Universal Cycles for Permutations Theory and Applications

Alexander Holroyd
Microsoft Research

Frank Ruskey
University of Victoria

Brett Stevens
Carleton University
Aaron Williams
Carleton University

Combinatorial Generation

Orders of combinatorial objects and efficient algorithms that create these orders

- Objects often represented as strings
- Concentrate on objects of a fixed size and composition
- Connections to graph theory
- Efficient algorithms often reveal structure

Combinatorial objects represented by binary strings

Combinatorial Generation

Historic Examples

- Binary reflected Gray code Patent 2,632,058 (1947)

Combinatorial Generation

Historic Examples

- de Bruijn cycle (1946)

Eulerian cycle in the de Bruijn graph
de Bruijn cycle for $n=4$

Combinatorial Generation

Historic Examples

- Johnson-Trotter-Steinhaus (1960s)

1234	3124	2314
1243	3142	2341
1423	3412	2431
4123	4312	4231
4132	4321	4213
1432	3421	2413
1342	3241	2143
1324	3214	2134

JTS for $n=4$

Hamilton cycle in the permutohedron

The Permutohedron

Definition

- Let $[n]=\{1,2, \ldots, n\}$
- Let τ_{k} be the adjacenttransposition (k k+l)
- Nodes are labeled by the permutations of [n]
- Edges between nodes that differ by $\boldsymbol{\tau}_{\mathrm{k}}$ for $\mathrm{k} \epsilon[\mathrm{n}-1]$

- For example, 1234 is adjacent to 2134, 1324,

The Permutohedron for $n=4$ and 1243

The Permutohedron

Hamilton Cycles

- Hamilton cycles are (cyclic) adj-transposition Gray codes
- Hamilton cycle uses a $\boldsymbol{\tau}_{\mathrm{k}}$ edge for each $k \in[n-1]$
- JTS generated by a loopless algorithm but successor is not trivial. For example, what follows 84253167?

Johnson-Trotter-Steinhaus for $\mathrm{n}=4$

The Permutohedron

Spanning Trees

- We will see that the spanning trees of the permutohedron are a special type of Gray code
- We define two spanning trees in which it is easy to determine each vertex's parent and children

JTS Spanning Tree

The Permutohedron

Spanning Trees

- The declining prefix of a permutation of $[n]$ is the longest prefix of the form n n-1 n-2 ... j
- The inclining symbol is the symbol is $\mathrm{j}-1$
- For example, in 87624153 declining prefix: 876 inclining symbol: 5

The Declining Spanning Tree

The Permutohedron

Spanning Trees

- The declining spanning tree is defined as follows:
- The root is $\mathrm{n} \mathrm{n}-1 \mathrm{n}-2 \ldots 1$
- The parent of every other vertex is obtained by swapping the inclining symbol to the left.
- For example, the parent of
 87624153 is 87624513

The Declining Spanning Tree

The Permutohedron

Spanning Trees

- The decreasing prefix of a permutation of $[n]$ is the longest prefix of the form abc... with $a>b>c>\ldots . .23410$
- The increasing symbol is the symbol following the decreasing prefix
- For example, in 75326148 decreasing prefix: 7532 increasing symbol: 6

The Decreasing Spanning Tree

The Permutohedron

Spanning Trees

- The decreasing spanning tree is defined as follows:
- The root is $\mathrm{n} \mathrm{n}-1 \mathrm{n}-2 \ldots 1$
- The parent of every other vertex is obtained by swapping the increasing symbol to the left.
- For example, the parent of

The Decreasing Spanning Tree

Rotator Graph

Definition

- Let σ_{k} be the prefix-shift
($12 \ldots \mathrm{k}$)
- Nodes are labeled by the permutations of [n]
- Arcs directed from nodes to nodes that differ by σ_{k} for $k \in[n]$ (except for $k=1$)

The rotator graph for $\mathrm{n}=3$ is a particular Cayley graph

- For example, 1234 has arcs directed to 2134, 2314 , and 2341

Rotator Graph

Hamilton Cycles

- Hamilton cycles are (cyclic) prefix-shift Gray codes.
- Hamilton cycles do not necessarily use a σ_{k} arc for each $k \in[n]$
- Restricted rotator graphs use a subset of
$\sigma_{2} \sigma_{3} \ldots \sigma_{n}$
- Do they exist?

Combinatorial Generation

Prefix-Shift Gray Codes

- Corbett (1992) used the rotator graph for point-topoint multiprocessor networks

$$
\begin{aligned}
& \begin{array}{l}
321_{3}^{3} \\
213^{3} \\
132^{3} \\
312^{2} \\
123^{3} \\
231_{2}^{3}
\end{array} \\
& \text { Corbett for } n=3
\end{aligned}
$$

Combinatorial Generation

Prefix-Shift Gray Codes

- W (2009) cool-lex order. First symbol a is shifted past or between the first $b c$ with $b<c$. First case if $a>b$ and second case if $a>b$. If no such $b c$ then past last symbol. 432123414231 $3214 \quad 3421 \quad 2431$ 213442134312
$12342143 \quad 3142$
$\begin{array}{lll}2314 & 1243 & 1342\end{array}$
$3124 \quad 2413 \quad 3412$ 132441234132
324114231432

Universal Cycles

Definition

- A universal cycle is a circular string containing each string in a set L exactly once as a substring
- If there are no universal cycles for L then a simple encoding of each string in L can be considered
- Decoding a universal cycle gives its "Gray code" of L

A de Bruijn cycle for the binary strings of length 4

Universal Cycles

Permutations

- Universal cycles for the permutations of $[n]$ do not exist when $\mathrm{n}>2$

A single permutation is forced to repeat

Universal Cycles

Permutations using Relative Order

- Permutations can be encoded by relative order
- For example, 5143 has the relative order of 4132
- Johnson proved n+1 symbols are sufficient for the permutations of [n]
- However, the "Gray code" is not a Gray code

Each permutation of [4] is encoded by relative order

Universal Cycles

Permutations using Shorthand

- Permutations can be encoded by shorthand
- For example, 413 is shorthand for 4132
- Shorthand encodings are the (n-1)-perms of [$n]$
- Jackson proved universal cycles exist for the k-perms of [n] when $\mathrm{k}<\mathrm{n}$

Each permutation of [4] is encoded by shorthand

- Efficient Construction? -Knuth

Shorthand Universal Cycles for Permutations

Gray Code using $\sigma_{n} / \sigma_{n-1}$

- Each shorthand substring is followed by its missing symbol or its first symbol
- Permutations differ by a prefix shift $\sigma_{n} / \sigma_{n-1}$
- Gray codes using $\sigma_{n} / \sigma_{n-1}$ correspond to shorthand universal cycles for permutations

The next symbol is 1 or 8

$$
\left.8^{65432}\right\rangle
$$

87654321 followed by 76543218 prefix shift of length 8

87654321 followed by 76543281 prefix shift of length 7

Shorthand Universal Cycles for Permutations

Binary Representation

- Due to the $\sigma_{n} / \sigma_{n-1}$ Gray code the cycle can be represented by n ! bits 0 / 1
- A cycle is max-weight or min-weight if the sum of its binary representation is the maximum or minimum among all such cycles

Binary representation (outer) for the universal cycle (inner)

Shorthand Universal Cycles for Permutations

Periodic

- If n appears as every nth symbol then the cycle is periodic
- The sub-permutations appear between each copy of n and are the permutations of [n-1]

Shorthand Universal Cycles for Permutations

Applications

- The $\sigma_{n} / \sigma_{n-1}$ operations are efficient in linked lists and circular arrays
- The $\sigma_{n} / \sigma_{n-1}$ Gray code allows faster exhaustive solutions to Traveling Salesman problems like Shortest Hamilton Path
- Min-weight is desirable

76543218
increment start

is followed by

Shorthand Universal Cycles for Permutations

Applications

- The $\sigma_{n} / \sigma_{n-1}$ operations are efficient in linked lists and circular arrays
- The $\sigma_{n} / \sigma_{n-1}$ Gray code allows faster exhaustive solutions to Traveling Salesman problems like Shortest Hamilton Path
- Min-weight is desirable

Constructions

Recycling

- The Gray code of a cycle for [n] are sub-permutations of a cycle for $[n+1]$

Gray code
$321,213,132,312,123,231$

Constructions

Recycling

- Any $\sigma_{n} / \sigma_{n-1}$ Gray code for [n] are sub-permutations of a periodic cycle for $[n+1]$
- This helped answer the question of Knuth's for an efficient construction by Ruskey-Williams
- Recycling inserts the symbol $\mathrm{n}+\mathrm{l}$ between a given order of permutations of [n]

Constructions

Recycling

- Holroyd-Ruskey-W proved cool-lex /7-order recyclable
- Stevens-W proved Corbett's order is recyclable
- Most orders not recyclable; adj-transposition Gray codes
- Cool-lex and 7-order give min-weight periodic cycles

321, 213, 123, 231, 312, 132 cool-lex order

Sub-permutations
$321,213,123,231,312,132$

Min-Weight Periodic Cycles

A Local View...

The Cayley graph with generators $\sigma_{n} / \sigma_{n-1}$ has alternating cycles of length four. If C is a Hamilton cycle, then the arcs on each 4 -cycle satisfy: (i) both σ_{n} arcs in C and both σ_{n-1} arcs not in C, or (ii) both σ_{n} arcs not in C and both σ_{n-1} arcs in C.

Min-Weight Periodic Cycles

A Local View...

Min-Weight Periodic Cycles

A Local View...

Label nodes with rotation starting with n .

Min-Weight Periodic Cycles

A Local View...

Remove two edges and relabel to get the permutohedron. Note: The universal cycle is periodic iff it does not use these two types of edges.

Min-Weight Periodic Cycles

A Global View...

- Shorthand universal cycles are Hamilton cycles in the $\sigma_{n} / \sigma_{n-1}$ Cayley graph

Cayley graph of the symmetric group for $n=4$ with generators $\sigma_{n} / \sigma_{n-1}$

Min-Weight Periodic Cycles

A Global View...

- Shorthand universal cycles 2_{213}^{213} are Hamilton cycles in the $\sigma_{n} / \sigma_{n-1}$ Cayley graph
- Hamilton cycles enter/exit each $\sigma_{n}{ }^{n}$ cycle so after contraction min-weight Ham cycles=spanning tree

Directed cycles using σ_{n} are contracted

Min-Weight Periodic Cycles

A Global View...

- Shorthand universal cycles are Hamilton cycles in the $\sigma_{n} / \sigma_{n-1}$ Cayley graph
- Hamilton cycles enter/exit each $\sigma_{n}{ }^{n}$ cycle so after contraction min-weight Ham cycles=spanning tree

Directed cycles using σ_{n} are contracted

Min-Weight Periodic Cycles

A Global View...

- Shorthand universal cycles are Hamilton cycles in the $\sigma_{n} / \sigma_{n-1}$ Cayley graph
- Hamilton cycles enter/exit each $\sigma_{n}{ }^{n}$ cycle so after contraction min-weight Ham cycles=spanning tree

Edges are removed

Min-Weight Periodic Cycles

A Global View...

- Shorthand universal cycles are Hamilton cycles in the $\sigma_{n} / \sigma_{n-1}$ Cayley graph
- Hamilton cycles enter/exit each $\sigma_{n}{ }^{n}$ cycle so after contraction min-weight Ham cycles=spanning tree
- Remove arcs to get the permutohedron and its spanning trees are periodic

Vertices relabeled to obtain the permutohedron for n-1

Min-Weight Periodic Cycles

Characterization

- Theorem: There is a simple bijection between the min-weight periodic shorthand universal cycles for permutations of [n] and spanning trees of the permutohedron for [n-1]

The decreasing spanning tree for the permutohedron for [3]

Min-Weight Periodic Cycles

Characterization

- Theorem: There is a simple bijection between the min-weight periodic shorthand universal cycles for permutations of [n] and spanning trees of the permutohedron for [n-1]

The shorthand universal cycle for the permutations of [4] from cool-lex order

Memoryless Gray Code Algorithm

The Gray codes for the cool-lex and 7-order shorthand universal cycles for permutations can be created by simple memoryless rules

Theorem 7 Suppose $\mathbf{a} \in \Pi(n)$ where $m=\max \left(a_{1}, a_{n}\right)$ and d is the minimum value in its decrementing substring. The permutation of $\mathrm{B}(n)$ that follows \mathbf{a} is

- $\mathbf{a} \sigma_{n-1}$ if $d-1 \leq m<n$,
- $\mathbf{a} \sigma_{n}$ otherwise.

Rule for creating the 7-order shorthand universal cycle Gray code
Theorem 8 Suppose $\mathbf{a} \in \Pi(n)$ where $m=\max \left(a_{1}, a_{n}\right)$ and d is the last index in its decreasing substring. The permutation of $C(n)$ that follows \mathbf{a} is

- $\mathbf{a} \sigma_{n-1}$ if $m<n$ and either (i) $d=n$ or (ii) $d=n-1$ and $a_{1}<a_{n-1}$,
- $\mathbf{a} \sigma_{n}$ otherwise.

Rule for creating the cool-lex shorthand universal cycle Gray code

CAT Generation of Sub-Permutations

1: visit()
2: for $j \leftarrow 1$ to $m-2$
3: $\quad \operatorname{shift}(j, m-1)$
4: for $i \leftarrow m-2$ down to j 5: Bell7 $(m+1)$
5: $\quad \operatorname{Cool}(i)$
6: $\quad a_{i} \leftrightarrow a_{i+1}$
7: end
8: end

1: if $m=n$ then

```
```

2: visit()

```
```

2: visit()
3: return
3: return
4: end
5: $\operatorname{Bell7}(m+1)$
4: end
5: $\operatorname{Bell7}(m+1)$
6: $\operatorname{shift}(n-m, n-1)$
6: $\operatorname{shift}(n-m, n-1)$
7: for $i \leftarrow n-2$ down to n
7: for $i \leftarrow n-2$ down to n
8: $\quad \operatorname{Bell} 7(m+1)$
8: $\quad \operatorname{Bell} 7(m+1)$
9: $\quad a_{i} \leftrightarrow a_{i+1}$
9: $\quad a_{i} \leftrightarrow a_{i+1}$
-0: end

```
```

-0: end

```
```


Loopless Generation of Binary Strings

```
1: \(a_{1} \cdots a_{n-1} \leftarrow 0 \cdots 0\)
    \(d_{1} \cdots d_{n-1} \leftarrow 1 \cdots 1\)
    \(f_{1} \cdots f_{n-1} \leftarrow 1 \cdots n-1\)
    loop
        \(j \leftarrow f_{1}\)
        if \(a_{j}=0\) or \(a_{j}=n-j-1\) then
            output( \(001^{n-2}\) )
        else if \(d_{j}=1\) then
            output \(\left(001^{j-1} 0^{n-a_{j}-j-1} 10^{a j-1}\right)\)
        else
            output \(\left(001^{j-1} 0^{a_{j}} 10^{n-j-a_{j}-2}\right)\)
        end
        if \(j=n-1\) then
            return
        end
        \(f_{1} \leftarrow 1\)
        \(a_{j} \leftarrow a_{j}+d_{j}\)
        if \(a_{j}=0\) or \(a_{j}=n-j-1\) then
            \(d_{j} \leftarrow-d_{j}\)
            \(f_{j} \leftarrow f_{j+1}\)
            \(f_{j+1} \leftarrow j+1\)
        end
    end
```

Loopless algorithm for the binary representation of the shorthand universal cycle whose sub-permutations are 7-order

Open and Closed Problems

- An efficient construction for (periodic) max-weight shorthand universal cycles is open
- An efficient construction for shorthand universal cycles for the permutations of a multiset has been solved

Shorthand universal cycle for the permutations of $\{0,0,0,1,1,1\}$ ie a fixed-density de Bruijn cycle for $n=6$ and $d=3$

