Homework Assignment #2 (100 points, weight 8%)
Due: Saturday Nov 14, 11:59PM

Guidelines for programming parts: Write your program in some high level programming language such as C, C++, Java. Hand in pseudocode, program and output results (note if too many tests are done, submit only a sample of output results and summarize results in tables). Please, specify the platform you run your tests on (machine speed, machine RAM and operating system).

1. (25 points) **Backtracking for self avoiding walks** (written question)
 A self-avoiding walk is described by a sequence of edges in the Euclidean plane, beginning at the origin, such that each of the edges is a horizontal or vertical segment of length 1, and such that no point in the plane is visited more than once. There are precisely 4 such walks of length 1, 12 walks of length 2, and 36 walks of length 3. Define choice sets and describe a backtracking algorithm for the problem of finding all self-avoiding walks of length \(n \).

2. (25 points) **Estimating backtracking tree size** (written question)
 Write an algorithm in pseudocode that uses the method of estimating the size of a backtrack tree described in Section 4.4, in order to estimate the total number of cliques of a given graph. The input for your algorithm consists of a graph \(G \) and the number \(P \) of probes, and the output is the estimated number of cliques of the graph based on \(P \) probes.

3. (50 points) **Backtracking program for maximum constant weight codes.**
 If \(x, y \in \{0, 1\}^n \), then recall that \(\text{Dist}(x, y) \) denotes the Hamming distance between \(x \) and \(y \); the weight of \(x \) is the number of non-zero components of \(x \) (since \(x \) is binary this is the number of 1s). A non-linear code of word length \(n \), minimum distance \(d \) and constant weight \(w \) is a subset \(\mathcal{C} \subseteq \{x \in \{0, 1\}^n : \text{weight}(x) = w\} \) such that \(\text{Dist}(x, y) \geq d \) for all \(x, y \in \mathcal{C} \). Denote by \(A(n, d, w) \) the maximum number of \(n \)-tuples in a length-\(n \) binary code of minimum distance \(d \) and weight \(w \).

 (a) Describe a backtracking algorithm to compute \(A(n, d, w) \) (give pseudocode and any other pertinent explanation).

 (b) Implement your algorithm and compute \(A(n, 4, w) \) for \(w = 3, 4, 5, \) and as many values as possible of \(n \geq 2w \). The known values for \(A(n, 4, w) \) for small values of \(n \) and \(d \) can be found in the following web page:

 \[
 \text{http://www.win.tue.nl/~aeb/codes/Andw.html}
 \]

 For each of your tests, report the input values, the final answer, the number of backtracking nodes visited and CPU time. Show a sample of results where you also show the binary codes produced, in addition to their size.

 You can use bounding and/or any problem characteristics to find an optimal solution as quickly as possible. Efficiency and clarity count.