
CSI 5165 Combinatorial Algorithms Fall 2011
Computer Science University of Ottawa

Homework Assignment #2 (100 points, weight 15%)
Due: November 2 at 10:00 a.m. (in lecture)

Guidelines for programming parts: Write your program in some high level programming language such as C, C++,
Java. Hand in pseudocode, program and output results (note if too many tests are done, print only a sample of
output results and summarize results in tables). Please, specify the platform you run your tests on (machine speed,
machine RAM and operating system).

1. (50 points) SUDOKU by backtracking

SUDOKU is a placement puzzle in which symbols from 1 to 9 are placed in cells of a 9× 9 grid made up of
nine 3× 3 subgrids, called regions. The grid is partially filed with some symbols (the “givens”). The grid must
be completed so that each row, column and region contains exactly one instance of each symbol.

Example1: easy for humans Example 2: medium for humans Example 3: hard for humans
5 1 4

2 3 7

7 3 1 8 2

4 5 7

1 3

8 2 6

1 8 5 6 9

2 8 3

6 4 7

4 5 6

6 1 8 9

3 7

8 5

4 3

6 7

2 6

1 5 4 3

2 7 1

2 6 7

6 2 1

4 8

5 9 3

3 5

2 8 7

1 4

7 8 6

5 3 8

In this exercise you will write two backtracking algorithms for solving SUDOKU:

(a) The first algorithm will try to fill out the first available table position in order (say left to right, top to
bottom).

(b) The second algorithm will try to fill out the table position that has the smallest number of values allowed.

Efficiency and clarity count!

For each of the algorithms:

• Write a pseudocode for a backtracking algorithm that solves SUDOKU.

• Implement your algorithm and test the instances given in the course web site (report any input errors):

http://www.site.uottawa.ca/~lucia/courses/5165-11/a2data/

The input for your program consists of a 9 × 9 matrix representing the SUDOKU puzzle, where empty
spaces in the grid are entered as 0s.
The output of your programs should consists of:

– the input grid;
– the solution grid;
– statistics on the algorithm performance such as: total number backtracking nodes and running time

(CPU time for the solution, not including I/O), etc.

• Compare the results of both algorithms by displaying a table with the statistics for each algorithm on the
same input values. Discuss the results.

1



2. (50 points) Backtracking program for nonlinear codes.

If x, y ∈ {0, 1}n, then recall that Dist(x, y) denotes the Hamming distance between x and y. A non-linear code
of length n and minimum distance d is a subset C ⊆ {0, 1}n such that Dist(x, y) ≥ d for all x, y ∈ C. Denote
by A(n, d) the maximum number of n-tuples in a length-n non-linear code of minimum distance d.

• (35 points) Describe a backtracking algorithm to compute A(n, d) (give pseudocode and any other pertinent
explanation).
Implement your algorithm and compute A(n, 4) for 4 ≤ n ≤ 8. The correct values for A(n, d) for small
values of n and d can be found on the following web page:

http://www.win.tue.nl/~aeb/codes/binary-1.html

For each of your tests, report the input values, the final answer, the number of backtracking nodes visited
and CPU time. Efficiency and clarity count.

• (15 points) Show a pseudocode and give a program for Knuth’s method to estimate the size of the
backtracking tree for your algorithm. Use this method to estimate the size of the backtracking tree for
4 ≤ n ≤ 11. For each value of n, choose a suitably large number P of probes and show the estimate for
at least 5 values of number of probes equally spaced within [10, P ].
Does this estimate approximates well the number of nodes you found in the previous question? (If not,
you may have to check correctness of the computations there or your estimation here).

• Bonus challenge (optional, 10 points): use an algorithm to determine the values of A(9, 4) and A(10, 4),
which are 20 and 40 respectively; only work on the bonus challenge after all parts of your assignment have
been completed.

2


