1. (50 points) **SUDOKU by backtracking**

SUDOKU is a placement puzzle in which symbols from 1 to 9 are placed in cells of a 9 × 9 grid made up of nine 3 × 3 subgrids, called regions. The grid is partially filled with some symbols (the “givens”). The grid must be completed so that each row, column and region contains exactly one instance of each symbol.

In this exercise you will write two backtracking algorithms for solving **SUDOKU**:

(a) The first algorithm will try to fill out the first available table position in order (say left to right, top to bottom).

(b) The second algorithm will try to fill out the table position that has the smallest number of values allowed.

Efficiency and clarity count!

For each of the algorithms:

- Write a **pseudocode** for a backtracking algorithm that solves **SUDOKU**.
- Implement your algorithm and test the instances given in the course web site (report any input errors):

 http://www.site.uottawa.ca/~lucia/courses/5165-11/a2data/

The input for your program consists of a 9 × 9 matrix representing the SUDOKU puzzle, where empty spaces in the grid are entered as 0s.

The output of your programs should consists of:
- the input grid;
- the solution grid;
- statistics on the algorithm performance such as: total number backtracking nodes and running time (CPU time for the solution, not including I/O), etc.

- Compare the results of both algorithms by displaying a table with the statistics for each algorithm on the same input values. Discuss the results.
2. (50 points) **Backtracking program for nonlinear codes.**

If \(x, y \in \{0, 1\}^n \), then recall that \(\text{Dist}(x, y) \) denotes the Hamming distance between \(x \) and \(y \). A non-linear code of length \(n \) and minimum distance \(d \) is a subset \(C \subseteq \{0, 1\}^n \) such that \(\text{Dist}(x, y) \geq d \) for all \(x, y \in C \). Denote by \(A(n, d) \) the maximum number of \(n \)-tuples in a length-\(n \) non-linear code of minimum distance \(d \).

- (35 points) Describe a backtracking algorithm to compute \(A(n, d) \) (give pseudocode and any other pertinent explanation).

 Implement your algorithm and compute \(A(n, 4) \) for \(4 \leq n \leq 8 \). The correct values for \(A(n, d) \) for small values of \(n \) and \(d \) can be found on the following web page:

 For each of your tests, report the input values, the final answer, the number of backtracking nodes visited and CPU time. Efficiency and clarity count.

- (15 points) Show a pseudocode and give a program for Knuth’s method to estimate the size of the backtracking tree for your algorithm. Use this method to estimate the size of the backtracking tree for \(4 \leq n \leq 11 \). For each value of \(n \), choose a suitably large number \(P \) of probes and show the estimate for at least 5 values of number of probes equally spaced within [10, \(P \)]. Does this estimate approximates well the number of nodes you found in the previous question? (If not, you may have to check correctness of the computations there or your estimation here).

- Bonus challenge (optional, 10 points): use an algorithm to determine the values of \(A(9, 4) \) and \(A(10, 4) \), which are 20 and 40 respectively; only work on the bonus challenge after all parts of your assignment have been completed.