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Introduction: Proteins & Protein-Protein Interactions

Proteins are essential organic compounds in all organisms and
participate in virtually every process within a cell

Proteins can work together (interact) to carry out various
functions and do so for a majority of biological functions

Protien-protein interactions are responsible for a cell’s general
behaviour and it’s response to stimuli

A protein complex is a group of two or more that interact
with one another to perform a certain function

Protein complexes are a cornerstone of many biological
processes
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Introduction: PIPE

PIPE: Protein-protein Interaction Prediction Engine

A computational tool used to predict whether two proteins
interact or not

PIPE3 has produced the first proteome-wide protein-protein
interaction predictions for C. Elegans and Homo Sapiens
organisms

These proteome-wide predictions can be viewed as graphs
where:

Each vertex represents a protein
Each edge represents an interaction (known or predicted)
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What is the problem?

Problem: Enumerate all protein complexes within the
proteome-wide interaction prediction graphs to identify
previously unknown protein complexes.

What will a protein complex look like in the graph?

Protein complexes are identified as dense subgraphs (pseudo
cliques) where each protein interacts with a significant number
of the other complex proteins.

Base Problem: Enumerate all dense subgraphs G ′ of a graph
G such that the G ′ has a significantly high number of edges.
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Reverse Search for Enumeration

Several known search techniques for enumeration problems

backtrack search
incremental search
DFS or BFS when objects to be listed are vertices of a graph

Reverse search is an exhaustive search technique which can be
considered as a special graph search
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Reverse Search for Enumeration

Assume we have a problem for which we would like to
enumerate a set of objects

Let G be a graph where the vertices represent the objects we
wish to enumerate and the edges represent two objects that
are considered adjacent

A local search algorithm on G is a procedure to move from
one vertex to a larger neighbour with respect to some
objective function

A vertex without a larger neighbour is a local optimum
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Reverse Search for Enumeration

Imagine a simple case where there is only one local optimal vertex
v∗.

Consider the digraph T with the same vertex set as G and the
edge set made up of the ordered pairs (x , x ′) of consecutive
pairs generated by the local search algorithm.

T is a tree spanning all vertices for G , rooted at v∗.

If we trace through T systematically (eg. by a DFS), we can
enumerate all vertices.

The major operation here is tracing each edge against its
orientation (reversing the local search algorithm)

No information regarding visited vertices needs to be stored
since T is a tree.
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Reverse Search for Enumeration

Algorithm 1: ReverseSearch(v)
output v
foreach neighbour w of v do

if f (w) = v then
ReverseSearch(w)

where f is the local search function.

To iterate over all vertices of G , we run ReverseSearch(v∗)
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Applying Reverse Search to Pseudo Clique Enumeration

We want to apply this idea to enumerate over all pseudo
cliques of a given graph

We need:

a way to score pseudo cliques
a definition of adjacent pseudo cliques
a parent-child relationship to define a traversal tree over all
pseudo cliques
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Pseudo Clique Enumeration: Basic Definitions

Let G = (V ,E ) be a graph with vertex set V and edge set E

For a vertex set U ⊆ V , E [U] is the set of edges whose
endpoints are both in U

G [U] = (U,E [U]) is the vertex induced subgraph by U

the density of a vertex induced subgraph is defined as
G [U] = |E [U]|/clq(|U|), where clq(n) is the number of edges
in a clique of n vertices

For a given threshold θ , 0 ≤ θ ≤ 1, G [U] is a considered a
pseudo clique if the density of G [U] is no less than θ
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Pseudo Clique Enumeration: Defining a Parent

Lemma 1: Let v be a vertex in G [K ] with the degree no greater
than the average degree in G [K ]. The density of K − {v} is no
less than the density of K .

For any pseudo clique K , K − {v} is also a pseudo clique.

Since any K will always have such a vertex, vertices can be
iteratively removed from K until K = ∅, passing through only
pseudo cliques

This definition of adjacency spans all pseudo cliques

The graph induced by this adjacency is not a tree
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Pseudo Clique Enumeration: Defining a Parent

For a vertex set K 6= ∅, we define v∗(K ) to be the vertex with
minimum degree in G [K ]. If there are two vertices of
minimum degree, take the lexicographically smaller one.

Define the parent prt(K ) of K by K − {v∗(K )}
If K is a pseudo clique, prt(K ) is a pseudo clique

The graph induced by this parent-child relation forms a tree

The definition of a parent does not depend on the threshold
value, so the parent-child relationship is identical for all
threshold values.
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Pseudo Clique Enumeration: Defining Children

The definition of the set of children of a given pseudo clique
K is obtained directly from the definition of the parent.

For a pseudo clique K ⊆ V , K ′ is a child of K if and only if
K ′ − K = {v∗(K ′)}
We can list the children of K by computing the density of
K ∪ {v} and {v∗(K ′)} for each vertex v 6∈ K

K has at most |V | − |K | children
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Reverse Search for Pseudo Clique Enumeration

Algorithm 2: EnumeratePseudoCliques(G = (V ,E ),K )

output K
foreach v 6∈ K do

if K ∪ {v} is a pseudo clique then
if v = {v∗(K ∪ {v}) then

EnumeratePseudoCliques(G = (V ,E ),K ∪ {v})

To iterate over all pseudo cliques of G , we run
EnumeratePseudoCliques(G = (V ,E ), {})
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Reverse Search for Pseudo Clique Enumeration Example

G = (V ,E ) where,

V = {0, 1, 2, 3, 4}
E = {{0, 1}, {0, 3}, {0, 4}, {1, 3}, {2, 4}, {3, 4}}

EnumeratePseudoCliques(G , { }) with θ = 1
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Identifying Novel Human Protein Complexes

The human predicted protein-protein interaction graph has:

172,184 interactions (edges), 130,470 which are novel
predictions made by PIPE
up to 22,513 proteins (data set has not been completely
compared)

Next steps:

Run code on graph to identify all potential complexes with a
relatively low θ
Filter list for complexes with

4-12 proteins
a mix of known and predicted interactions
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Conclusion

Proteins, protein-protein interactions and protein complexes

Reverse search for enumeration

Pseudo clique enumeration using reverse search

Plans to identify novel human protein complexes
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