Homework Assignment #2 (100 points, weight 15%)
Due: Wednesday, November 9, at 11:30 a.m. (in lecture)

1. (25 points) Backtracking algorithm for all self-avoiding walks
 A self-avoiding walk is described by a sequence of edges in the Euclidean plane, beginning at the origin, such that each of the edges is a horizontal or vertical segment of length 1, and such that no point in the plane is visited more than once. There are precisely 4 such walks of length 1, 12 walks of length 2, and 36 walks of length 3. Define choice sets and describe a backtracking algorithm for the problem of finding all self-avoiding walks of length n.

2. (50 points) Backtracking program for minimum \(2-(v,k,1)\) covering designs
 A \(2-(v,k,1)\) covering design is a collection of k-sets (called blocks) of a v-set such that every pair (2-set) of the v-set occurs in at least one of the k-sets. Our goal is to find coverings with the minimum number of blocks.
 - Describe 2 backtracking algorithms to find a \(2-(v,k,1)\) covering design with the minimum number of blocks, \(C(v,k)\). Algorithm 1 does not use bounding and Algorithm 2 uses bounding.
 - Implement your 2 backtracking algorithms and using each of them, compute \(C(v,k)\), for \(k = 3, 4, 5\) and \(v\) the largest you can for the given \(k\). For each of your runs, collect statistics on the number of backtracking nodes (BN) and CPU time (T). Summarize your findings on a table with columns: \(k, v, C(v,k), BN_1, BN_2, T_1, T_2\), where the last two pair of values refer to Algorithm 1 and Algorithm 2, respectively.

Hints:
(a) Useful global lower bound (Schönheim bound): \(C(v,k) \geq \left\lceil \frac{v}{k} \left\lceil \frac{k-1}{k-2} \right\rceil \right\rceil\). Note that you need to develop some “local” lower bound, that is, a lower bound based on a partial solution.
(b) To know the smallest known covering designs, consult the upper bound table at the “La Jolla Covering repository”: http://www.ccrwest.org/cover.html

3. (25 points) Hill Climbing for embedding of Steiner triple systems
 Develop a hill-climbing algorithm to embed an \(STS(w)\) in an \(STS(v)\), for \(w < v\). In other words, an \(STS(w)\) is given, say \((U, A)\), and we wish to construct an \(STS(v)\), say \((V, B)\) in which \(U \subseteq V\) and \(A \subseteq B\).
 Hint: Modify the hill climbing algorithm for constructing Steiner Triple Systems given in the textbook. The definition of \(STS(v)\) can also be found in the textbook.

Note: For all problems, clarity and efficiency will be taken into account when marking.