
CSI 5165 Combinatorial Algorithms Fall 2009
Computer Science University of Ottawa

Homework Assignment #1 (100 points, weight 15%)
Due: Tuesday October 13, at 11:30 a.m. (in lecture)

Generating elementary combinatorial objects

1. (33 points) Another way to order the subsets of an n-set is to order them first in
increasing size, and then in lexicographic order for each fixed size. For example, when
n = 3, this ordering for the subsets of S = {1, 2, 3} is:

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

Develop unranking, ranking and successor algorithms for the subsets with respect
to this ordering.

Hint: Adapt the ideas developed for the lexicographical order of k-subsets of an n-set
to this situation. Note that efficiency will play a role in the evaluation.

2. (33 points) Suppose 1 ≤ k ≤ n, and we delete all vectors in the binary reflected Gray
code Gn that do not correspond to subsets of cardinality k. Prove that the vectors
that remain comprise a minimal change ordering for the k-element subset of an n-set.

Suggested approach:

(a) Prove the following Lemma: Let 1 ≤ k ≤ n. Then,

• the first vector of Gn corresponding to a set of cardinality k is of the form
[0...01...1], with (n− k) 0’s followed by k 1’s.

• the last vector of Gn corresponding to a set of cardinality k is of the form
[10...01...1] with a 1 followed by (n− k) 0’s, followed by (k − 1) 1’s.

(b) Prove the main result by induction on n, using the Lemma.

3. (34 points) A derangement is a permutation [π[1], π[2], . . . , π[n]] of the set {1, 2, . . . , n}
such that π[i] 6= i, for all 1 ≤ i ≤ n. Let Dn denote the number of derangements of an
n-element set. Note that D1 = 0 and D2 = 1. To show that Dn = (n−1)(Dn−1+Dn−2),
for n ≥ 3, we can use the following argument:

We can set π[1] in n− 1 ways, namely with i = 2, 3, . . . n.
Once π[1] = i there are two possibilities:

• π[i] = 1, in which case we list all derangements of {1, . . . , n} \ {1, i} (there are
Dn−2 of them) in order to complete the current derangement.

• π[i] 6= 1, in which case we can rename value 1 as i list all derangements of
{1, 2, . . . , n} \ {1} (there are Dn−1 of them), and then change back i to 1 in each
of these derangements.

1



Use this recurrence relation (and its associate argument) to develop an algorithm to
generate all the derangements. Note that you do not need to necessarily come up
with a successor algorithm; indeed a recursive algorithm might be the easiest solution.
Ideally, you would not store several derangements in main memory at the same time,
that is, after a derangement has been generated it can be printed out; this would keep
your memory requirements in O(n) rather than exponential. You may have to keep
some n-arrays in your program in order to deal with current permutations, indexes that
are active and possible relabelings. Note that efficient will play a role in the evaluation.

(a) Provide a pseudocode of your algorithm (with similar level of detail as the algo-
rithms given in textbook). Please, also add any comments or extra explanations
necessary to understand why your pseudocode works.

(b) Implement our algorithm, providing a printout of the code, as well as outputs
for n = 3, 4, 5

Note: Start on all exercises early enough, so that there is time to consult the professor
during office hours. Some students might need some pointers regarding writing induction
proofs, others may be less versed on algorithmic aspects, while others will need to understand
more deeply some materials covered in class before applying them in a different context. Use
the office hour for these purposes!
Some extra office hours can be scheduled, in addition to the usual time on Tuesday at 1:30,
if the need arises. Let the professor know in advance!

2


