CSI5165 COMBINATORIAL ALGORITHMS

Prof. Lucia Moura

Fall 2005
INTRODUCTION TO COMBINATORIAL ALGORITHMS
Introduction to Combinatorial Algorithms

What are:

- Combinatorial Structures?
- Combinatorial Algorithms?
- Combinatorial Problems?
Combinatorial Structures

Combinatorial structures are collections of k-subsets/K-tuple/permutations from a parent set (finite).

Examples:

- **Undirected Graphs:**
 Collections of 2-subsets (edges) of a parent set (vertices).

 \[
 V = \{1, 2, 3, 4\} \quad E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{3, 4\}\}
 \]

- **Directed Graphs:**
 Collections of 2-tuples (directed edges) of a parent set (vertices).

 \[
 V = \{1, 2, 3, 4\} \quad E = \{(2, 1), (3, 1), (1, 4), (3, 4)\}
 \]

- **Hypergraphs or Set Systems:**
 Similar to graphs, but (hyper) edges may be sets with more than two elements.

 \[
 V = \{1, 2, 3, 4\} \quad E = \{\{1, 3\}, \{1, 2, 4\}, \{3, 4\}\}
 \]
Building blocks: finite sets, finite lists (tuples)

• Finite Sets

\[X = \{1, 2, 3, 5\} \]
- unordered structure, no repeats
 \[\{1, 2, 3, 5\} = \{2, 1, 5, 3\} = \{2, 1, 1, 5, 3\} \]
- cardinality (size) = number of elements \(|X| = 4\).

A \textit{k-subset} of a finite set \(X\) is a set \(S \subseteq X, |S| = k\).
For example: \(\{1, 2\}\) is a 2-subset of \(X\).

• Finite Lists (or Tuples)

\[L = [1, 5, 2, 1, 3] \]
- ordered structure, repeats allowed
 \[[1, 5, 2, 1, 3] \neq [1, 1, 2, 3, 5] \neq [1, 2, 3, 5] \]
- length = number of items, length of \(L\) is 5.

An \textit{n-tuple} is a list of length \(n\).
A \textit{permutation} of an \(n\)-set \(X\) is a list of length \(n\) such that every element of \(X\) occurs exactly once.

\[X = \{1, 2, 3\}, \quad \pi_1 = [2, 1, 3] \quad \pi_2 = [3, 1, 2] \]
Graphs

Definition. A *graph* is a pair (V, E) where:

- V is a finite set (of vertices).
- E is a finite set of 2-subsets (called *edges*) of V.

Example: $G_1 : V = \{0, 1, 2, 3, 4, 5, 6, 7\}$

$E = \{\{0, 4\}, \{0, 1\}, \{0, 2\}, \{2, 3\}, \{2, 6\}, \{1, 3\}, \{1, 5\}, \{3, 7\}, \{4, 5\}, \{4, 6\}, \{4, 7\}, \{5, 6\}, \{5, 7\}, \{6, 7\}\}$

Complete graphs: graphs with all possible edges.

Examples:

- K_1
- K_2
- K_3
- K_4

Substructures of a graph:

1. A **hamiltonian circuit** (hamiltonian cycle) is a closed path that passes through each vertex once.

The following list describes a hamiltonian cycle in G_1:

$[0, 1, 5, 4, 6, 7, 3, 2]$ (different lists may describe the same cycle).
Traveling Salesman Problem: given a weight/cost function
\(w : E \to R \) on the edges of \(G \), find a smallest weight
hamiltonian cycle in \(G \).

2. A clique in a graph \(G = (V, E) \) is a subset \(C \subseteq V \) such that
\(\{x, y\} \in E \), for all \(x, y \in C \) with \(x \neq y \).
(Or equivalently: the subgraph induced by \(C \) is complete).

Example:
\(G_2 : \)

Some cliques of \(G_2 : \)

Maximum cliques of \(G_2 : \)

Famous problems involving cliques:
- Maximum clique problem: find a maximum clique in a graph.
- All cliques problem: find all cliques in a graph without repetition.
Set systems/Hypergraphs

Definition. A set system (or hypergraph) is a pair \((X, \mathcal{B})\) where:
\(X\) is a finite set (of points).
\(\mathcal{B}\) is a finite set of subsets of \(X\) (blocks).

Examples:

- Graph: A graph is a set system with every block with cardinality 2.
- Partition of a finite set:
 A partition is a set system \((X, \mathcal{B})\) such that
 \(B_1 \cap B_2 = \emptyset\) for all \(B_1, B_2 \in \mathcal{B}, B_1 \neq B_2\), and
 \[\bigcup_{B \in \mathcal{B}} B = X.\]
- Steiner triple system (a type of combinatorial designs):
 \(\mathcal{B}\) is a set of 3-subsets of \(X\) such that for each \(x, y \in X, x \neq y\),
 there exists exactly one block \(B \in \mathcal{B}\) with \(\{x, y\} \subseteq B\).

Example:
\(X = \{0, 1, 2, 3, 4, 5, 6\}\)
\(\mathcal{B} = \{\{0, 1, 2\}, \{0, 3, 4\}, \{0, 5, 6\}, \{1, 3, 5\}, \{1, 4, 6\}, \{2, 3, 6\}, \{2, 4, 5\}\} \)
Combinatorial Algorithms

Algorithms for investigating combinatorial structures. Three types:

- **Generation**
 Construct all combinatorial structures of a particular type.
 - Generate all subsets/permutations/partitions of a set.
 - Generate all cliques of a graph.
 - Generate all maximum cliques of a graph.
 - Generate all Steiner triple systems of a finite set.

- **Enumeration**
 Compute the number of different structures of a particular type.
 - Compute the number of subsets/permutations/partitions of a set.
 - Compute the number of cliques of a graph.
 - Compute the number of maximum cliques of a graph.
 - Compute the number of Steiner triple systems of a finite set.

- **Search**
 Find at least one example of a combinatorial structures of a particular type (if one exists).

Optimization problems can be seen as a type of search problem.
 - Find a Steiner triple system on a finite set. (feasibility)
 - Find a maximum clique of a graph. (optimization)
 - Find a hamiltonian cycle in a graph. (feasibility)
 - Find a smallest weight hamiltonian cycle in a graph. (optimization)
Hardness of Search and Optimization

Many search and optimization problems are NP-hard, which means that

unless $P = NP$ (an important unsolved complexity question)

no polynomial-time algorithm to solve the problem would exist.
Approaches for dealing with NP-hard problems:

• Exhaustive Search
 – exponential-time algorithms.
 – solves the problem exactly

 (Backtracking and Branch-and-Bound)

• Heuristic Search
 – algorithms that explore a search space to find a feasible
 solution that is “close to” optimal, within a time limit
 – approximates a solution to the problem

 (Hill-climbing, Simulated annealing, Tabu-Search, Genetic
 Algorithms)

• Approximation Algorithms
 – polynomial time algorithm
 – we have a provable guarantee that the solution found is “close
 to” optimal.

 (not covered in this course)
Types of Search Problems

1) **Decision Problem:**
A yes/no problem

Problem 1:
Clique (decision)
Instance: graph $G = (V, E)$, target size k

Question:
Does there exist a clique C of G with $|C| = k$?

2) **Search Problem:**
Find the guy.

Problem 2:
Clique (search)
Instance: graph $G = (V, E)$, target size k

Find:
a clique C of G with $|C| = k$, if one exists.

3) **Optimal Value:**
Find the largest target size.

Problem 3:
Clique (optimal value)
Instance: graph $G = (V, E)$,

Find:
the maximum value of $|C|$, where C is a clique

4) **Optimization:**
Find an optimal guy.

Problem 4:
Clique (optimization)
Instance: graph $G = (V, E)$,

Find:
a clique C such that $|C|$ is maximize (max. clique)
Plan for the Course

1. Generating elementary combinatorial objects
 Sequential generation (successor), rank, unrank.
 Algorithms for subsets, k-subsets, permutations.
 Reference: textbook chapter 2. [2 weeks]

2. Exhaustive Generation and Exhaustive Search
 Backtracking algorithms
 (exhaustive generation, exhaustive search, optimization)
 Brach-and-bound
 (exhaustive search, optimization)
 Reference: textbook chapter 4. [3 weeks]

3. Heuristic Search
 Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.
 Applications of these techniques to various problems.
 Reference: textbook chapter 5. [3 weeks]

4. Computing Isomorphism and Isomorph-free Exhaustive Generation
 Graph isomorphism, isomorphism of other structures.
 Computing invariants.
 Computing certificates.
 Isomorph-free exhaustive generation.
 Example: Generate all trees on n vertices, without isomorphic copies.
 Reference: textbook chapter 7, papers. [3 weeks]