

CSI5165 - Fall 2003 Branch-and-Bound

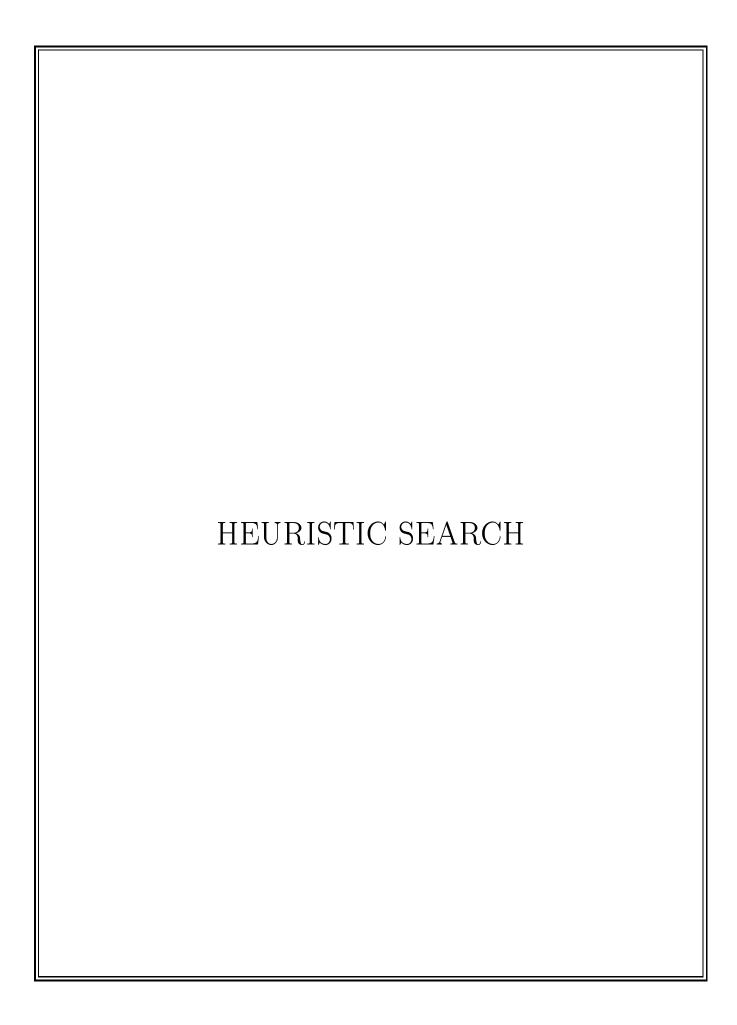
The book presents branch-and-bound as a variation of backtracking in which the choice set is tried in decreasing order of bounds.

However, branch-and-bound is usually a more general scheme. It often involves keeping all active nodes in a priority queue, and processing nodes with higher priority first (priority is given by upper bound).

Here is the book's version of branch-and-bound:

```
Algorithm BranchAndBound(l)
```

```
external B(), PROFIT();
global C_l (l = 0, 1, \ldots)
if ([x_0, x_1, \dots, x_{l-1}]) is a feasible solution) then
  P \leftarrow \text{Profit}([x_0, x_1, \dots, x_{l-1}])
  if (P > OptP) then
     OptP \leftarrow P:
     OptX \leftarrow [x_0, x_1, \dots, x_{l-1}];
Compute C_l;
count \leftarrow 0;
for each (x \in \mathcal{C}_l) do
    x_l \leftarrow x;
    nextchoice[count] \leftarrow x;
    nextbound[count] \leftarrow B([x_0, x_1, \dots, x_{l-1}, x]);
    count \leftarrow count + 1;
Sort nextchoice and nextbound by decreasing order of nextbound;
for i \leftarrow 0 to count - 1 do
    if (nextbound[i] \leq OptP) then return;
    x_l \leftarrow nextchoice[i];
    BRANCHANDBOUND(l+1);
```



### Heuristic Search vs Exhaustive Search

#### **Exhaustive Search**

Types of methods and their uses:

- Backtracking (backtracking with bounding):
  - Find all feasible solutions.
  - Find one optimal solution.
  - Find all optimal solutions.
- Branch-and-Bound:
  - Find one optimal solution.

#### Heuristic Search

Types of problem it can be applied to:

- Find 1 optimal solution.
- Find a "close to" optimal solution (the best solution we manage).

Heuristics methods we will study:

- Hill-climbing
- Simulated annealing
- Tabu search
- Genetic algorithm

Characteristics of heuristic search:

- The state space is not fully explored.
- Randomization is often employed.
- There is a concept of neighbourhood search.
- **Heuristics** are applied to explore the solutions.

  The word "heuristics" means "serving or helping to find or discover" or "proceeding by trial and error".

# A general framework for heuristic search

#### Generic Optimization Problem (maximization):

Instance: A finite set  $\mathcal{X}$ .

an objective function  $P: \mathcal{X} \to Z$ .

m feasibility functions  $g_j: \mathcal{X} \to Z, 1 \leq j \leq m$ .

Find: the maximum value of P(X)

subject to  $X \in \mathcal{X}$  and  $g_j(X) \geq 0$ , for  $1 \leq j \leq m$ .

Exercise: pick your favorite combinatorial optimization problem and write it in this framework.

#### Designing a heuristic search:

1. Define a **neighbourhood function**  $N: \mathcal{X} \to 2^{\mathcal{X}}$ .

E.g. 
$$N(X) = \{X_1, X_2, X_3, X_4, X_5\}.$$

2. Design a **neighbourhood search**:

Algorithm that finds a fasible solution on the neighbourhood of a feasible solution X.

There are two types of neghbourhood searches:

- Exhaustive (chooses best profit among neighbour points)
- Randomized (picks a random point among the neighbour points)

## Defining a neighbourhood function

 $N: \mathcal{X} \to 2^{\mathcal{X}}, N(X) \subseteq \mathcal{X}.$ 

N(X) should be elements that are similar or "close to" X.

N(X) may contain infesible elements of  $\mathcal{X}$ .

Examples of neighbourhood functions:

Let  $d_0$  be a constant positive integer.

$$N_{d_0}(X) = \{ Y \in \mathcal{X} : dist(X, Y) \le d_0 \},$$

•  $\mathcal{X} = \{0,1\}^n$ , all binary *n*-tuples.

Here *dist* is the Hamming distance.

 $N_1([010]) = \{[000], [110], [011], [010]\}.$ 

$$|N_{d_0}(X)| = \sum_{i=0}^{d_0} \binom{n}{i}.$$

•  $\mathcal{X}$  = all permutations of  $\{1, 2, \dots, n\}$ .

Let  $\alpha = [\alpha_1, \dots, \alpha_n]$  and  $\beta = [\beta_1, \dots, \beta_n]$  be two permutations.

Define distance as follows:  $dist(\alpha, \beta) = |\{i : \alpha_i \neq \beta_i\}|$ .

Note that  $N_1(X) = \{X\}$  is not very useful; we need  $d_0 > 1$ .

$$N_2([1, 2, 3, 4]) = \{[1, 2, 3, 4], [2, 1, 3, 4], [3, 2, 1, 4], [4, 2, 3, 1], [1, 3, 2, 4], [1, 4, 3, 2], [1, 2, 4, 3]\}$$

$$|N_2(X)| = 1 + \binom{n}{2}.$$

# Designing a neighbourhood search algorithm

#### Neighbourhood Search Algorithm

Input: X

Output:  $Y \in N(X) \setminus X$  such that Y is feasible, or "fail".

Possible Neighbourhood Search Strategies:

1. Find a feasible solution  $Y \in N(X) \setminus \{X\}$  such that P(Y) is maximized.

Return "fail" if there is no feasible solution in  $N(X) \setminus \{X\}$ .

2. Find a feasible solution  $Y \in N(X) \setminus \{X\}$  such that P(Y) is maximized.

if P(Y) > P(X) then return Y; else return "fail". (steepest ascent method)

- 3. Find any feasible solution  $Y \in N(X) \setminus \{X\}$ . Return "fail" if there is no feasible solution in  $N(X) \setminus \{X\}$ .
- 4. Find any feasible solution  $Y \in N(X) \setminus \{X\}$ . if P(Y) > P(X) then return Y; else return "fail".

Strategies 1 and 2 may be exhaustive.

Strateges 3 and 4 are usually randomized.

## A generic heuristic search algorithm

Given N, a neighbourhood function, the heuristic algorithm  $h_N$  does either of the following:

- Perform one neighbourhood search (using one of the strategies)
- Perform a sequence of j neighbourhood searches  $[X = X_0, X_1, \ldots, X_j = Y]$ , where you get from  $X_i$  to  $X_{i+1}$  through a neighbourhood search.

Let  $c_{max}$  be the maximum number of iterations allowed for the search.

Algorithm GenericHeuristicSearch $(c_{max})$ 

```
c \leftarrow 0;

Select a feasible solution X \in \mathcal{X};

X_{best} \leftarrow X; (stores best so far)

while (c \leq c_{max}) do

Y \leftarrow h_N(X);

if (Y \neq \text{"fail"}) then

X \leftarrow Y;

if (P(X) > P(X_{best})) then X_{best} \leftarrow X;

[else c \leftarrow c_{max} + 1; (add this if h_N is not randomized)]

c \leftarrow c + 1;

return X_{best};
```

## Design Strategies for Heuristic Algorithms

## 1. Hill-Climbing

Idea: Go up the hill continuously, stop when stuck.

Problem: it can get stuck in a local optimum.

Improvement: run the algorithm many times from random start X.

For Hill-Climbing,  $h_N(X)$  returns:

- $Y \in N(X)$  such that Y is feasible and P(Y) > P(X),
- or, otherwise, "fail".

### Algorithm GENERICHILLCLIMBING()

```
Select a feasible solution X \in \mathcal{X}.

X_{best} \leftarrow X; searching \leftarrow true;

while (searching) do

Y \leftarrow h_N(X);

if (Y \neq \text{``fail''}) then

X \leftarrow Y;

if (P(X) > P(X_{best})) then X_{best} \leftarrow X;

else searching \leftarrow false;

return X_{best};
```

Hill-climbing will get trapped in a local optimum. Other search strategies, such as simulated annealing and tabu search, try to escape from local optima.

## 2. Simulated annealing

- Analogy with a method of cooling metal: annealing. Temperature T decreases at each iteration, according to a **cooling schedule**: Initally  $T \leftarrow T_0$ ; later  $T \leftarrow \alpha T$  for a fixed  $0 < \alpha < 1$ .
- Going uphill is always accepted.
- Going downhill is sometimes accepted with a probability based on how much downhill we go and on the current temperature. Given  $Y = h_N(X)$  with  $P(Y) \leq P(X)$ , accept Y with probability  $e^{\frac{P(Y)-P(X)}{T}}$ . (We get pickier as we progress.)

```
Algorithm GENERICSIMULATEDANNEALING (c_{max}, T_0, \alpha) c \leftarrow 0; T \leftarrow T_0; Select a feasible solution X \in \mathcal{X}; X_{best} \leftarrow X; while (c \leq c_{max}) do Y \leftarrow h_N(X); // this is usually a randomized choice if (Y \neq \text{``fail''}) then if (P(Y) > P(X)) then X \leftarrow Y; if (P(X) > P(X_{best})) then X_{best} \leftarrow X; else r \leftarrow random(0, 1); if (r < e^{\frac{P(Y) - P(X)}{T}}) then X \leftarrow Y; c \leftarrow c + 1; T \leftarrow \alpha T; return X_{best};
```

## 3. Tabu Search

Choose  $Y \in N(X) \setminus \{X\}$  such that Y is feasible and P(X) is maximum among all such elements (exhaustive neighbourhood search).

It may happen that P(Y) < P(X) (we escape from a local optimum).

What may be the risk? Cycling.

When going downhill from X to Y we may go back from X to Y. Indeed, cycling may take several steps, such as

$$X \to Y \to Z \to X$$
.

Tabu-search uses a strategy for avoiding cycling: a **tabu list**. After a move  $X \to Y$ ,

we forbit the application of CHANGE(Y, X) for L iterations (L is the lifetime of the tabu list).

#### Example:

$$\mathcal{X} = \{0,1\}^n$$
, using  $N_1(X) = \{Y \in \mathcal{X} : dist(X,Y) = 1\}$ .

X = [0100] and Y = [0101], we have that CHANGE(Y, X) = 4 = index of coordinate that was swapped.

Suppose L=2.

sequence of points: 
$$| [0100] | [0101] | [1101] | [1001] | [1011] |$$
 tabu list:  $| 4 | 4,1 | 1,2 | 2,3 |$ 

So any sequence that cycles  $X \to \ldots \to X$  has length at least 2L. Choosing L=1 is typical.

TABULIST is implemented as a list where TABULIST[c] =  $\delta$ , where  $\delta$  is the designated forbidden (tabu) change at iteration c.

In absolute no circumstance implement TabuList as an array indexed by the number of iterations! Instead, implement TabuList as a queue of length L. Note that the algorithm may mislead you to think you are using such an array; careful!

For tabu search,  $h_N(X) = Y$ , where

- $Y \in N(X)$ , Y is feasible;
- CHANGE $(X, Y) \not\in \{ \text{ TABULIST}[d] : c L \le d \le c 1 \};$
- $\bullet$  P(Y) is maximum among all such feasible elements.

```
Algorithm GENERICTABUSEARCH(c_{max}, L)
       c \leftarrow 1;
       Select a feasible solution X \in \mathcal{X}.
       X_{best} \leftarrow X;
       while (c \leq c_{max}) do
               N \leftarrow N(X) \setminus \{F : \text{CHANGE}(X, F) \in \text{TABULIST}[d],
                                         c - L \le d \le c - 1; (typo corrected)
               for each (Y \in N) do
                    if (Y \text{ is infeasible}) \text{ then } N \leftarrow N \setminus \{Y\};
               if (N = \emptyset) then return X_{best};
               Find Y \in N such that P(Y) is maximum;
               TABULIST[c] \leftarrow CHANGE(Y, X);
               X \leftarrow Y:
               if (P(X) > P(X_{best})) then X_{best} \leftarrow X;
               c \leftarrow c + 1:
       return X_{best};
```

In the real algorithm, Tabulist must be a queue of length L!!!

So, the operation

TABULIST[c]  $\leftarrow$  CHANGE(Y, X);

must be implemented as:

Tabulist.insert(Change(Y, X)); (only keeps last L elements) and the line:  $N \leftarrow N(X) \setminus \{F:$ 

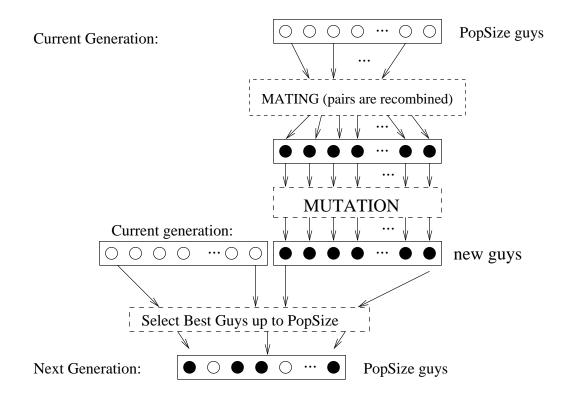
CHANGE $(X, F) \in \text{Tabulist}[d], c - L \leq d \leq c - 1$  should be understood as:

 $N \leftarrow N(X) \setminus \{F : \text{CHANGE}(X, F) \in \text{TABULIST}\};$ 

# 4. Genetic Algorithms

More complex than neighbourhood search. Fix a number PopSize (population size).

One iteration works as follows:



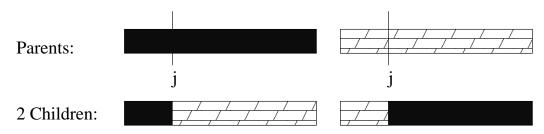
Iterate as many generations as you like.

# Mating Strategies (Recombination)

Producing children from parents.

1. Crossover.

Let j be a crossover point.



Example: j = 3

Parents: [110|1101001] [100|1000101] Children: [110|1000101] [100|1101001]

2. Partially matched crossover (for permutations)

Two crossover points:  $1 \le j < k \le n$ 

Example: 
$$j = 3$$
 and  $k = 6$   
 $\alpha = [3, 1, 4, 7, 6, 5, 2, 8] \quad \beta = [8, 6, 4, 3, 7, 1, 2, 5]$ 

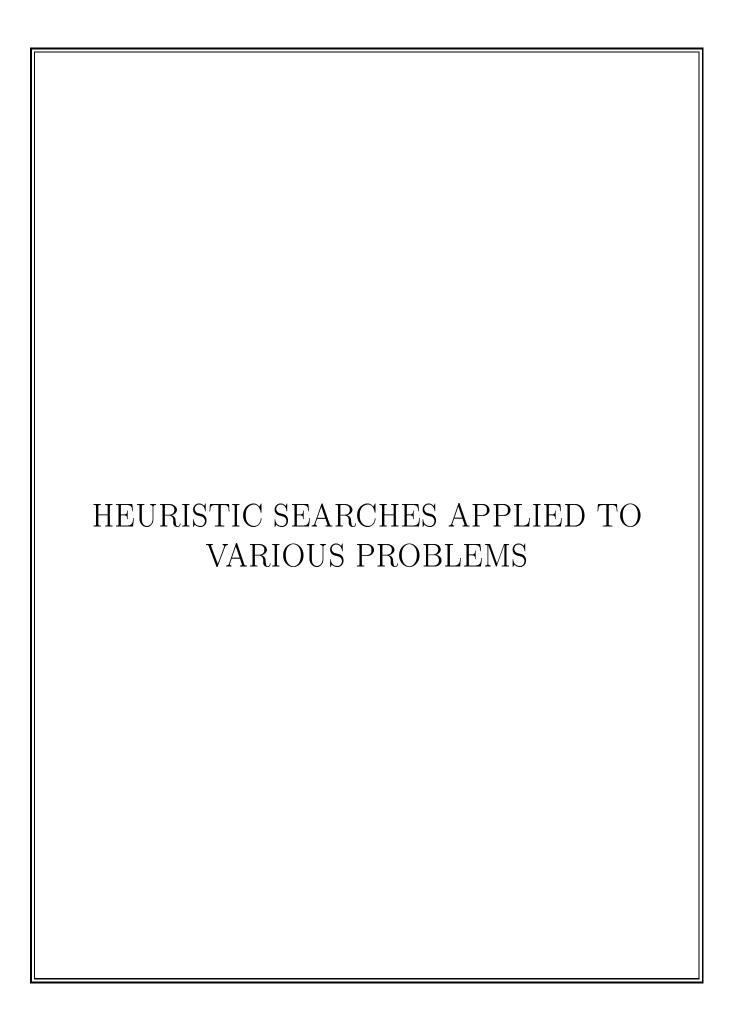
| swap                  | $\alpha$                 | $\beta$                  |  |  |  |
|-----------------------|--------------------------|--------------------------|--|--|--|
| $4 \leftrightarrow 4$ | [3, 1, 4, 7, 6, 5, 2, 8] | [8, 6, 4, 3, 7, 1, 2, 5] |  |  |  |
| $7 \leftrightarrow 3$ | [7, 1, 4, 3, 6, 5, 2, 8] | [8, 6, 4, 7, 3, 1, 2, 5] |  |  |  |
| $6 \leftrightarrow 7$ | [6, 1, 4, 3, 7, 5, 2, 8] | [8, 7, 4, 6, 3, 1, 2, 5] |  |  |  |
|                       |                          | [8, 7, 4, 6, 3, 5, 2, 1] |  |  |  |

## Mating Schemes

Kids may be infeasible: incorporate constraints as penalties.

- Random monogamy with 2 kids per couple: randomly partition population into pairs, with two kids produced by each pair.
- Make better parents having more kids: measure parent fitness by objective function; parents with higher fitness produce more kids.

```
Algorithm GenericGeneticAlgorithm(PopSize, c_{max})
        c \leftarrow 1;
        Select an initial population \mathcal{P} with PopSize feasible solutions;
        for each X \in \mathcal{P} do X \leftarrow h_N(X); [mutation]
        X_{best} \leftarrow \text{element in } \mathcal{P} \text{ with maximum profit};
        while (c \leq c_{max}) do
               Construct a pairing of the elements in \mathcal{P};
                \mathcal{Q}\leftarrow\mathcal{P}
               for each pair (W, X) in the pairing do
                    (Y,Z) \leftarrow rec(W,X); [recombination/mating]
                    Y \leftarrow h_N(Y); [mutation]
                    Z \leftarrow h_N(Z); [mutation]
                    \mathcal{Q} \leftarrow \mathcal{Q} \cup \{Y, Z\};
               Let \mathcal{P} be the best PopSize members of \mathcal{Q};
               Let Y be the element in \mathcal{P} with maximum profit;
               if (P(Y) > P(X_{best})) then X_{best} \leftarrow Y;
               c \leftarrow c + 1:
       return X_{best};
```



# Lecture 8: Hill-climbing Algorithms

In Lecture 8, we have seen two Hillclimbing algorithms:

- A steepest ascent algorithm for uniform graph partition (Section 5.3)
- A hill-climbing algorithm for Steiner triple systems (Section 5.4) Slides are missing for this lecture.

# Two heuristics for the Knapsack Problem

Knapsack (Optimization) Problem

Instance: Profits  $p_0, p_1, \ldots, p_{n-1}$ Weights  $w_0, w_1, \ldots, w_{n-1}$ Knapsack capacity M

Universe:  $\mathcal{X} = \{0,1\}^n$  (set of all *n*-tuples) an *n*-tuple  $[x_0, x_1, \dots, x_{n-1}]$  is feasible if  $\sum_{i=0}^{n-1} w_i x_i \leq M$ .

Objective: maximize  $P(X) = \sum_{i=0}^{n-1} p_i x_i$ .

## A Simulated Annealing Algorithm for Knapsack

Neighbourhood function:

$$N(X) = N_{1}(X) = \{Y \in \{0, 1\}^{n} : dist(X, Y) = 1\}$$
Algorithm KNAPSACKSIMULATEDANNEALING $(c_{max}, T_{0}, \alpha)$ 

$$c \leftarrow 0; T \leftarrow T_{0};$$

$$X \leftarrow [x_{0}, x_{1}, \dots, x_{n-1}] = [0, 0, \dots, 0];$$

$$CurW \leftarrow 0; X_{best} \leftarrow X;$$
while  $(c \leq c_{max})$  do
$$j \leftarrow \text{randomInt}(0, n-1);$$

$$Y \leftarrow X;$$

$$y_{j} \leftarrow 1 - x_{j}; \quad (\text{swap } j \text{ coordinate of } X)$$
if  $(y_{j} = 1)$  and  $(curW + w_{j} > M)$  then  $Y \leftarrow fail;$ 
if  $(Y \neq fail)$  then
if  $(y_{j} = 1)$  then
$$X \leftarrow Y;$$

$$curW \leftarrow curW + w_{j};$$
if  $P(X) > P(X_{best})$  then  $X_{best} \leftarrow X;$ 
else
$$r \leftarrow \text{random}(0, 1);$$
if  $(r < e^{-p_{j}/T})$  then
$$X \leftarrow Y;$$

$$curW \leftarrow curW - w_{j};$$

$$c \leftarrow c + 1;$$

$$T \leftarrow \alpha T;$$

$$return (X_{best});$$

| CSI5165 - Fall 2003       |             | Heuristic Searches Applied to Various Problems |
|---------------------------|-------------|------------------------------------------------|
| Experimental results from | r Table 5.3 | (page 178):                                    |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
|                           |             |                                                |
| Lucia Moura               |             | 96                                             |

#### CSI5165 - Fall 2003

## Tabu Search for Knapsack

We will use the same neighbourhood  $N_1(.)$ .

Do exhaustive search on the neighbourhood in order to find the best way to update the current solution.

Instead of Profit imporvement only, we look for improvements based on the ratio  $p_i/w_i$ :

- 1. Chose i with maximum  $p_i/w_i$  among the indexes j where  $x_j = 0$ , j is not on TABULIST, and changing  $x_j$  to 1 des not exceed M.
- 2. If there is no j as above, then choose i with minimum  $p_i/w_i$  among the indexes j where  $x_j = 1$  and j is not on TABULIST.

This can be expressed by saying that we want to maximize

$$(-1)^{x_j} \frac{p_j}{w_j}.$$

# Algorithm KNAPSACKTABUSEARCH $(c_{max}, L)$ $c \leftarrow 1$ ; Select a random feasible $X = [x_0, x_1, \dots, x_{n-1}] \in \{0, 1\}^n$ ; $curW \leftarrow \sum_{i=0}^{n-1} x_i w_i;$ $X_{best} \leftarrow X$ ; while $(c \leq c_{max})$ do $N \leftarrow \{0, 1, \dots, n-1\};$ $start \leftarrow max\{0, c - L\};$ for $j \leftarrow start$ to c-1 do $N \leftarrow N \setminus \{\text{Tabulist}[j]\};$ for each $(i \in N)$ do if $(x_i = 0)$ and $(curW + w_i > M)$ then $N \leftarrow N \setminus \{i\}$ ; if $(N = \emptyset)$ then exit; Find $i \in N$ such that $(-1)^{x_i} p_i / w_i$ is maximum; Tabulist[c] $\leftarrow i$ ; $x_i \leftarrow 1 - x_i$ ; (swap *i* coordinate) if $(x_i = 1)$ then $curW \leftarrow curW + w_i$ ; else $curW \leftarrow curW - w_i$ : if $P(X) > P(X_{best})$ then $X_{best} \leftarrow X$ ; $c \leftarrow c + 1$ : return $X_{best}$ ;

| CSI5165 - Fall 2003 |            |       |        |     | Heuris | stic Se | arches App | lied to Va | rious Probler | $_{ m ns}$ |
|---------------------|------------|-------|--------|-----|--------|---------|------------|------------|---------------|------------|
| Experimental        | results fi | rom [ | Tables | 5.4 | and    | 5.6     | (pages     | 180-18     | 31):          |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |
|                     |            |       |        |     |        |         |            |            |               |            |

# A Genetic Algorithm for the TSP

Traveling Salesman Problem (TSP)

Instance: a complete graph  $K_n$ 

a cost function  $c: V \times V \to R$ 

Find: a Hamiltonian circuit  $[x_0, x_1, \dots, x_{n-1}]$  that minimizes

 $C(X) = c(x_0, x_1) + c(x_1, x_2) + \ldots + c(x_{n-1}, x_0)$ 

Note that 2n permutations represent the same cycle.

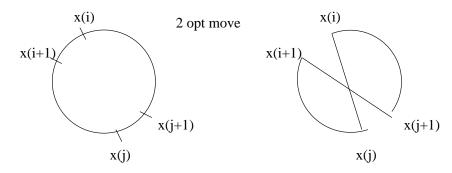
Universe:  $\mathcal{X} = \text{set of all } n!$  permutations.

#### Steps:

- Selection of initial population.
- Mutation: steepest ascent 2-opt.
- Recombination using two methods: partially matched crossover and another method.

## Mutation

Steepest ascent algorithm based on the 2-opt heuristic:



Gain in applying a 2-opt move:

$$G(X, i, j) = C(X) - C(X_{ij})$$
  
=  $c(x_i, x_{i+1}) + c(x_j, x_{j+1}) - c(x_{i+1}, x_{j+1}) - c(x_i, x_j)$ 

 $N(X) = \text{all } Y \in \mathcal{X} \text{ that can be obtained from } X \text{ by a 2-opt move.}$ 

Algorithm SteepestAscentTwoOpt(X)

$$done \leftarrow false;$$
while  $(not\ done)\ do$ 

$$done \leftarrow true;\ g_0 \leftarrow 0;$$
for  $i \leftarrow 0$  to  $n-1$  do
$$for\ j \leftarrow i+2\ to\ n-1\ do$$

$$g \leftarrow G(X,i,j);$$
if  $(g>g_0)\ then$ 

$$g_0 \leftarrow G;\ i_0 \leftarrow i;\ j_0 \leftarrow j;$$
if  $(g_0>0)\ then$ 

$$X \leftarrow X_{i_0,j_0};$$

$$done \leftarrow false;$$

## Selecting the initial population

Randomly pick one and then mutate it:

```
Algorithm Select(popsize) for i \leftarrow 0 to popsize - 1 do r \leftarrow \text{RANDOMINTEGER}(0, n! - 1); P_i \leftarrow \text{PERMLEXUNRANK}(n, r); SteepestAscentTwoOpt(P_i); return [P_0, P_1, \dots, P_{popsize-1}];
```

## Two recombination algorithms

1. Partially Matched Crossover

```
Algorithm PMREC(A, B)

h \leftarrow \text{RANDOMINTEGER}(10, n/2); (length of the substring)

j \leftarrow \text{RANDOMINTEGER}(0, n-1); (start of the substring)

(C, D) \leftarrow \text{PARTIALLYMATCHEDCROSSOVER}(A, B, j, (h+j) mod n)

STEEPESTASCENTTWOOPT(C);

STEEPESTASCENTTWOOPT(D);

return (C, D);
```

### 2. Another Recombination Algorithm

Algorithm MGKRec(A, B)

return (C, D);

```
h \leftarrow \text{RANDOMINTEGER}(10, n/2); (length of the substring)
j \leftarrow \text{RANDOMINTEGER}(0, n-1); \text{ (start of the substring)}
T \leftarrow \emptyset:
(pick subcycle of length h starting from pos j:)
for i \leftarrow 0 to h-1 do
    D[i] \leftarrow B[(i+j)modn];
    T \leftarrow T \cup \{D[i]\};
Complete cycle with permutation in A using guys not already in D
in the order prescribed by A:
for j \leftarrow 0 to n-1 do
    if A[j] \not\in T then D[i] \leftarrow A[j];
                         i \leftarrow i + 1:
STEEPESTASCENTTWOOPT(D);
(Similarly build C swapping A and B roles:)
j \leftarrow \text{RANDOMINTEGER}(0, n-1); \text{ (start of the substring)}
T \leftarrow \emptyset:
for i \leftarrow 0 to h-1 do
    C[i] \leftarrow A[(i+j)modn];
    T \leftarrow T \cup \{C[i]\};
for j \leftarrow 0 to n-1 do
    if B[j] \not\in T then C[i] \leftarrow B[j];
      i \leftarrow i + 1:
STEEPESTASCENTTWOOPT(C);
```

## Genetic Algorithm for TSP

```
Algorithm GENETICTSP(popsize, c_{max})
      c \leftarrow 1;
      [P_0, P_1, \ldots, P_{popsize-1}] \leftarrow \text{Select}(popsize);
      Sort P_0, P_1, \ldots, P_{popsize-1} in increasing order of cost.
      X_{best} \leftarrow P_0;
      BestCost \leftarrow C(P_0);
      while (c \leq c_{max}) do
              for i \leftarrow 0 to popsize/2 - 1 do
                   (P_{popsize+2i}, P_{popsize+2i+1}) \leftarrow \text{Rec } (P_{2i}, P_{2i+1});
              Sort P_0, P_1, \ldots, P_{2popsize-1} in increasing order of cost.
              curCost \leftarrow C(P_0);
              if (curCost < BestCost) then
                X_{best} \leftarrow P_0;
                BestCost \leftarrow curCost:
              c \leftarrow c + 1:
      return X_{best};
```

Note: Rec represents either of the two recombination algorithms.

| CSI5165 - Fall 2003                  | Heuristic Searches Applied to Various Problems |
|--------------------------------------|------------------------------------------------|
| Experimental results from Tables 5.7 | and 5.8 (pages 186-187):                       |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
|                                      |                                                |
| Lucia Moura                          | 105                                            |