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The book presents branch-and-bound as a variation of
backtracking in which the choice set is tried in decreasing order of
bounds.

However, branch-and-bound is usually a more general scheme. It
often involves keeping all active nodes in a priority queue, and
processing nodes with higher priority first (priority is given by
upper bound).

Here is the book’s version of branch-and-bound:

Algorithm BRANCHANDBOUND(!)
external B(), PROFIT();
global C; (I =0,1,...)
if ([zg, x1, ..., 2;—1] is a feasible solution) then
P —ProFIT([20, 21, - . ., 21-1])
if (P > OptP) then
OptP — P;
OptX «— [xo,x1,...,21-1];
Compute Cy;
count «— 0;
for each (z € C;) do
T — T;
nextchoice|count] «— x;
nextbound|count| < B([xg, z1,...,%1-1,]);
count «— count + 1;
Sort nextchoice and nextbound by decreasing order of nextbound;
for 2 < 0 to count — 1 do
if (nextbound[i] < OptP) then return;
x; < nextchoiceli];
BRANCHANDBOUND(! + 1);
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Heuristic Search vs Exhaustive Search

Exhaustive Search

Types of methods and their uses:
e Backtracking (backtracking with bounding):

— Find all feasible solutions.
— Find one optimal solution.

— Find all optimal solutions.
e Branch-and-Bound:

— Find one optimal solution.

Heuristic Search

Types of problem it can be applied to:

e Find 1 optimal solution.

e Find a “close to” optimal solution (the best solution we manage).

Heuristics methods we will study:
e Hill-climbing

e Simulated annealing

e Tabu search

e Genetic algorithm
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Characteristics of heuristic search:

e The state space is not fully explored.
e Randomization is often employed.
e There is a concept of neighbourhood search.

e Heuristics are applied to explore the solutions.
The word "heuristics” means “serving or helping to find or
discover” or “proceeding by trial and error”.
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A general framework for heuristic search

Generic Optimization Problem (maximization):

Instance: A finite set X.

an objective function P : X — Z.

m feasibility functions g; : X — Z,1 <5 < m.
Find:  the maximum value of P(X)

subject to X € X and g;(X) >0, for 1 < j < m.

Exercise: pick your favorite combinatorial optimization problem
and write it in this framework.

Designing a heuristic search:

1. Define a neighbourhood function N : X — 2%,

Eg N(X) = {Xl,XQ,X37X4,X5}.

2. Design a neighbourhood search:
Algorithm that finds a fasible solution on the neighbourhood of
a feasible solution X.

There are two types of neghbourhood searches:

e Exxhaustive (chooses best profit among neighbour points)

e Randomized (picks a random point among the neighbour
points)
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Defining a neighbourhood function

N:X —2Y NX)CAX.
N(X) should be elements that are similar or “close to” X.
N(X) may contain infesible elements of X

Examples of neighbourhood functions:
Let dy be a constant positive integer.

Ny (X) = {Y € X : dist(X,Y) < dy},
o X = {0,1}", all binary n-tuples.

Here dist is the Hamming distance.
N1([010]) = {[000], [110], [011], [010]}.

Va0 = £ (1)

i
e X = all permutations of {1,2,...,n}.

Let a = |ag,...,ap) and B = [0, ..., B, be two permutations.
Define distance as follows: dist(«, 8) = [{i : a; # Bi}|.

Note that Ny(X) = {X} is not very useful; we need dy > 1.
No([1,2,3,4]) = {[1,2,3,4],[2,1,3,4], 3,2, 1, 4],
4,2,3,1],[1,3,2,4], [1,4,3,2],[1,2,4, 3]}

[N2(X)] =1+ ().
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Designing a neighbourhood search algorithm

Neighbourhood Search Algorithm

Input: X
Output: Y € N(X) \ X such that Y is feasible, or “fail”.

Possible Neighbourhood Search Strategies:

1. Find a feasible solution Y € N(X) \ {X} such that P(Y) is
maximized.
Return “fail” if there is no feasible solution in N(X) \ {X}.

2. Find a feasible solution Y € N(X) \ {X} such that P(Y) is
maximized.
if P(Y) > P(X) then return Y else return “fail”.
(steepest ascent method)

3. Find any feasible solution Y € N(X) \ {X}.
Return “fail” if there is no feasible solution in N(X) \ {X}.

4. Find any feasible solution Y € N(X) \ {X}.
if P(Y) > P(X) then return Y else return “fail”.

Strategies 1 and 2 may be exhaustive.
Strateges 3 and 4 are usually randomized.
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A generic heuristic search algorithm

Given N, a neighbourhood function, the heuristic algorithm Ay
does either of the following:

e Perform one neighbourhood search (using one of the strategies)

e Perform a sequence of 5 neighbourhood searches
X = Xy, X1,...,X; =Y], where you get from X; to X,
through a neighbourhood search.

Let ¢,,4; be the maximum number of iterations allowed for the
search.

Algorithm GENERICHEURISTICSEARCH(C4z)
c«— 0;
Select a feasible solution X € X’;
Xpest < X; (stores best so far)
while (¢ < ¢ap) do
Y «— hn(X);
if (Y # “fail”) then
X «Y;
if (P(X) > P(Xpest)) then Xjpeqr — X;
lelse ¢ < ¢ + 1; (add this if Ay is not randomized)]
c«—c+1;
return Xpest:
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Design Strategies for Heuristic Algorithms

1. Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.
Problem: it can get stuck in a local optimum.
Improvement: run the algorithm many times from random start X.

For Hill-Climbing, hy(X) returns:
e Y € N(X) such that Y is feasible and P(Y') > P(X),

e or, otherwise, “fail”.

Algorithm GENERICHILLCLIMBING()
Select a feasible solution X € X.
Xpest <— X; searching «— true;
while (searching) do
Y «— hn(X);
if (Y #“fail”) then
X «Y;
if <P<X) > P<Xbest>> then Xpeor < X;
else searching «— false;
return Xpess:

Hill-climbing will get trapped in a local optimum.
Other search strategies, such as simulated annealing and tabu
search, try to escape from local optima.
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2. Simulated annealing

e Analogy with a method of cooling metal: annealing. Temperature
T decreases at each iteration, according to a cooling schedule:
Initally T' «— Tpy; later T' «+— T for a fixed 0 < a < 1.

e Going uphill is always accepted.

e Going downhill is sometimes accepted with a probability based on

how much downhill we go and on the current temperature.
Given Y = hy(X) with P(Y) < P(X), accept Y with

(Y)-P(X)

P
probability e~ 7. (We get pickier as we progress.)

Algorithm GENERICSIMULATEDANNEALING (Cnaz, 10, @)
c— 0; T « Ty
Select a feasible solution X € X'; Xjpesr — X;
while (¢ < ¢paz) do
Y « hy(X); // this is usually a randomized choice
if (Y #“fail”) then
if (P(Y) > P(X)) then
X «Y;
if (P(X) > P(Xpest)) then Xpesp «— X
else

r «— random(0, 1);
P(Y)-P(X)

if (r<e T )then X «Y;
c<+—c—+1;
T — aT;
return Xpess:
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3. Tabu Search

Choose Y € N(X) \ {X} such that Y is feasible and P(X) is
maximum among all such elements (exhaustive neighbourhood
search).

It may happen that P(Y) < P(X) (we escape from a local
optimum).

What may be the risk? Cycling.
When going downhill from X to Y we may go back from X to Y.

Indeed, cycling may take several steps, such as
X—-Y—-7-—-X.

Tabu-search uses a strategy for avoiding cycling: a tabu list.
After a move X — Y,

we forbit the application of CHANGE(Y, X)) for L iterations (L is
the lifetime of the tabu list).

Example:

X ={0,1}", using N1(X) ={Y € X : dist(X,Y) = 1}.

X =1[0100] and Y = [0101], we have that CHANGE(Y, X) =4 =
index of coordinate that was swapped.

Suppose L = 2.
sequence of points: | [0100] | [0101] | [1101] | [1001] | [1011]
tabu list: 4 4.1 1,2 2,3
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So any sequence that cycles X — ... — X has length at least 2L.
Choosing L = 1 is typical.

TABULIST is implemented as a list where TABULIST|c] = 0,
where ¢ is the designated forbidden (tabu) change at iteration c.

In absolute no circumstance implement TABULIST as an array
indexed by the number of iterations! Instead, implement
TABULIST as a queue of length L. Note that the algorithm may
mislead you to think you are using such an array; careful!

For tabu search, hy(X) =Y, where
oY € N(X), Y is feasible;
e CHANGE(X,Y) ¢ { TaBuLisT|d] : ¢c — L < d < c—1};

e P(Y) is maximum among all such feasible elements.
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Algorithm GENERICTABUSEARCH(Cpyaz, L)
c+— 1;
Select a feasible solution X € X.
Xbest A Xa
while (¢ < ¢par) do
N «— N(X) \ {F : CHANGE(X, F) € TABULIST[d],
c— L <d<c—1}; (typo corrected)
for each (Y € N) do
if (Y is infeasible) then N «— N \ {Y'};
if (N = 0) then return Xjeq;
Find Y € N such that P(Y') is maximum;
TABULIST|c] «+—CHANGE(Y, X);
X «Y;
if (P(X) > P(Xbest>) then Xpest — X;
c+—c+1;
return Xpess:

In the real algorithm, TABULIST must be a queue of length L!!!

So, the operation

TABULIST|c] «—CHANGE(Y, X);

must be implemented as:

TABULIST.insert(CHANGE(Y, X)); (only keeps last L elements)
and the line: N «— N(X)\ {F :

CHANGE(X, F') €eTABULIST|d],c — L < d < c¢— 1}

should be understood as:

N «— N(X)\ {F : CHANGE(X, F') € TABULIST};
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4. Genetic Algorithms

More complex than neighbourhood search.
Fix a number POPSIZE (population size).

One iteration works as follows:

O O OO = O O| PopSizeguys

Current Generation:

Currentgeneration: J____J_____"_'___J
O000 ~00|/eee® e~ e e| nwauys

 Select Best GuysuptoPopSize
\ l J
Next Generation: ® O @ ®@ O - @ PopSizeguys

Iterate as many generations as you like.
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Mating Strategies (Recombination)

Producing children from parents.

1. Crossover.

Let 7 be a crossover point.

Parents: Ilhllllll

2 Children:

j

Heuristic Search

Example: 5 =3
[110/1101001] [100]{1000101]

Parents:
Children:

[110[1000101] [100[1101001]

2. Partially matched crossover (for permutations)

Two crossover points: 1 < j < k <n

Example: j =3 and k =6

a=1[3,1,4,7,6,5,2,8|

3=

8,6,4,3,7,1,2, 5]

swap

a

g

4 4
7T+ 3
6« 7
51

[
[
[
6,

3,1,4,7,6,5,2,8
7.1,4,3,6,5,2,8
6,1,4,3,7,5,2,8

Y

5,4,3,7,1,2,8

]
]
]
]

[
[
[
[

8,6,4,3,7,1,2, 5]
8,6,4,7,3,1,2,5]
8,7,4,6,3,1,2,5]
8,7,4,6,3,5,2, 1]
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Mating Schemes

Kids may be infeasible: incorporate constraints as penalties.

e Random monogamy with 2 kids per couple: randomly partition
population into pairs, with two kids produced by each pair.

e Make better parents having more kids:
measure parent fitness by objective function; parents with higher
fitness produce more kids.

Algorithm GENERICGENETICALGORITHM(PopSize, Cnaz)
c+— 1;
Select an initial population P with PopSize feasible solutions;
for each X € P do X « hy(X); [mutation]
Xpest < element in P with maximum profit;
while (¢ < ¢paz) do
Construct a pairing of the elements in P;
Q7P
for each pair (W, X) in the pairing do
(Y, Z) «— rec(W, X); [recombination/mating]
Y «— hy(Y); [mutation]
Z «— hy(Z); [mutation]
Q«— Qu{Y, Z};
Let P be the best PopSize members of Q;
Let Y be the element in P with maximum profit;
if (P(Y) > P(Xbest>> then X < Y
c«—c+1;
return Xpess:
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Lecture 8: Hill-climbing Algorithms

In Lecture 8, we have seen two Hillclimbing algorithms:

e A steepest ascent algorithm for uniform graph partition (Section
5.3)

e A hill-climbing algorithm for Steiner triple systems (Section 5.4)

Slides are missing for this lecture.
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Two heuristics for the Knapsack Problem

Knapsack (Optimization) Problem

Instance: Profits pg, p1, ..., Pn_1
Weights wy, wy, ..., w,—1
Knapsack capacity M

Universe: X = {0, 1}" (set of all n-tuples)
an n-tuple [zg, 21, ..., z,_1] is feasible if
7.1_01 wix; < M.

1=

Objective: maximize P(X) = £ p;z;.
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A Simulated Annealing Algorithm for Knapsack

Neighbourhood function:
N(X)=N(X)={Y €{0,1}": dist(X,Y) =1}

Algorithm KNAPSACKSIMULATED ANNEALING (Cinaz, 10, @)
c— 0; T « Tp;
X «— [.CU(),.CUl,...,CEn_l] = [0,0,.. ,O],
CurW «— 0; Xpest — X;
while (¢ < ¢jar) do
j « randomlInt(0,n — 1);
Y — X;
y; — 1 —x;;  (swap j coordinate of X)
if (y; =1) and (curW +w; > M) then Y «— fail;
if (Y # fail) then
if (y; = 1) then
X «Y:
curW «— curWW + wy;
if P(X) > P(Xpest) then Xpest — X;
else
r <« random(0, 1);
if (r < e72/T) then
X «Y:
curW «— curW — wj;
c«—c+1;
T — oT;
return (Xpest);
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Experimental results from Table 5.3 (page 178):

Lucia Moura

96




CSI5165 - Fall 2003 Heuristic Searches Applied to Various Problems

Tabu Search for Knapsack

We will use the same neighbourhood Ny(.).

Do exhaustive search on the neighbourhood in order to find the
best way to update the current solution.

Instead of Profit imporvement only, we look for improvements
based on the ratio p;/w;:

1. Chose ¢ with maximum p;/w; among the indexes j where
z; = 0, j is not on TABULIST, and changing z; to 1 des not
exceed M.

2. If there is no j as above, then choose ¢ with minimum p; /w;
among the indexes j where z; = 1 and j is not on TABULIST.

This can be expressed by saying that we want to maximize

- Pj
—1)%=—.
s

Lucia Moura 97




CSI5165 - Fall 2003 Heuristic Searches Applied to Various Problems

Algorithm KNAPSACKTABUSEARCH ¢z, L)
c— 1;
Select a random feasible X = [zg, x1,. .., z,—1] € {0,1}";
curW «— E?:_()l TiWw;;
Xbest — X;
while (¢ < ¢pae) do
N —{0,1,...,n— 1}
start «— maz{0,c — L};
for j « start toc — 1 do
N «— N\ {TAaBuLIST[j]};
for each (¢ € N) do
if (z; =0) and (curW +w; > M) then N «— N \ {i};
if (N = () then exit;
Find ¢ € N such that (—1)%p; /w; is maximum;
TABULIST|c]| + i;
x; — 1 —x;  (swap ¢ coordinate)
if (z; = 1) then curW «— curW + w;;
else curW « curW — wy;
if P(X) > P(Xpest) then Xpoo — X
c—c+1;
return Xpest;
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Experimental results from Tables 5.4 and 5.6 (pages 180-181):
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A Genetic Algorithm for the TSP

Traveling Salesman Problem (TSP)

Instance: a complete graph K,
a cost functionc: V xV — R

Find: a Hamiltonian circuit [zg, z1, . .., x,_1] that minimizes
C(X) = e(xg, x1) + c(x1,22) + ... + c(Tp_1, T0)

Note that 2n permutations represent the same cycle.
Universe: X' = set of all n! permutations.

Steps:
e Selection of initial population.
e Mutation: steepest ascent 2-opt.

e Recombination using two methods: partially matched crossover
and another method.
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Mutation

Steepest ascent algorithm based on the 2-opt heuristic:

X(i) 2 opt move X()

x(i+ X(i+1)

x(j+1) X(j+1)
x(j) x(1)
Gain in applying a 2-opt move:
G(X,i,5) = C(X) = C(Xy)
= c(zj, zip1) + ez, xj11) — (Tiv1, Tjr1) — (24, ;)
N(X)=allY € X that can be obtained from X by a 2-opt move.

Algorithm STEEPESTASCENTTWOOPT(X)
done «— false;
while (not done) do
done «— true; gy «— 0;
fori «— 0ton —1do
for j «—i4+2ton—1do
g — G(X,4,7);
if (g > go) then
go < G ig < i; Jo < J;
if (go > 0) then
X — Xio,J'o;
done «— false;
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Selecting the initial population

Randomly pick one and then mutate it:

Algorithm SELECT(popsize)
for ¢ « 0 to popsize — 1 do
r «—RANDOMINTEGER(0, n! — 1);
P; —PERMLEXUNRANK(n, r);
STEEPESTASCENTTWOOPT(F));
return [Py, Py, ..., Ppopsize—1];

Two recombination algorithms

1. Partially Matched Crossover

Algorithm PMREC(A, B)

h «— RANDOMINTEGER(10,n/2); (length of the substring)

j < RANDOMINTEGER(0,n — 1); (start of the substring)

(C, D) < PARTIALLYMATCHEDCROSSOVER(A, B, j, (h + j)mod n)
STEEPESTASCENTTWOOPT(C');

STEEPESTASCENTTWOOPT(D);

return (C, D);
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2. Another Recombination Algorithm
Algorithm MGKREC(A, B)

h «— RANDOMINTEGER(10,7/2); (length of the substring)
j < RANDOMINTEGER(0,n — 1); (start of the substring)
T «— 0:
(pick subcycle of length h starting from pos j:)
fori «— 0toh—1do

D[i] < B|(i + j)modn)|;

T — T U{Dlil};
Complete cycle with permutation in A using guys not already in D
in the order prescribed by A:
for j < 0ton —1do

if Alj] ¢ T then Di] — A[j];

1 — 1+ 1;

STEEPESTASCENTTWOOPT(D);
(Similarly build C' swapping A and B roles:)
j < RANDOMINTEGER(0,n — 1); (start of the substring)
T «— 0:
fort «— 0toh—1do

Cli] < A[(i + j)modn];

T — TU{C[]};
for j <~ 0ton —1do

if B[j] ¢ T then C[i] < Blj];

1 — 1+ 1;

STEEPESTASCENTTWOOPT(C);
return (C, D);
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Genetic Algorthm for TSP

Algorithm GENETICTSP (popsize, ¢pq:)

c+— 1;

[Po, P, . .., Ppopsize—1] <—SELECT(popsize);

Sort Py, P, ..., Pyopsize—1 1 increasing order of cost.
Xbest — PO;

BestCost — C(F);
while (¢ < ¢ae) do
for ¢ «— 0 to popsize/2 — 1 do
(Ppopsize-i-%a Ppopsize—i—%—i—l) «— REC (PQia P2i+1);
Sort Py, P1, ..., Popopsize—1 10 increasing order of cost.
curCost — C(Fp);
if (curCost < BestCost) then
Xbest — PO;
BestCost <+ curCost;
c—c+1;
return Xpes;

Note: REC represents either of the two recombination algorithms.
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Experimental results from Tables 5.7 and 5.8 (pages 186-187):
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