Introduction to Combinatorial Algorithms

Lucia Moura

Fall 2010

Introduction to Combinatorial Algorithms

Lucia Moura

э

(日) (同) (三) (三)

Combinatorial Algorithms

Introduction to the course

What are :

- Combinatorial Structures?
- Combinatorial Algorithms?
- Combinatorial Problems?

-

	Combinatorial Structures	Course Outline
Combinatorial Structures		

Combinatorial Structures

Combinatorial structures are *collections* of k-subsets/k-tuple/permutations from a parent set (finite).

• Undirected Graphs:

Collections of 2-subsets (edges) of a parent set (vertices).

$$V = \{1, 2, 3, 4\} \quad E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{3, 4\}\}$$

• Directed Graphs:

Collections of 2-tuples (directed edges) of a parent set (vertices).

$$V = \{1, 2, 3, 4\} \quad E = \{(2, 1), (3, 1), (1, 4), (3, 4)\}$$

• Hypergraphs or Set Systems:

Similar to graphs, but hyper-edges are sets with possibly more than two elements.

$$V = \{1, 2, 3, 4\} \quad E = \{\{1, 3\}, \{1, 2, 4\}, \{3, 4\}\}$$

Building blocks: finite sets, finite lists (tuples)

Finite Set

 $X = \{1, 2, 3, 5\}$

undordered structure, no repeats

$$\{1,2,3,5\}=\{2,1,5,3\}=\{2,1,1,5,3\}$$

• cardinality (size) = number of elements, |X| = 4.

A *k*-subset of a finite set X is a set $S \subseteq X$, |S| = k. For example: $\{1, 3\}$ is a 2-subset of X.

Finite List (or Tuple)

$$L = [1, 5, 2, 1, 3]$$

ordered structure, repeats allowed

 $[1, 5, 2, 1, 3] \neq [1, 1, 2, 3, 5] \neq [1, 2, 3, 5]$

• length = number of items, length of L is 5.

An *n*-tuple is a list of length n.

A permutation of an n-set X is a list of length n such that every element of X occurs exactly once.

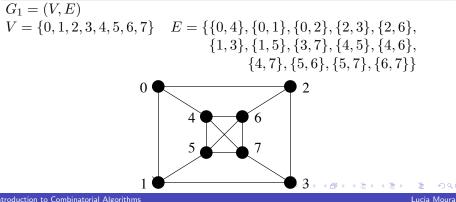
- ₹ 🖬 🕨

	Combinatorial Structures	Course Outline 00
Combinatorial Structures		

Graphs

Definition

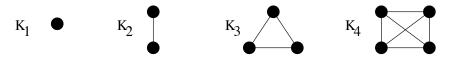
A graph is a pair (V, E) where: V is a finite set (of vertices). E is a finite set of 2-subsets (called edges) of V.



Introduction to Combinatorial Algorithms

	Combinatorial Structures	Course Outline
	0000000	
Combinatorial Structures		

Complete graphs are graphs with all possible edges.

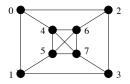


Substructures of a graph: hamiltonian cycle

Definition

A hamiltonian cycle is a closed path that passes through each vertex once.

The list [0, 1, 5, 4, 6, 7, 3, 2] describes a hamiltonian cycle in the graph: (Note that different lists may describe the same cycle.)



Problem (Traveling Salesman Problem)

Given a weight/cost function $w : E \to R$ on the edges of G, find a smallest weight hamiltonian cycle in G.

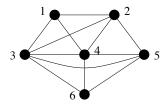
	Combinatorial Structures	Course Outline
Combinatorial Structures		

Substructures of a graph: cliques

Definition

A clique in a graph G = (V, E) is a subset $C \subseteq V$ such that $\{x, y\} \in E$, for all $x, y \in C$ with $x \neq y$.

(Or equivalently: the subgraph induced by C is complete).



- Some cliques: $\{1, 2, 3\}$, $\{2, 4, 5\}$, $\{4, 6\}$, $\{1\}$, \emptyset
- Maximum cliques (largest): $\{1, 2, 3, 4\}$, $\{3, 4, 5, 6\}$, $\{2, 3, 4, 5\}$

Combinatorial Algorithms

Famous problems involving cliques

Problem (Maximum clique problem)

Find a clique of maximum cardinality in a graph.

Problem (All cliques problem)

Find all cliques in a graph without repetition.

	Combinatorial Structures	Combinatorial Algorithms	Course Outline
	0000000		00
Combinatorial Structures			

Definition

A set system (or hypergraph) is a pair (X, \mathcal{B}) where: X is a finite set (of points/vertices). \mathcal{B} is a finite set of subsets of X (blocks/hyperedges).

	Combinatorial Structures	Course Outline
	0000000	00
Combinatorial Structures		

Definition

A set system (or hypergraph) is a pair (X, \mathcal{B}) where: X is a finite set (of points/vertices). B is a finite set of subsets of X (blocks/hyperedges).

• Graph: A graph is a set system with every block with cardinality 2.

Combinatorial Structures		Combinatorial Structures	Course Outline
	Combinatorial Structures		

Definition

A set system (or hypergraph) is a pair (X, \mathcal{B}) where: X is a finite set (of points/vertices). B is a finite set of subsets of X (blocks/hyperedges).

• Graph: A graph is a set system with every block with cardinality 2.

• Partition of a finite set:

A partition is a set system (X, \mathcal{B}) such that $B_1 \cap B_2 = \emptyset$ for all $B_1, B_2 \in \mathcal{B}, B_1 \neq B_2$, and $\cup_{B \in \mathcal{B}} B = X$.

	Combinatorial Structures	Course Outline 00
Combinatorial Structures		

Definition

A set system (or hypergraph) is a pair (X, \mathcal{B}) where: X is a finite set (of points/vertices). B is a finite set of subsets of X (blocks/hyperedges).

• Graph: A graph is a set system with every block with cardinality 2.

• Partition of a finite set:

A partition is a set system (X, \mathcal{B}) such that $B_1 \cap B_2 = \emptyset$ for all $B_1, B_2 \in \mathcal{B}, B_1 \neq B_2$, and $\cup_{B \in \mathcal{B}} B = X$.

- Steiner triple system (a type of combinatorial designs):
 B is a set of 3-subsets of X such that for each x, y ∈ X, x ≠ y, there exists eactly one block B ∈ B with {x, y} ⊆ B.
 X = {0,1,2,3,4,5,6}
 - $\mathcal{B} = \{\{0, 1, 2\}, \{0, 3, 4\}, \{0, 5, 6\}, \{1, 3, 5\}, \{1, 4, 6\}, \{2, 3, 6\}, \{2, 4, 5\}\}$

Combinatorial algorithms

Combinatorial algorithms are algorithms for investigating combinatorial structures.

• Generation

Construct all combinatorial structures of a particular type.

Enumeration

Compute the number of all different structures of a particular type.

Search

Find at least one example of a combinatorial structures of a particular type (if one exists). **Optimization problems** can be seen as a type of search problem.

	Combinatorial Algorithms 00000	Course Outline 00
Combinatorial Algorithms		

• Generation

Construct all combinatorial structures of a particular type.

- Generate all subsets/permutations/partitions of a set.
- Generate all cliques of a graph.
- Generate all maximum cliques of a graph.
- Generate all Steiner triple systems of a finite set.

	Combinatorial Algorithms 00000	Course Outline 00
Combinatorial Algorithms		

Generation

Construct all combinatorial structures of a particular type.

- Generate all subsets/permutations/partitions of a set.
- Generate all cliques of a graph.
- Generate all maximum cliques of a graph.
- Generate all Steiner triple systems of a finite set.

Enumeration

Compute the number of all different structures of a particular type.

- Compute the number of subsets/permutat./partitions of a set.
- Compute the number of cliques of a graph.
- Compute the number of maximum cliques of a graph.
- Compute the number of Steiner triple systems of a finite set.

	Combinatorial Algorithms	Course Outline 00
Combinatorial Algorithms		

Search

Find at least one example of a combinatorial structures of a particular type (if one exists).

Optimization problems can be seen as a type of search problem.

- Find a Steiner triple system on a finite set. (feasibility)
- Find a maximum clique of a graph. (optimization)
- Find a hamiltonian cycle in a graph. (feasibility)
- Find a smallest weight hamiltonian cycle in a graph. (optimization)

 Many search and optimization problems are NP-hard or their corresponding "decision problems" are **NP-complete**.

Introduction to Combinatorial Algorithms

- ∢ ⊒ →

- Many search and optimization problems are **NP-hard** or their corresponding "decision problems" are **NP-complete**.
- P = class of decision problems that can be solved in polynomial time. (e.g. Shortest path in a graph is in P)
 NP = class of decision problems that can be verified in polynomial time. (e.g. Hamiltonian path in a graph is in NP)
 Therefore, P ⊆ NP.
 NP-complete are problems in NP that are at least "as hard as" any

other problem in **NP**.

- Many search and optimization problems are **NP-hard** or their corresponding "decision problems" are **NP-complete**.
- P = class of decision problems that can be solved in polynomial time. (e.g. Shortest path in a graph is in P)
 NP = class of decision problems that can be verified in polynomial time. (e.g. Hamiltonian path in a graph is in NP)
 Therefore, P ⊆ NP.
 NP-complete are problems in NP that are at least "as hard as" any other problem in NP.
- An important unsolved complexity question is the **P=NP** question. One million dollars offered for its solution!

- Many search and optimization problems are **NP-hard** or their corresponding "decision problems" are **NP-complete**.
- P = class of decision problems that can be solved in polynomial time. (e.g. Shortest path in a graph is in P)
 NP = class of decision problems that can be verified in polynomial time. (e.g. Hamiltonian path in a graph is in NP)
 Therefore, P ⊆ NP.
 NP-complete are problems in NP that are at least "as hard as" any other problem in NP.
- An important unsolved complexity question is the **P=NP** question. One million dollars offered for its solution!
- It is believed that P≠NP which, if true, would mean that there exist no polynomial-time algorithm to solve an NP-hard problem.

- Many search and optimization problems are **NP-hard** or their corresponding "decision problems" are **NP-complete**.
- P = class of decision problems that can be solved in polynomial time. (e.g. Shortest path in a graph is in P)
 NP = class of decision problems that can be verified in polynomial time. (e.g. Hamiltonian path in a graph is in NP)
 Therefore, P ⊆ NP.
 NP-complete are problems in NP that are at least "as hard as" any other problem in NP.
- An important unsolved complexity question is the **P=NP** question. One million dollars offered for its solution!
- It is believed that P≠NP which, if true, would mean that there exist no polynomial-time algorithm to solve an NP-hard problem.
- There are several approaches to deal with **NP-hard** problems.

3

Approaches for dealing with NP-hard problems

Exhaustive Search

- exponential-time algorithms.
- solves the problem exactly

(Backtracking and Branch-and-Bound)

Heuristic Search

- algorithms that explore a search space to find a feasible solution that is hopefully "close to" optimal, within a time limit
- approximates a solution to the problem

(Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algor's)

• Approximation Algorithms

- polynomial time algorithm
- we have a provable guarantee that the solution found is "close to" optimal.

(not covered in this course)

		Combinatorial Algorithms	
Combinatorial Algorith	ims		
Types of S	Search Problems		
1) Decisio	n Problem:	2) Search Problem	
A yes/no p	roblem	Find the guy.	
Problem 1	: Clique (decision)	Problem 2: Clique (sear	ch)
Instance: g	raph $G = (V, E)$,	Instance: graph $G = (V,$	E),
target size	k	target size k	
Question:		Find:	
Does there	exist a clique C	a clique C of G	
of G with \mid	C = k?	with $ C = k$, if one exist	S.
3) Optima	I Value:	4) Optimization :	
Find the la	rgest target size.	Find an optimal guy.	
Problem 3	: Clique (optimal value)	Problem 4: Clique (opti	mization)
Instance: g	$raph\ G = (V, E),$	Instance: graph $G = (V,$	<i>E</i>),
Find:		Find:	
the maximu	um value of $ C $,	a clique C such that	
where C is	a clique	C is maximize (max. cl	

		Course Outline ●○
Course Outline		

Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

		Course Outline
Course Outline		

Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

Generating elementary combinatorial objects [text Chap2]
 Sequential generation (successor), rank, unrank.
 Algorithms for subsets, k-subsets, permutations.

	Combinatorial Structures	Combinatorial Algorithms 000000	Course Outline ●0
Course Outline			

Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

- Generating elementary combinatorial objects [text Chap2]
 Sequential generation (successor), rank, unrank.
 Algorithms for subsets, k-subsets, permutations.
- Exhaustive Generation and Exhaustive Search [text Chap4] Backtracking algorithms (exhaustive generation, exhaustive search, optimization)

Branch-and-bound (exhaustive search, optimization)

Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

- Generating elementary combinatorial objects [text Chap2]
 Sequential generation (successor), rank, unrank.
 Algorithms for subsets, k-subsets, permutations.
- Exhaustive Generation and Exhaustive Search [text Chap4] Backtracking algorithms (exhaustive generation, exhaustive search, optimization)

Branch-and-bound (exhaustive search, optimization)

Heuristic Search [text Chap 5]

Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.

Kreher&Stinson, Combinatorial Algorithms: generation, enumeration and search

- Generating elementary combinatorial objects [text Chap2]
 Sequential generation (successor), rank, unrank.
 Algorithms for subsets, k-subsets, permutations.
- Exhaustive Generation and Exhaustive Search [text Chap4] Backtracking algorithms (exhaustive generation, exhaustive search, optimization)

Branch-and-bound (exhaustive search, optimization)

- Heuristic Search [text Chap 5] Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.
- Computing Isomorphism and Isomorph-free Exhaustive Generation [text Chap 7 + Kaski&Ostergard's book Chap 3,4] Graph isomorphism, isomorphism of other structures. Computing invariants. Computing certificates. Isomorph-free exhaustive generation.

Course evaluation

- 45% Assignments
 3 assignments, 15% each
 covering: theory, algorithms, implementation
- 55% Project: individual, chosen by student
 5% Project proposal (up to 1 page)
 40% Project paper (10-15 page)
 10% Project presentation (15-20 minute talk)
 research (reading papers related to course topics),
 original work (involving one or more of: modelling, application, algorithm design, implementation, experimentation, analysis)