Exhaustive Generation: Backtracking and Branch-and-bound

Lucia Moura

Fall 2013

Knapsack Problem

Knapsack (Optimization) Problem

Instance: Profits $p_{0}, p_{1}, \ldots, p_{n-1}$
Weights $w_{0}, w_{1}, \ldots, w_{n-1}$ Knapsack capacity M

Find: \quad and n-tuple $\left[x_{0}, x_{1}, \ldots, x_{n-1}\right] \in\{0,1\}^{n}$ such that $P=\sum_{i=0}^{n-1} p_{i} x_{i}$ is maximized, subject to $\sum_{i=0}^{n-1} w_{i} x_{i} \leq M$.

Example

Objects:	1	2	3	4
weight (lb)	8	1	5	4
profit	$\$ 500$	$\$ 1,000$	$\$ 300$	$\$ 210$

Knapsack capacity: $M=10 \mathrm{lb}$.
Two feasible solutions and their profit:

x_{1}	x_{2}	x_{3}	x_{4}	profit
1	1	0	0	$\$ 1,500$
0	1	1	1	$\$ 1,510$

This problem is NP-hard.

Naive Backtracking Algorithm for Knapsack

Examine all 2^{n} tuples and keep the ones with maximum profit.
Global Variables $X, O p t P, O p t X$.
Algorithm Knapsack1 (l)

$$
\text { if }(l=n) \text { then }
$$

$$
\text { if } \sum_{i=0}^{n-1} w_{i} x_{i} \leq M \text { then } C u r P \leftarrow \sum_{i=0}^{n-1} p_{i} x_{i} \text {; }
$$

$$
\text { if }(C u r P>O p t P) \text { then }
$$

$$
O p t P \leftarrow C u r P
$$

$$
O p t X \leftarrow\left[x_{0}, x_{1}, \ldots, x_{n-1}\right] ;
$$

else $x_{l} \leftarrow 1$; Knapsack1 $(l+1)$;
$x_{l} \leftarrow 0 ; \operatorname{KnAPSACK} 1(l+1)$;
First call: $\operatorname{Opt} P \leftarrow-1$; Knapsack1 (0).

Running time: $2^{n} n$-tuples are checked, and it takes $\Theta(n)$ to check each solution. The total running time is $\Theta\left(n 2^{n}\right)$.

A General Backtracking Algorithm

- Represent a solution as a list: $X=\left[x_{0}, x_{1}, x_{2}, \ldots\right]$.
- Each $x_{i} \in P_{i}$ (possibility set)
- Given a partial solution: $X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]$, we can use constraints of the problem to limit the choice of x_{l} to $\mathcal{C}_{l} \subseteq P_{l}$ (choice set).
- By computing \mathcal{C}_{l} we prune the search tree, since for all $y \in P_{l} \backslash \mathcal{C}_{l}$ the subtree rooted on $\left[x_{0}, x_{1}, \ldots, x_{l-1}, y\right]$ is not considered.

A General Backtracking Algorithm

Part of the search tree for the previous Knapsack example:

w_{i}	8	1	5	4
p_{i}	$\$ 500$	$\$ 1,000$	$\$ 300$	$\$ 210$

$$
M=10
$$

$>$: pruning

General Backtracking Algorithm with Pruning

Global Variables $X=\left[x_{0}, x_{1}, \ldots\right], \mathcal{C}_{l}$, for $\left.l=0,1, \ldots\right)$.
Algorithm Backtrack (l)
if $\left(X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right.$ is a feasible solution) then "Process it"
Compute \mathcal{C}_{l};
for each $x \in \mathcal{C}_{l}$ do
$x_{l} \leftarrow x ;$
Backtrack $(l+1)$;

Backtracking with Pruning for Knapsack

Global Variables $X, O p t P, O p t X$.
Algorithm Knapsack2 (l, CurW)
if $(l=n)$ then if $\left(\sum_{i=0}^{n-1} p_{i} x_{i}>O p t P\right)$ then

$$
\begin{aligned}
& \text { Opt } P \leftarrow \sum_{i=0}^{n-1} p_{i} x_{i} ; \\
& \text { Opt } X \leftarrow\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]
\end{aligned}
$$

if $(l=n)$ then $\mathcal{C}_{l} \leftarrow \emptyset$
else if $\left(C u r W+w_{l} \leq M\right)$ then $\mathcal{C}_{l} \leftarrow\{0,1\}$; else $\mathcal{C}_{l} \leftarrow\{0\}$;
for each $x \in \mathcal{C}_{l}$ do

$$
x_{l} \leftarrow x ;
$$

$$
\text { KnAPSACK2 }\left(l+1, C u r W+w_{l} x_{l}\right) ;
$$

First call: Knapsack2 $(0,0)$.

Backtracking: Generating all Cliques

Problem: All Cliques
Instance: a graph $G=(V, E)$.
FInd: all cliques of G without repetition

Cliques (and maximal cliques): $\emptyset,\{0\},\{1\}, \ldots,\{6\}$, $\{0,1\},\{0,6\},\{1,2\},\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{3,4\},\{5,6\}$, $\{0,1,6\},\{1,5,6\},\{2,3,4\}$.

Definition

Clique in $G(V, E): C \subseteq V$ such that for all $x, y \in C, x \neq y,\{x, y\} \in E$. Maximal clique: a clique not properly contained into another clique.

Many combinatorial problems can be reduced to finding cliques (or the largest clique):

- Largest independent set in G (stable set): is the same as largest clique in \bar{G}.

Many combinatorial problems can be reduced to finding cliques (or the largest clique):

- Largest independent set in G (stable set): is the same as largest clique in \bar{G}.
- Exact cover of sets by subsets: find clique with special property.

Many combinatorial problems can be reduced to finding cliques (or the largest clique):

- Largest independent set in G (stable set): is the same as largest clique in \bar{G}.
- Exact cover of sets by subsets: find clique with special property.
- Find a Steiner triple system of order v : find a largest clique in a special graph.

Many combinatorial problems can be reduced to finding cliques (or the largest clique):

- Largest independent set in G (stable set): is the same as largest clique in \bar{G}.
- Exact cover of sets by subsets: find clique with special property.
- Find a Steiner triple system of order v : find a largest clique in a special graph.
- Find all intersecting set systems: find all cliques in a special graph.

Many combinatorial problems can be reduced to finding cliques (or the largest clique):

- Largest independent set in G (stable set): is the same as largest clique in \bar{G}.
- Exact cover of sets by subsets: find clique with special property.
- Find a Steiner triple system of order v : find a largest clique in a special graph.
- Find all intersecting set systems: find all cliques in a special graph.
- Etc.

In a Backtracking algorithm, $X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]$ is a partial solution $\Longleftrightarrow\left\{x_{0}, x_{1}, \ldots, x_{l-1}\right\}$ is a clique.
But we don't want ot get the same k-clique k ! times:
$[0,1]$ extends to $[0,1,6]$
$[0,6]$ extends to $[0,6,1]$
So we require partial solutions for be in sorted order:
$x_{0}<x_{1}<x_{2}<\ldots<x_{l-1}$.
Let $S_{l-1}=\left\{x_{0}, x_{1}, \ldots, x_{l-1}\right\}$ for $X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]$.
The choice set of this point is:
if $l=0$ then $\mathcal{C}_{0}=V$
if $l>0$ then

$$
\begin{aligned}
\mathcal{C}_{l} & =\left\{v \in V \backslash S_{l-1}: v>x_{l-1} \text { and }\{v, x\} \in E \text { for all } x \in S_{l-1}\right\} \\
& =\left\{v \in \mathcal{C}_{l-1} \backslash\left\{x_{l-1}\right\}:\left\{v, x_{l-1}\right\} \in E \text { and } v>x_{l-1}\right\}
\end{aligned}
$$

So,
$\mathcal{C}_{0}=V$
$\mathcal{C}_{l}=\left\{v \in \mathcal{C}_{l-1} \backslash\left\{x_{l-1}\right\}:\left\{v, x_{l-1}\right\} \in E\right.$ and $\left.v>x_{l-1}\right\}$, for $l>0$
To compute \mathcal{C}_{l}, define:
$A_{v}=\{u \in V:\{u, v\} \in E\} \quad$ (vertices adjacent to v)
$B_{v}=\{v+1, v+2, \ldots, n-1\} \quad$ (vertices larger than v)
$\mathcal{C}_{l}=A_{x_{l-1}} \cap B_{x_{l-1}} \cap \mathcal{C}_{l-1}$.
To detect if a clique is maximal (set inclusionwise):
Calculate N_{l}, the set of vertices that can extend S_{l-1} :
$N_{0}=V$
$N_{l}=N_{l-1} \cap A_{x_{l-1}}$.
S_{l-1} is maximal $\Longleftrightarrow N_{l}=\emptyset$.

Algorithm AllCliques((l)
Global: $X, \mathcal{C}_{l}(l=0, \ldots, n-1), A_{l}, B_{l}$ pre-computed.

```
if (l=0) then output ([ ]);
    else output ([}[\mp@subsup{x}{0}{},\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{l-1}{}])
if (l=0) then }\mp@subsup{N}{l}{}\leftarrowV\mathrm{ ;
    else N}\mp@subsup{N}{l}{}\leftarrow\mp@subsup{A}{\mp@subsup{x}{l-1}{}}{}\cap\mp@subsup{N}{l-1}{}
if ( }\mp@subsup{N}{l}{}=\emptyset\mathrm{ ) then output ("maximal");
if (l=0) then }\mp@subsup{\mathcal{C}}{l}{}\leftarrowV\mathrm{ ;
    else }\mp@subsup{\mathcal{C}}{l}{}\leftarrow\mp@subsup{A}{\mp@subsup{x}{l-1}{}}{}\cap\mp@subsup{B}{\mp@subsup{x}{l-1}{}}{}\cap\mp@subsup{\mathcal{C}}{l-1}{}
for each ( }x\in\mp@subsup{\mathcal{C}}{l}{})\mathrm{ do
    x }\leftarrowx
    AllCliques(l + 1);
```

First call: AllCliques(0).

Average Case Analysis of AllCliques

Let G be a graph with n vertices and let $c(G)$ be the number of cliques in G.

The running time for AllCliques for G is in $O(n c(G))$, since $O(n)$ is an upper bound for the running time at a node, and $c(G)$ is the number of nodes visited.

Let \mathcal{G}_{n} be the set of all graphs on n vertices.
$\left|\mathcal{G}_{n}\right|=2^{\binom{n}{2}}$ (bijection between \mathcal{G}_{n} and all subsets of the set of unordered pairs of $\{1,2, \ldots, n\}$).

Assume the graphs in \mathcal{G}_{n} are equally likely inputs for the algorithm (that is, assume uniform probability distribution on \mathcal{G}_{n}).
Let $T(n)$ be the average running time of AllCliQues for graphs in \mathcal{G}_{n}. We will calculate $T(n)$.
$T(n)=$ the average running time of AllCliques for graphs in \mathcal{G}_{n}. Let $\bar{c}(n)$ be the average number of cliques in a graph in \mathcal{G}_{n}.

Then, $T(n) \in O(n \bar{c}(n))$.
So, all we need to do is estimating $\bar{c}(n)$.

$$
\bar{c}(n)=\frac{\sum_{G \in \mathcal{G}_{n}} c(G)}{\left|\mathcal{G}_{n}\right|}=\frac{1}{2^{\binom{n}{2}}} \sum_{G \in \mathcal{G}_{n}} c(G) .
$$

We will show that:

$$
\bar{c}(n) \leq(n+1) n^{\log _{2} n}, \text { for } n \geq 4
$$

Average Case Analysis of AllCuiqubs

Skeetch of the Proof:
Define the indicator function, for each sunset $W \subseteq V$:

$$
\mathcal{X}(G, W)= \begin{cases}1, & \text { if } W \text { is a clique of } G \\ 0, & \text { otherwise }\end{cases}
$$

Then,

$$
\begin{aligned}
\bar{c}(n) & =\frac{1}{2^{\binom{n}{2}}} \sum_{G \in \mathcal{G}_{n}} c(G) \\
& =\frac{1}{2^{\binom{n}{2}}} \sum_{G \in \mathcal{G}_{n}}\left(\sum_{W \subseteq V} \mathcal{X}(G, W)\right) \\
& =\frac{1}{2^{\binom{n}{2}}} \sum_{W \subseteq V} \sum_{G \in \mathcal{G}_{n}} \mathcal{X}(G, W)
\end{aligned}
$$

Now, for fixed $W, \sum_{G \in \mathcal{G}_{n}} \mathcal{X}(G, W)=2^{\binom{n}{2}-\binom{|W|}{2} \text {. }}$ (Number of subsets of $\binom{V}{2}$ containing edges of W)

$$
\begin{aligned}
\bar{c}(n) & =\frac{1}{2^{\binom{n}{2}}} \sum_{W \subseteq V} 2^{\binom{n}{2}-\binom{|W|}{2}} \\
& =\frac{1}{2^{\binom{n}{2}}} \sum_{k=0}^{n}\binom{n}{k} 2^{\binom{n}{2}-\binom{k}{2}}=\sum_{k=0}^{n} \frac{\binom{n}{k}}{\left.2^{(k} \begin{array}{c}
k \\
2
\end{array}\right)} .
\end{aligned}
$$

So, $\bar{c}(n)=\sum_{k=0}^{n} t_{k}$, where $t_{k}=\frac{\binom{n}{k}}{2^{\binom{k}{2}}}$.
A technical part of the proof bounds t_{k} as follows: $t_{k} \leq n^{\log _{2} n}$ (see the textbook for details)
So, $\bar{c}(n)=\sum_{k=0}^{n} t_{k} \leq \sum_{k=0}^{n} n^{\log _{2} n}=(n+1) n^{\log _{2} n} \in O\left(n^{\log _{2} n+1}\right)$.
Thus, $T(n) \in O(n \bar{c}(n)) \subseteq O\left(n^{\log _{2} n+2}\right)$.

Estimating the size of a Backtrack tree

State Space Tree: tree size $=10$

Probing path P_{1} :
Estimated tree size: $N\left(P_{1}\right)=15$

Probing path P_{2} :
Estimated tree size: $N\left(P_{2}\right)=9$

P2

Probing path P_{1} :
Estimated tree size: $N\left(P_{1}\right)=15$

Probing path P_{2} :
Estimated tree size: $N\left(P_{2}\right)=9$

Game for chosing a path (probing):
At each node of the tree, pick a child node uniformly at random. For each leaf L, calculate $P(L)$, the probability that L is reached. We will prove later that the expected value of \bar{N} of $N(L)$ turns out to be the size of the space state tree. Of course,

$$
\bar{N}=\sum_{L \text { leaf }} P(L) N(L) \quad \text { (by definition) }
$$

In the previous example, consider T (number is estimated number of nodes at this level)

$$
\begin{aligned}
& P\left(L_{1}\right)=1 / 4, P\left(L_{2}\right)=P\left(L_{3}\right)=1 / 8, P\left(L_{4}\right)=P\left(L_{5}\right)=P\left(L_{6}\right)=1 / 6 \\
& N\left(L_{1}\right)=1+2+4=7 \quad N\left(L_{2}\right)=N\left(L_{3}\right)=1+2+4+8=15 \\
& N\left(L_{4}\right)=N\left(L_{5}\right)=N\left(L_{6}\right)=1+2+6=9
\end{aligned}
$$

$$
\bar{N}=\sum_{i=1}^{6} P\left(L_{i}\right) N\left(L_{i}\right)=\frac{1}{4} \times 7+2 \times\left(\frac{1}{8} \times 15\right)+3 \times\left(\frac{1}{6} \times 9\right)=10=|T|
$$

Estimating the size of a Backtrack tree

In practice, to estimate \bar{N}, do k probes $L_{1}, L_{2}, \ldots, L_{k}$, and calculate the average of $N\left(L_{i}\right)$:

$$
N_{e s t}=\frac{\sum_{i=1}^{k} N\left(L_{i}\right)}{k}
$$

Algorithm EstimateBacktrackSize()

$$
s \leftarrow 1 ; N \leftarrow 1 ; l \leftarrow 0 ;
$$

Compute \mathcal{C}_{0};
while $\mathcal{C}_{l} \neq \emptyset$) do
$c \leftarrow\left|\mathcal{C}_{l}\right| ;$
$s \leftarrow c * s ;$
$N \leftarrow N+s ;$
$x_{l} \leftarrow$ a random element of \mathcal{C}_{l};
Compute \mathcal{C}_{l+1} for $\left[x_{0}, x_{1}, \ldots, x_{l}\right]$;
$l \leftarrow l+1$;
return N;

In the example below, doing only 2 probes:

$P_{1}:$	l	\mathcal{C}_{l}	c	x_{l}	s	N
					1	1
	0	b, c	2	b	2	3
	1	d, e	2	e	4	7
	2	i, j	2	i	8	$\underline{15}$
	3	\emptyset				

$P_{1}:$	l	\mathcal{C}_{l}	c	x_{l}	s	N
					1	1
	0	b, c	2	c	2	3
	1	f, g, h	3	g	6	$\underline{9}$
	2	\emptyset				

Theorem

For a state space tree T, let P be the path probed by the algorithm
EstimateBacktrackSize.
If $N=N(P)$ is the value returned by the algorithm, then the expected value of N is $|T|$.

Proof.

Define the following function on the nodes of T :

$$
S\left(\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right)= \begin{cases}1, & \text { if } l=0 \\ \left|\mathcal{C}_{l-1}\right| \times S\left(\left[x_{0}, x_{1}, \ldots, x_{l-2}\right]\right) & \end{cases}
$$

($s \leftarrow c * s$ in the algorithm)
The algorithm computes: $N(P)=\sum_{Y \in P} S(Y)$.

Estimating the size of a Backtrack tree

$P=P(X)$ is a path in T from root to leaf X, say $X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]$.
Call $X_{i}=\left[x_{0}, x_{1}, \ldots, x_{i}\right]$.
The probability that $P(X)$ chosen is:

$$
\frac{1}{\left|\mathcal{C}_{0}\left(x_{0}\right)\right|} \times \frac{1}{\left|\mathcal{C}_{1}\left(x_{1}\right)\right|} \times \ldots \times \frac{1}{\left|\mathcal{C}_{l-1}\left(x_{l-1}\right)\right|}=\frac{1}{S(X)}
$$

So,

$$
\begin{aligned}
\bar{N} & =\sum_{X \in \mathcal{L}(T)} \operatorname{prob}(P(X)) \times N(P(X)) \\
& =\sum_{X \in \mathcal{L}(T)} \frac{1}{S(X)} \sum_{Y \in P(X)} S(Y) \\
& =\sum_{Y \in T} \sum_{\{X \in \mathcal{L}(T): Y \in P(X)\}} \frac{S(Y)}{S(X)} \\
& =\sum_{Y \in T} S(Y) \sum_{\{X \in \mathcal{L}(T): Y \in P(X)\}} \frac{1}{S(X)}
\end{aligned}
$$

We claim that: $\sum_{\{X \in \mathcal{L}(T): Y \in P(X)\}} \frac{1}{S(X)}=\frac{1}{S(Y)}$.

Proof of the claim:

Let Y be a non-leaf. If Z is a child of Y and Y has c children, then $S(Z)=c \times S(Y)$.
So,

$$
\sum_{\{Z: Z \text { is a child of } Y\}} \frac{1}{S(Z)}=c \times \frac{1}{c \times S(Y)}=\frac{1}{S(Y)}
$$

Iterating this equation until all Z 's are leafs:

$$
\frac{1}{S(Y)}=\sum_{\{X: X \text { is a leaf descendant of } Y\}} \frac{1}{S(X)}
$$

So the claim is proved!

Thus,

$$
\begin{aligned}
\bar{N} & =\sum_{Y \in T} S(Y) \sum_{\{X \in \mathcal{L}(T): Y \in P(X)\}} \frac{1}{S(X)} \\
& =\sum_{Y \in T} S(Y) \frac{1}{S(Y)} \\
& =\sum_{Y \in T} 1=|T|
\end{aligned}
$$

The theorem is thus proved!

Exact Cover

Problem: Exact Cover

Instance: a collection \mathcal{S} of subsets of $\mathcal{R}=\{0,1, \ldots, n-1\}$.
Question: Does \mathcal{S} contain an exact cover of \mathcal{R}
Rephrasing the question:
Does there exist $\mathcal{S}^{\prime}=\left\{S_{x_{0}}, S_{x_{1}}, \ldots, S_{x_{l-1}}\right\} \subseteq \mathcal{S}$ such that every element of \mathcal{R} is contained in exactly one set of \mathcal{S}^{\prime} ?

Transforming into a clique problem:

$\mathcal{S}=\left\{S_{0}, S_{1}, \ldots, S_{m-1}\right\}$
Define: $G(V, E)$ in the following way: $V=\{0,1, \ldots, m-1\}$ $\{i, j\} \in E \Longleftrightarrow S_{i} \cap S_{j}=\emptyset$
An exact cover of \mathcal{R} is a clique of G that covers \mathcal{R}.

Exact Cover

Good ordering on \mathcal{S} for prunning:
\mathcal{S} sorted in decreasing lexicographical ordering.
Choice set:

$$
\begin{aligned}
\mathcal{C}_{0}^{\prime} & =V \\
\mathcal{C}_{l}^{\prime} & =A_{x_{l-1}} \cap B_{x_{l-1}} \cap \mathcal{C}_{l-1}^{\prime}, \text { if } l>0
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{x}=\left\{y \in V: S_{y} \cap S_{x}=\emptyset\right\} \quad \text { (vertices adjacent to } x \text {) } \\
& B_{x}=\left\{y \in V: S_{x}>_{\text {lex }} S_{y}\right\}
\end{aligned}
$$

Further pruning will be used to reduce \mathcal{C}_{l}^{\prime} by removing H_{r} 's, which will be defined later.

Example: (corrected from book page 121)

j	S_{j}	$\operatorname{rank}\left(S_{j}\right)$	$A_{j} \cap B_{j}$	corrected?
0	$0,1,3$,	104	10	Y
1	$0,1,5$	98	12	
2	$0,2,4$	84	7,9	Y
3	$0,2,5$	82	$8,9,12$	Y
4	$0,3,6$	73	5,9	Y
5	$1,2,4$	52	\emptyset	
6	$1,2,6$	49	11	Y
7	$1,3,5$	42	\emptyset	Y
8	$1,4,6$	37	\emptyset	
9	1	32	$10,11,12$	
10	$2,5,6$	19	\emptyset	
11	$3,4,5$	14	\emptyset	
12	$3,4,6$	13	\emptyset	

i	0	1	2	3	4	5	6
H_{i}	$0,1,2,3,4$	$5,6,7,8,9$	10	11,12	\emptyset	\emptyset	\emptyset


```
ExactCover \((n, \mathcal{S})\)
    Global \(X, \mathcal{C}_{l}, l=(0,1, \ldots)\)
    Procedure ExactCoverBT \(\left(l, r^{\prime}\right)\)
        if ( \(l=0\) ) then \(\begin{gathered}U_{0} \leftarrow\{0,1, \ldots, n-1\} \text {; } \\ r \longleftarrow 0 ;\end{gathered}\)
    else \(U_{l} \leftarrow U_{l-1} \backslash S_{x_{l-1}}\);
        \(r \leftarrow r^{\prime}\);
    while \(\left(r \notin U_{l}\right)\) and \((r<n)\) do \(r \leftarrow r+1\);
    if \((r=n)\) then output \(\left(\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right)\).
    if \((l=0)\) then \(\mathcal{C}_{0}^{\prime} \leftarrow\{0,1, \ldots, m-1\}\);
        else \(\mathcal{C}_{l}^{\prime} \leftarrow A_{x_{l-1}} \cap B_{x_{l-1}} \cap \mathcal{C}_{l-1}^{\prime} ;\)
    \(\mathcal{C}_{l} \leftarrow \mathcal{C}_{l}^{\prime} \cap H_{r} ;\)
    for each ( \(x \in \mathcal{C}_{l}\) ) do
        \(x_{l} \leftarrow x\);
        ExactCoverBT \((l+1, r)\);
```

Main

$$
m \leftarrow|\mathcal{S}| ;
$$

Sort \mathcal{S} in decreasing lexico order for $i \leftarrow 0$ to $m-1$ do

$$
\begin{aligned}
& A_{i} \leftarrow\left\{j: S_{i} \cap S_{j}=\emptyset\right\} ; \\
& B_{i} \leftarrow\{i+1, i+2, \ldots, m-1\}
\end{aligned}
$$

for $i \leftarrow 0$ to $n-1$ do

$$
H_{i} \leftarrow\left\{j: S_{j} \cap\{0,1, \ldots, i\}=\{i\}\right\} ;
$$

$H_{n} \leftarrow \emptyset ;$
ExactCoverBT(0,0);
(U_{i} contains the uncovered elements at level i. r is the smallest uncovered in U_{i}.)

Backtracking with bounding

When applying backtracking for an optimization problem, we use bounding for prunning the tree.
Let us consider a maximization problem.
Let $\operatorname{profit}(X)=$ profit for a feasible solution X.
For a partial soluion $X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]$, define

$$
\begin{aligned}
P(X)=\max \quad\{ & \operatorname{profit}\left(X^{\prime}\right): \text { for all feasible solutions } \\
& \left.X^{\prime}=\left[x_{0}, x_{1}, \ldots, x_{l-1}, x_{l}^{\prime}, \ldots, x_{n-1}^{\prime}\right]\right\} .
\end{aligned}
$$

A bounding function B is a real valued function defined on the nodes of the space state tree, such that for any feasible solution $X, B(X) \geq P(X)$. $B(X)$ is an upper boud on the profit of any feasible solution that is descendant of X in the state space tree.
If the current best solution found has value $O p t P$, then we can prune nodes X with $B(X) \leq O p t P$, since $P(X) \leq B(X) \leq O p t P$, that is, no descendant of X will improve on the current best solution.

General Backtracking with Bounding

Algorithm Bounding (l)

$$
\begin{aligned}
& \text { Global } X, O p t P, O p t X, \mathcal{C}_{l}, l=(0,1, \ldots) \\
& \text { if }\left(\left[x_{0}, x_{1}, \ldots, x_{l-1}\right] \text { is a feasible solution }\right) \text { then } \\
& \quad P \leftarrow \operatorname{profit}\left(\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right) \text {; } \\
& \text { if }(P>O p t P) \text { then } \\
& \quad O p t P \leftarrow P ; \\
& \quad O p t X \leftarrow\left[x_{0}, x_{1}, \ldots, x_{l-1}\right] ;
\end{aligned}
$$

Compute \mathcal{C}_{l};

$$
B \leftarrow B\left(\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right) ;
$$

$$
\text { for each }\left(x \in \mathcal{C}_{l}\right) \text { do }
$$

$$
\text { if } B \leq O p t P \text { then return; }
$$

$$
x_{l} \leftarrow x
$$

$$
\text { Bounding }(l+1)
$$

Maximum Clique Problem

Problem: Maximum Clique (optimization)
Instance: a graph $G=(V, E)$.
Find: a maximum clique of G.

This problem is NP-complete.

Maximum cliques:
$\{2,3,4,5\},\{3,4,5,6\}$

Modification of AllCliques to find the maximum clique (no bounding). Blue adds bounding to this algorithm.

Algorithm MaxClique(l)
Global: $X, \mathcal{C}_{l}(l=0, \ldots, n-1), A_{l}, B_{l}$ pre-computed.

$$
\begin{aligned}
& \text { if }(l>\text { OptSize }) \text { then } \\
& \text { OptSize } \leftarrow l ; \\
& \text { OptClique } \leftarrow\left[x_{0}, x_{1}, \ldots, x_{l-1}\right] ; \\
& \text { if }(l=0) \text { then } \mathcal{C}_{l} \leftarrow V ; \\
& \quad \text { else } \mathcal{C}_{l} \leftarrow A_{x_{l-1}} \cap B_{x_{l-1}} \cap \mathcal{C}_{l-1} ; \\
& \mathbf{M} \leftarrow \mathbf{B}\left(\left[\mathbf{x}_{\mathbf{0}}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{l-1}\right]\right) ; \\
& \text { for each }\left(x \in \mathcal{C}_{l}\right) \text { do } \\
& \quad \text { if }(\mathbf{M} \leq \mathbf{O p t S i z e}) \text { then return; } \\
& \quad x_{l} \leftarrow x ; \text { MAxCLIQUE }(l+1) ;
\end{aligned}
$$

Main
OptSize $\leftarrow 0$; MaxClique (0); output OptClique;

Bounding Functions for MaxClique

Definition

Induced Subgraph
Let $G=(V, E)$ and $W \subseteq V$. The subgraph induced by $W, G[W]$, has vertex set W and edgeset: $\{\{u, v\} \in E: u, v \in W\}$.

If we have:
partial solution: $X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]$ with choice set \mathcal{C}_{l},
extension solution $X=\left[x_{0}, x_{1}, \ldots, x_{l-1}, x_{l}, \ldots, x_{j}\right]$,
Then $\left\{x_{l}, \ldots, x_{j}\right\}$ must be a clique in $G\left[\mathcal{C}_{l}\right]$.
Let $m c(l)$ denote the size of a maximum clique in $G\left[\mathcal{C}_{l}\right]$, and let $u b(l)$ be an upper bound on $m c(l)$.
Then, a general bounding function is $B(X)=l+u b[l]$.

Bound based on size of subgraph

General bounding function: $B(X)=l+u b[l]$.
Since $m c(l) \leq\left|\mathcal{C}_{l}\right|$, we derive the bound:

$$
B_{1}(X)=l+\left|\mathcal{C}_{l}\right| .
$$

Bounds based on colouring

Definition (Vertex Colouring)
Let $G=(V, E)$ and k a positive integer. A (vertex) k-colouring of G is a function

$$
\text { Color: } V \rightarrow\{0,1, \ldots, k-1\}
$$

such that, for all $\{x, y\} \in E, \operatorname{Color}(x) \neq \operatorname{Color}(y)$.
Example: a 3-colouring of a graph:

- colour 0
\bigcirc colour 1
Q colour 2

Lemma

If G has a k-colouring, then the maximum clique of G has size at most k.
Proof. Let C be a clique. Each $x \in C$ must have a distinct colour. So, $|C| \leq k$. This is true for any clique, in particular for the maximum clique.

Finding the minimum colouring gives the best upper bound, but it is a hard problem. We will use a greedy heuristic for finding a small colouring. Define ColourClass $[h]=\{i \in V: \operatorname{Colour}[i]=h\}$.
$\operatorname{GreedyColour}(G=(V, E))$
Global Colour
$k \leftarrow 0$; // colours used so far
for $i \leftarrow 0$ to $n-1$ do
$h \leftarrow 0$;
while $(h<k)$ and $\left(A_{i} \cap \operatorname{ColOURCLASS}[h] \neq \emptyset\right)$ do $h \leftarrow h+1 ;$
if $(h=k)$ then $k \leftarrow k+1$;
ColourClass $[h] \leftarrow \emptyset$;
Colourclass $[h] \leftarrow$ ColourClass $[h] \cup\{i\}$;
Colour $[i]=h$;
return k;

Sampling Bound:

Statically, beforehand, run GreedyColour (G), determining k and Colour $[x]$ for all $x \in V$.
$\operatorname{SAMPLINGBound}\left(X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right)$
Global \mathcal{C}_{l}, Colour
return $l+\left|\left\{\operatorname{Colour}[x]: x \in \mathcal{C}_{l}\right\}\right| ;$

Greedy Bound:

Call GreedyColour dynamically.
$\operatorname{GreedyBound}\left(X=\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right)$
Global \mathcal{C}_{l}
$k \leftarrow \operatorname{GreedyColour}\left(G\left[\mathcal{C}_{l}\right]\right)$;
return $l+k$;

Number of nodes of the backtracking tree: random graphs with edge density 0.5

\# vertices	50	100	150	200	250
\# edges	607	2535	5602	9925	15566
max clique size	7	9	10	11	11
bounding function:					
none	8687	257145	1659016	7588328	26182672
size bound	3202	57225	350310	1434006	5008757
sampling bound	2268	44072	266246	1182514	4093535
greedy bound	430	5734	22599	91671	290788

Branch-and-bound

The book presents branch-and-bound as a variation of backtracking in which the choice set is tried in decreasing order of bounds.

However, branch-and-bound is usually a more general scheme.
It often involves keeping all active nodes in a priority queue, and processing nodes with higher priority first (priority is given by upper bound).

Next we look at the book's version of branch-and-bound.

Algorithm BranchAndBound (l)
external $B(), \operatorname{Profit}() ;$ global $\mathcal{C}_{l}(l=0,1, \ldots)$
if $\left(\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right.$ is a feasible solution) then $P \leftarrow \operatorname{Profit}\left(\left[x_{0}, x_{1}, \ldots, x_{l-1}\right]\right)$
if $(P>O p t P)$ then $O p t P \leftarrow P$;

$$
O p t X \leftarrow\left[x_{0}, x_{1}, \ldots, x_{l-1}\right] ;
$$

Compute \mathcal{C}_{l}; count $\leftarrow 0$; for each $\left(x \in \mathcal{C}_{l}\right)$ do nextchoice $[$ count $] \leftarrow x$; nextbound $[$ count $] \leftarrow B\left(\left[x_{0}, x_{1}, \ldots, x_{l-1}, x\right]\right)$; count \leftarrow count +1 ;
Sort nextchoice and nextbound by decreasing order of nextbound; for $i \leftarrow 0$ to count -1 do
if (nextbound $[i] \leq O p t P$) then return;
$x_{l} \leftarrow$ nextchoice $[i]$;
BranchAndBound $(l+1)$;

