

Universal Cycles for Permutations Theory and Applications

Alexander Holroyd Microsoft Research

P

N

Frank Ruskey University of Victoria

Brett Stevens Carleton University

Aaron Williams *Carleton University*

Combinatorial Generation

Orders of combinatorial objects and efficient algorithms that create these orders

- Objects often represented as strings
- Concentrate on objects of a fixed size and composition
- Connections to graph theory
- Efficient algorithms often reveal structure

Combinatorial objects represented by binary strings

Combinatorial Generation Historic Examples

• Binary reflected Gray code Patent 2,632,058 (1947)

BRGC for n=3

Hamilton cycle in the cube

Combinatorial Generation Historic Examples • de Bruijn cycle (1946)

Eulerian cycle in the de Bruijn graph

000

001

010

011

100

110

de Bruijn cycle for n=4

Combinatorial Generation Historic Examples

• Johnson-Trotter-Steinhaus (1960s)

JTS for n=4

Hamilton cycle in the permutohedron

Definition

- Let [n] = {1,2,...,n}
- Let τ_k be the adjacenttransposition (k k+1)
- Nodes are labeled by the permutations of [n]
- Edges between nodes that differ by τ_k for $k \in [n-1]$
- For example, 1234 is adjacent to 2134, 1324, and 1243

The Permutohedron for n=4

Hamilton Cycles

- Hamilton cycles are (cyclic) adj-transposition Gray codes
- Hamilton cycle uses a τ_k edge for each k \in [n-1]
- JTS generated by a loopless algorithm but successor is not trivial.
 For example, what follows 84253167?

Johnson-Trotter-Steinhaus for n=4

Spanning Trees

- We will see that the spanning trees of the permutohedron are a special type of Gray code
- We define two spanning trees in which it is easy to²³¹⁴ determine each vertex's parent and children

Spanning Trees

- The *declining prefix* of a permutation of En] is the longest prefix of the form n n-1 n-2 ... j
- The *inclining symbol* is the symbol is j-1
- For example, in 87624153 declining prefix: 876 inclining symbol: 5

The Declining Spanning Tree

Spanning Trees

- The *declining spanning tree* is defined as follows:
- The root is n n-1 n-2 ... 1
- The parent of every other vertex is obtained by swapping the inclining symbol to the left.
- For example, the parent of 87624153 is 87624513

The Declining Spanning Tree

The Permutohedron Spanning Trees

- The *decreasing prefix* of a permutation of [n] is the longest prefix of the form a b c ... with a > b > c > ...²³⁴¹
- The *increasing symbol* is the symbol following the decreasing prefix
- For example, in 75326148 decreasing prefix: 7532 increasing symbol: 6

The Decreasing Spanning Tree

Spanning Trees

- The *decreasing spanning* tree is defined as follows:
- The root is n n-1 n-2 ... 1
- The parent of every other vertex is obtained by swapping the increasing symbol to the left.
- For example, the parent of 75326148 is 75362148

The Decreasing Spanning Tree

Rotator Graph

Definition

- Let σ_k be the prefix-shift (1 2 ... k)
- Nodes are labeled by the permutations of [n]
- Arcs directed from nodes

 to nodes that differ by σ_k
 for k ∈ [n] (except for k=1)
- For example, 1234 has arcs directed to 2134, 2314, and 2341

The rotator graph for n=3 is a particular Cayley graph

Rotator Graph

- Hamilton Cycles
- Hamilton cycles are (cyclic) prefix-shift Gray codes.
- Hamilton cycles do not necessarily use a σ_k arc for each k ε [n]
- Restricted rotator graphs use a subset of $\sigma_2 \sigma_3 \dots \sigma_n$
- Do they exist?

Combinatorial Generation Prefix-Shift Gray Codes • Corbett (1992) used the rotator graph for point-to-

point multiprocessor networks

2143 1342 **1432**⁴ **3421**⁴ **1324** ['] ⁴ 3142 ⁴ **2413**⁴ **1423**⁴ Corbett for n=3 Corbett for n=4

Comb	oinato	orial G	enerati	on
Prefix-Shift	t Gray	Codes	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
• W (2009) coo or between th second case if	I-lex or e first b a>h If	der. First c with b<	symbol a <c. ca<="" first="" td=""><td>is shifted past se if a>b and st last symbol</td></c.>	is shifted past se if a>b and st last symbol
Second case II	4321	2341	4231	st last symbol.
	3214	3421	2431	
	2134	4213	4312	
	1234	2143	3142	
	2314	1243	1342	
	3124	2413	3412	
	1324	4123	4132	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3241	1423	1432	
	C	ool-lex for n	=4	

Universal Cycles

Definition

- A universal cycle is a circular string containing each string in a set L exactly once as a substring
- If there are no universal cycles for L then a simple *encoding* of each string in L can be considered
- Decoding a universal cycle gives its "Gray code" of L

Universal Cycles

Permutations

 Universal cycles for the permutations of [n] do not exist when n > 2

A single permutation is forced to repeat

Universal Cycles Permutations using Relative Order

- Permutations can be encoded by *relative order*
- For example, 5143 has the relative order of 4132
- Johnson proved n+1 symbols are sufficient for the permutations of [n]
- However, the "Gray code" is not a Gray code

Each permutation of [4] is encoded by relative order

 $\mathbf{\Lambda}$

Universal Cycles Permutations using Shorthand

- Permutations can be encoded by *shorthand*
- For example, 413 is shorthand for 4132
- Shorthand encodings are the (n-1)-perms of [n]
- Jackson proved universal cycles exist for the k-perms of [n] when k < n
- Efficient Construction? Knuth

Shorthand Universal Cycles for Permutations Gray Code using σ_n / σ_{n-1} $\sim 6543_{-2}$

- Each shorthand substring is followed by its missing symbol or its first symbol
- Permutations differ by a prefix shift σ_n / σ_{n-1}
- Gray codes using σ_n / σ_{n-1} correspond to shorthand universal cycles for permutations

The next symbol is 1 or 8

6 5 4

87654321 followed by 76543218 prefix shift of length 8

87654321 followed by 76543281 prefix shift of length 7

Shorthand Universal Cycles for Permutations

Binary Representation

 Due to the σ_n / σ_{n-1} Gray code the cycle can be represented by n! bits 0 / 1

 A cycle is *max-weight* or *min-weight* if the sum of its binary representation is the maximum or minimum among all such cycles

Binary representation (outer) for the universal cycle (inner)

Shorthand Universal Cycles for Permutations

Periodic

- If n appears as every nth symbol then the cycle is periodic
- The *sub-permutations* appear between each copy of n and are the permutations of [n-1]

A periodic shorthand universal cycle of the form 4...4...4...4...4...4...

Shorthand Universal Cycles for Permutations

Applications

- The σ_n / σ_{n-1} operations are efficient in linked lists and circular arrays
- The σ_n / σ_{n-1} Gray code allows faster exhaustive solutions to Traveling Salesman problems like Shortest Hamilton Path
- Min-weight is desirable

76543218 increment start

76543281 increment start adj-transposition

Shorthand Universal Cycles for Permutations Applications

- The σ_n / σ_{n-1} operations are efficient in linked lists and circular arrays
- The σ_n / σ_{n-1} Gray code allows faster exhaustive solutions to Traveling Salesman problems like Shortest Hamilton Path
- Min-weight is desirable

Constructions

Recycling

• The Gray code of a cycle for [n] are sub-permutations of a cycle for [n+1]

> Gray code 321, 213, 132, 312, 123, 231

Sub-permutations 321, 213, 132, 312, 123, 231

Constructions

Recycling

- Any σ_n / σ_{n-1} Gray code for [n] are sub-permutations of a periodic cycle for [n+1]
- This helped answer the question of Knuth's for an efficient construction by Ruskey-Williams
- Recycling inserts the symbol n+1 between a given order of permutations of [n]

Sub-permutations 321, 213, 132, 312, 123, 231

Constructions

Recycling

- Holroyd-Ruskey-W proved cool-lex /7-order recyclable
- Stevens-W proved Corbett's
 order is recyclable
- Most orders not recyclable; adj-transposition Gray codes
- Cool-lex and 7-order give min-weight periodic cycles

321, 213, 123, 231, 312, 132 cool-lex order

Sub-permutations 321, 213, 123, 231, 312, 132

The Cayley graph with generators σ_n / σ_{n-1} has alternating cycles of length four. If C is a Hamilton cycle, then the arcs on each 4-cycle satisfy: (i) both σ_n arcs in C and both σ_{n-1} arcs not in C, or (ii) both σ_n arcs not in C and both σ_{n-1} arcs in C.

Note: The universal cycle is periodic iff it does not use these two types of edges.

- Min-Weight Periodic Cycles A Global View...
- Shorthand universal cycles are Hamilton cycles in the σ_n / σ_{n-1} Cayley graph

Cayley graph of the symmetric group for n=4 with generators σ_n / σ_{n-1}

- Min-Weight Periodic Cycles A Global View...
- Shorthand universal cycles are Hamilton cycles in the σ_n / σ_{n-1} Cayley graph
- Hamilton cycles enter/exit each $\sigma_n{}^n$ cycle so after contraction min-weight Ham cycles=spanning tree

Directed cycles using σ_n are contracted

- Min-Weight Periodic Cycles A Global View...
- Shorthand universal cycles are Hamilton cycles in the σ_n / σ_{n-1} Cayley graph
- Hamilton cycles enter/exit each σ_n^n cycle so after contraction min-weight Ham cycles=spanning tree

Directed cycles using σ_n are contracted

4132

4213

4123

4231

- Min-Weight Periodic Cycles A Global View...
- Shorthand universal cycles are Hamilton cycles in the σ_n / σ_{n-1} Cayley graph
- Hamilton cycles enter/exit each σ_n^n cycle so after contraction min-weight Ham cycles=spanning tree

- Min-Weight Periodic Cycles A Global View...
- Shorthand universal cycles are Hamilton cycles in the σ_n / σ_{n-1} Cayley graph
- Hamilton cycles enter/exit each σ_n^n cycle so after contraction min-weight Ham cycles=spanning tree
- Remove arcs to get the permutohedron and its spanning trees are periodic

132

213

123

231

Min-Weight Periodic Cycles Characterization

312

 Theorem: There is a simple bijection between the min-weight periodic shorthand universal cycles for permutations of [n] and spanning trees of the permutohedron for [n-1]

The decreasing spanning tree for the permutohedron for [3]

123

231

321

132

Min-Weight Periodic Cycles Characterization

 Theorem: There is a simple bijection between the min-weight periodic shorthand universal cycles for permutations of [n] and spanning trees of the permutohedron for [n-1]

The shorthand universal cycle for the permutations of [4] from cool-lex order

Memoryless Gray Code Algorithm

The Gray codes for the cool-lex and 7-order shorthand universal cycles for permutations can be created by simple memoryless rules

Theorem 7 Suppose $\mathbf{a} \in \Pi(n)$ where $m = \max(a_1, a_n)$ and d is the minimum value in its decrementing substring. The permutation of B(n) that follows \mathbf{a} is

- **−** $a\sigma_{n-1}$ *if* $d-1 \le m < n$,
- $\mathbf{a}\sigma_n$ otherwise.

Rule for creating the 7-order shorthand universal cycle Gray code

Theorem 8 Suppose $\mathbf{a} \in \Pi(n)$ where $m = \max(a_1, a_n)$ and d is the last index in its decreasing substring. The permutation of C(n) that follows \mathbf{a} is

- $a\sigma_{n-1}$ if *m* < *n* and either (i) *d* = *n* or (ii) *d* = *n*−1 and *a*₁ < *a*_{*n*−1},
- $\mathbf{a}\sigma_n$ otherwise.

Rule for creating the cool-lex shorthand universal cycle Gray code

CAT Generation of Sub-Permutations

1: if m = n then

1: visit()

- 2: for $j \leftarrow 1$ to m-2
- 3: $\operatorname{shift}(j, m-1)$
- 4: for $i \leftarrow m 2$ down to j
- 5: $\operatorname{Cool}(i)$
- 6: $a_i \leftrightarrow a_{i+1}$
- 7: end
- 8: **end**

cool-lex order

- 2: visit() 3: return 4: end 5: Bell7(m+1) 6: shift(n-m,n-1) 7: for $i \leftarrow n-2$ down to n
- 7: for $i \leftarrow n-2$ down 8: Bell7(m+1)

7-order

- 9: $a_i \leftrightarrow a_{i+1}$
- .0: end

Procedure HC(x, y)

- 1: if x = n then
- 2: output(y)

3: else

- 4: for $i \leftarrow 1, 2, \ldots, x$ do
- 5: HC(x+1, x+1)6: end for
- 7: HC(x+1, x+2-y)8: end if

Corbett (Hamilton cycle)

Loopless Generation of Binary Strings

1: $a_1 \cdots a_{n-1} \leftarrow 0 \cdots 0$ 2: $d_1 \cdots d_{n-1} \leftarrow 1 \cdots 1$ 3: $f_1 \cdots f_{n-1} \leftarrow 1 \cdots n-1$ 4: loop 5: $j \leftarrow f_1$ if $a_j = 0$ or $a_j = n - j - 1$ then 6: $output(001^{n-2})$ 7: else if $d_j = 1$ then 8: $output(001^{j-1}0^{n-a_j-j-1}10^{a_j-1})$ 9: 10: else $output(001^{j-1}0^{a_j}10^{n-j-a_j-2})$ 11: 12: end 13: if j = n - 1 then 14: return 15: end 16: $f_1 \leftarrow 1$ 17: $a_i \leftarrow a_i + d_i$ if $a_j = 0$ or $a_j = n - j - 1$ then 18: 19: $d_i \leftarrow -d_i$ 20: $f_j \leftarrow f_{j+1}$ 21: $f_{i+1} \leftarrow j+1$ 22: end 23: end

Loopless algorithm for the binary representation of the shorthand universal cycle whose sub-permutations are 7-order

Open and Closed Problems

- An efficient construction for (periodic) max-weight shorthand universal cycles is open
- An efficient construction for shorthand universal cycles for the permutations of a *multiset* has been solved

Shorthand universal cycle for the permutations of {0,0,0,1,1,1} ie a fixed-density de Bruijn cycle for n=6 and d=3