
CSI 5165 Combinatorial Algorithms Fall 2014
Computer Science University of Ottawa

Homework Assignment #2 (100 points, weight 15%)
Due: November 4 at 11:30 p.m. (submit to blackboard)

Guidelines for programming parts: Write your program in some high level programming language such as C, C++,
Java. Hand in pseudocode, program and output results (note if too many tests are done, print only a sample of
output results and summarize results in tables). Please, specify the platform you run your tests on (machine speed,
machine RAM and operating system).

1. (50 points) Backtracking for reduced Latin squares
(This is based on Exercise 4.13 of the textbook.)
A Latin square of order n is an n by n array A, whose entries are chosen from an n-element set Y, such that
each symbol in Y occurs in exactly one cell in each row and in each column of A. A Latin square on the
n-element set Y = {1, 2, . . . , n} is said to be a reduced Latin square if the elements in the first row and in the
first column occur in the natural order 1, 2, . . . , n. The reduced Latin squares of order 4 are as follows:

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

(a) (25 points) Write a backtracking algorithm to determine the number ln of reduced Latin squares of order
n. Show pseudocode and program. Efficiency and effectiveness counts, and these types of discounts will
be applied in part (a), even though their effects will be noticed in later parts.

(b) (5 points) Run your program for n = 2, 3, 4, 5, 6, reporting ln, as well as the number of backtrack tree
nodes visited and the total running time (excluding the time for I/O!).

(c) (10 points) Based on the backtracking algorithm above, using Knuth’s method for estimating the size
of a backtracking tree (see Section 4.4 of textbook), design an algorithm to estimate the size of your
backtracking tree. Show pseudocode and program. Using your program above, estimate the number of
nodes in your backtracking tree for 2 ≤ n ≤ 8. For each n, show your estimate for different sample sizes,
and report your results for 2 ≤ n ≤ 8, showing how the estimation compares to the exact values obtained
for the range 2 ≤ n ≤ 6. Using the exact and estimated data obtained, can you estimate the running time
for inputs of size n = 7, 8? Justify your reasoning.

(d) (10 points) Use Knuth’s generalized method (which allows for weights on the nodes of the backtracking
tree), to estimate the number of reduced Latin squares of order n, for n = 4, . . . , 7. For more details see
page 113 of the textbook by Kaski and OIstergard. The idea is to put weight 1 on nodes that correspond
to a reduced Latin square and weight zero on all the other nodes. Use a large enough number of repetitions
of the estimator algorithm to get good estimate for n = 7; show your results for n = 7 and 5 different
values of repetitions.

The number of reduced Latin squares of order n is known up to n = 11 and given in the following table:1

n 1 2 3 4 5 6 7 8
ln 1 1 1 4 56 9408 16942080 535281401856

n 9 10 11
ln 377597570964258816 7580721483160132811489280 5363937773277371298119673540771840

1Double check numbers in: McKay and Wanless, On the number of Latin squares, Ann. Combin. 9, 2005, 335-344.

1



2. (50 points) Backtracking program for nonlinear codes.

If x, y ∈ {0, 1}n, then recall that Dist(x, y) denotes the Hamming distance between x and y. A non-linear code
of length n and minimum distance d is a subset C ⊆ {0, 1}n such that Dist(x, y) ≥ d for all x, y ∈ C. Denote
by A(n, d) the maximum number of n-tuples in a length-n non-linear code of minimum distance d.

(a) (35 points) Describe a backtracking algorithm to compute A(n, d) (give pseudocode and any other pertinent
explanation).
Implement your algorithm and compute A(n, 4) for 4 ≤ n ≤ 8. The correct values for A(n, d) for small
values of n and d can be found on the following web page:

http://www.win.tue.nl/~aeb/codes/binary-1.html

For each of your tests, report the input values, the final answer, the number of backtracking nodes visited
and CPU time. Efficiency and clarity count.

(b) (5 points) Show a pseudocode and give a program for Knuth’s method to estimate the size of the backtrack-
ing tree for your algorithm. Use this method to estimate the size of the backtracking tree for 4 ≤ n ≤ 11.
For each value of n, choose a suitably large number P of probes and show the estimate for at least 5 values
of number of probes equally spaced within [10, P ].
Does this estimate approximates well the number of nodes you found in the previous question? (If not,
you may have to check correctness of the computations there or your estimation here).

(c) (10 points) Show a pseudocode and give a program for Knuth’s generalized method to estimate the size
of A(n, 4) for n = 4, . . . , 16. The exact values can be found on the web site given in part a.

2


