in pseudocode form.

(b) Given the prime factorization of a number pe11 p
e2
2 · · · pett , give an algorithm to run

through all divisors of the number, by repeatedly multiplying or dividing by a
single prime at each step.
Hint: Use the algorithm developed in part 1.

2


