CSI5165 COMBINATORIAL ALGORITHMS

Prof. Lucia Moura

Fall 2003

INTRODUCTION TO COMBINATORIAL
ALGORTIHMS

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Introduction to Combinatorial Algorithms

What are :

e Combinatorial Structures?
e Combinatorial Algorithms?

e Combinatorial Problems?

Lucia Moura

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Combinatorial Structures

Combinatorial structures are collections of
k-subsets/ K-tuple/permutations from a parent set (finite).

Examples:

e Undirected Graphs:
Collections of 2-subsets (edges) of a parent set (vertices).

V = {1, 2, 3,4} E = {{17 2}7 {17 3}7 {174}7 {374}}

e Directed Graphs:
Collections of 2-tuples (directed edges) of a parent set (vertices).

V={1,23,4 E={(21),(3,1),(1,4),(3,4)}

e Hypergraphs or Set Systems:
Similar to graphs, but (hyper) edges may be sets with more than
two elements.

V={1,2,3,4} E={{1,3},{1,2,4},{3,4}}

Lucia Moura 3

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Building blocks: finite sets, finite lists (tuples)

e Finite Sets

X ={1,2,3,5}

— undordered structure, no repeats
{1, 2,3, 5} = {2, 1, 5,3} = {2, 1,1,5, 3}

— cardinality (size) = number of elements | X | = 4.

A k-subset of a finite set X isaset S C X, |S| = k.
For example: {1,2} is a 2-subset of X.

e Finite Lists (or Tuples)

L=11,521,3]

— ordered structure, repeats allowed
1,5,2,1,3] #[1,1,2,3,5] #[1,2,3, 5]
— length = number of items, length of L is 5.

An n-tuple is a list of length n.

A permutation of an n-set X is a list of length n such that every

element of X occurs exactly once.

X ={1,2,3}, m=[21,3] m=3,1,2]

Lucia Moura 4

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Graphs

DEFINITION. A graph is a pair (V, F) where:
V' is a finite set (of vertices).
FE is a finite set of 2-subsets (called edges) of V.

Example: Gy : V =4{0,1,2,3,4,5,6,7}
E= {{07 4}a {07 1}7 {07 2}7 {27 3}7 {27 6}7
13,7}, 14,5}, {4,6},15,6},{5, 7}, 16,7} }

Complete graphs: graphs with all possile edges.
Examples:

Substructures of a graph:

1. A hamiltonian circuit (hamiltonian cycle) is a closed path that
passes through each vertex once.

The following list describes a hamiltonian cycle in Gi:
0,1,5,4,6,7,3,2] (different lists may describe the same cycle).

Lucia Moura 5

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Traveling Salesman Problem: given a weight /cost function
w : E — R on the edges of G, find a smallest weight
hamiltonian cycle in G.

2. A clique in a graph G =V, F) is a subset C' C V such that

{z,y} € Eforall z,y € C.
(Or equivalently: the subgraph induced by C' is complete).

Example:

G - Some cliques of Go:

Maximum cliques of Go:

Famous problems involving cliques:

e Maximum clique problem: find a maximum clique in a graph.

e All cliques problem: find all cliques in a graph without
repetition.

Lucia Moura 6

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Set systems/Hypergraphs

DEFINITION. A set system (or hypergraph)is a pair (X, B)
where:

X is a finite set (of points).

B is a finite set of subsets of X (blocks).

Examples:

e Graph: A graph is a set system with every block with cardinality
2.

e Partition of a finite set:
A partition is a set system (X, B) such that
BiN By = forall B;,By € B,B; # By, and

UBEB B - X

e Steiner triple system (a type of combinatorial designs):

B is a set of 3-subsets of X such that for each z,y € X,z # v,
there exists eactly one block B € B with {z,y} C B.

Example:
X ={0,1,2,3,4,5,6}
B =

{{0,1,2},{0,3,4},{0,5,6},{1,3,5},{1,4,6}, {2,3,6}, {2,4,5}}

Lucia Moura 7

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Combinatorial Algorithms

Algorithms for investigating combinatorial structures. Three types:

e Generation

Construct all combinatorial structures of a particular type.

— Generate all subsets/permutations/partitions of a set.
— Generate all cliques of a graph.

— Generate all maximum cliques of a graph.

— Generate all Steiner triple systems of a finite set.

e Enumeration
Compute the number of different structures of a particular type.

— Compute the number of subsets/permutat. /partitions of a set.
— Compute the number of cliques of a graph.
— Compute the number of maximum cliques of a graph.

— Compute the number of Steiner triple systems of a finite set.

e Search
Find at least one example of a combinatorial structures of a
particular type (if one exists).
Optimization problems can be seen as a type of search problem.

— Find a Steiner triple system on a finite set. (fesibility)
— Find a maximum clique of a graph. (optimization)
— Find a hamiltonian cycle in a graph. (feasibility)

— Find a smallest weight hamiltonian cycle in a graph.
(optimization)

Lucia Moura 8

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Hardness of Search and Optimization

Many search and optimization problems are NP-hard, which
means that

unless P = NP (an important unsolved complexity question)

no polytomial-time algorithm to solve the problem would exist.
Approaches for dealing with NP-hard problems:

e Fxhaustive Search

— exponential-time algorithms.

— solves the problem exactly
(Backtracking and Branch-and-Bound)
e Heuristic Search

— algorithms that explore a search space to find a feasible
solution that is “close to” optimal, within a time limit

— approximates a solution to the problem

(Hill-climbing, Simulated annealing, Tabu-Search, Genetic
Algorithms)

e Approximation Algorithms

— polynomial time algorithm

— we have a provable guarantee that the solution found is “close
to” optimal.

(not covered in this course)

Lucia Moura 9

CSI5165 - Fall 2003

Introduction to Combinatorial Algortihms

Types of Search Problems

1) Decision Problem:
A yes/no problem

Problem 1:

Clique (decision)

Instance: graph G = (V, E),
target size k

Question:

Does there exist a clique C'
of G with |C| = k7

2) Search Problem:
Find the guy.

Problem 2:

Clique (search)

Instance: graph G = (V, E),
target size k

Find:
a clique C of G

with |C| = k, if one exists.

3) Optimal Value:
Find the largest target size.

Problem 3:
Clique (optimal value)
Instance: graph G = (V, F),

Find:

the maximum value of |C,
where C'is a clique

Lucia Moura

4) Optimization:
Find an optimal guy.

Problem 4:
Clique (optimization)
Instance: graph G = (V, E),

Find:

a clique C such that
|C'| is maximize (max. clique)

10

CSI5165 - Fall 2003 Introduction to Combinatorial Algortihms

Plan for the Course

1. Generating elementary combinatorial objects

Sequential generation (successor), rank, unrank.
Algorithms for subsets, k-subsets, permutations.
Reference: textbook chapter 2. 2 weeks]

2. Exhaustive Generation and Exhaustive Search

Backtracking algorithms

(exhaustive generation, exhaustive search, optimization)
Brach-and-bound

(exhaustive search, optimization)

Reference: textbook chapter 4. 3 weeks]

3. Heuristic Search

Hill-climbing, Simulated annealing, Tabu-Search, Genetic Algs.
Applications of these techniques to various problems.

Reference: textbook chapter 5. 3 weeks]

4. Computing Isomorphism and Isomorph-free
Exhaustive Generation

Graph isomorphism, isomorphism of other structures.
Computing invariants.

Computing certificates.

[somorph-free exhaustive generation.

Example: Generate all trees on n vertices, without isomorphic
copies.

Reference: textbook chapter 7, papers. 3 weeks]

Lucia Moura 11

GENERATING ELEMENTARY
COMBINATORIAL OBJECTS

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Combinatorial Generation

We are going to look at combinatorial generation of:

e Subsets
e k-subsets

e Permutations

To do a sequential generation, we need to impose some order on
the set of objects we are generating.

Let S be a finite set and N = |S].
A rank function is a bijection
RANK: § — {0,1,..., N — 1}.
It has another bijection associated with it
UNRANK: {0,1,..., N -1} — S.
A rank function defines an ordering on S.
Many types of ordering are possible; we will discuss two types:
lexicographical ordering and minimal change ordering.

Once an ordering is chosen, we can talk about the following types
of algorithms:

e Successor: given an object, return its successor.
e Rank: given an object S € S, return RANK(S)

e Unrank: given a rank ¢ € {0,1,..., N — 1}, return UNRANK(n),
its corresponding object.

Lucia Moura 13

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

1. Generating Subsets (of an n-set)

1.1. Generating Subsets: Lexicographical Ordering

Represent a set by its characteristic vector:

subset X of {1,2,3} ‘ characteristic vector
{1,2} [1,1,0]
{3} 0,0,1]

The characteristic vector of a subset 7' C X is a vector
X(T) = |Tp-1,Tp—2,--.,%1, Ty Where
o 1, ifn—2€T
" 10, otherwise.

Example:

lexico rank | X(T') = [x2, z1, zo] | T
0 (0,0, 0] 0
1 0,0, 1] {3}
2 0,1, 0] {2}
3 0,1, 1] {2, 3}
4 [1,0,0] {1}
5 1,0, 1] {1,3}
6 [1, 1, O] {1, 2}
7 11,1, 1] {1, 2,3}

Note that the order is lexicographical on X' (T') and not on T
Note that X' (T') corresponds to the binary representation of rank!

Lucia Moura 14

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Ranking
More efficient implementation: Books'version:
SUBSETLEXRANK (n,T)
r < 0;
for 1 < 1 ton do
T 2K if (i € T) then
if (1 €T) then r «— r+1; P 4

return r;

This is like a conversion from the binary representation to the
number.

Unranking

SUBSETLEXUNRANK (n, 1)
T «— 0;
for ¢ «— n downto 1 do
if (r mod 2=1) then T «— T U {i};

r—[5];
return 1';

This is like a conversion from number to its binary representation.

Lucia Moura 15

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Successor

The following algorithm is adapted for circular ranking, that is, the
successor of the largest ranked object is the object of rank 0.

SUBSETLEXSUCCESSOR (n,T)
1 «— O;
while (1 <n—1)and (n—i € T) do
T —T\{n—i};

1 — 1+ 1;
if (1 <n—1)thenT «— TU{n—1i};
return 7'

This algorithm works like an increment on a binary number.

Examples:

1. SUBSETLEXSUCCESSOR(3, {2,3}) = {1}.

12,3} 0,1, 1]
{1} [1,0,0]

2. SUBSETLEXSUCCESSOR(4, {1,4}) = {1, 3}.

{1,4} [1,0,0,1]
{1,3} [1,0,1,0]

Lucia Moura 16

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

1.2. Generating Subsets: Minimal Change Ordering

In minimal change ordering, successive sets are as similar as
possible.

The hamming distance between two vectors is defined as the
number of bits in which the two vectors differ.

Example: dist(0001010,1000010) = 2.

When we apply to the subsets corresponding to the binary vectors,
it is equivalent to:

dZSt(Tl, T2> = |T1AT2| = |<T1 \T2> U (TQ \ T1>|

A Gray Code is a sequence of vectors with successive vectors
having hamming distance exactly 1.

Example: [00, 01,11, 10].

We will now see a construction for one possible type of Gray

Codes...

Lucia Moura

17

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Construction for Binary Reflected Gray Codes

0
n=1
1
000
n=3

001

More formally, we define G™ inductively as follows:
G' = [0,1]
G" =[0Gy, -, 0Gh A 1GR _ 1GE T

Theorem 2.1. For any n > 1, G" is a gray code.
Exercise: prove this theorem by induction on n.

Lucia Moura 18

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Successor

Examples:

G5 = [000,001,011,010,110, 111, 101, 100]
G, = [0000,0001,0011,0010,0110,0111,0101, 0100,
1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000].

Rules for calculating successor:
e If vector has even weight (even number of 1’s): flip last bit.

e If vector has odd weight (odd number of 1’s): from right to left,
flip bit after the first 1.

GRAYCODESUCCESSOR (n,T)
if (T is even) then
U «— TA{n};
else
J—n; (flip last bit)
while (j € T) and (j > 0) do j «— j — 1;
if (j =1)then U < 0; (I changed for circular order)
else U — TA{j —1};
return U';

Lucia Moura 19

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Ranking and Unranking

rf0 1 2 3 4 5 6 7
b3bobiby bin.rep. | 000 001 010 011 100 101 110 111
(20100 G2 1000 001 011 010 110 111 101 100

Set b3 = 0 in the example above.
We need to relate (b,b,_1...bg) and (a,_1a,_o, . .. ap).

Lemma 1.
Let P(n): “For 0 <r <2"—1,a; =b;+b;4; (mod 2), for all
0<j<n-—1". Then, P(n) holds for alln > 1.

Proof: We will prove P(n) by induction on n.
Basis: P(1) holds, since ag = by and b; = 0.

Induction step: Assume P(n — 1) holds. We will prove P(n) holds.

Case 1. r < 2"! —1 (first half of G,,).
Note that b,y = 0 = a,_; and b,, = 0, which implies

an_1=0=0b,_1+b,. (1)
By induction,
a; =bj+bj11 (mod2), foralld <j<n-—2. (2)
Equations (1) and (2) imply P(n).

Lucia Moura 20

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Case 2. 2" <r < 2" —1 (second half of G,).
Note that b,y = 1 = a,_; and b,, = 0, which implies
an1=1=b,_1+b, (mod2).

Now, G" = 1G5, , = lay_2a,_3...ajag. The binary

representation of 2" — 1 — r is

0(1 — bp—2)(1 = by—3) ... (1 — by)(1 — by).
By induction hypothesis we know that, for all 0 < 7 < mn — 2,

= bj + bj+1 (mod 2)

Equations (3) and (5) imply P(n).

Lemma 2.
Letn>1,0<r <2"—1. Then,

n—1
b= ¥ a (mod 2), forall0<j<n-—1.
i=j

Proof:
n—1 n—1
Ya; = X bi+by (mod2) [ByLemma 1]
i=j i=j

bj + 2bj.|_1 +...4+2b,_1+ b, (mod 2)
bi+b, (mod2)
b (mod 2) [Since b, = 0].

Lucia Moura

21

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Letn>1,0<r<2"—1.
We haved proved the following properties hold, for all

n—1
bj= X a; (mod 2).
i=]

a; = bj + bj+1 (HlOd 2),

The first property is used for ranking:

GRAYCODERANK (n,T)
r«—0;b« 0;
for ¢ «— n — 1 downto 0 do
if (n—1) € T) then (ifa;=1)
b—1-10; (b= bit1)
r <« 2r + b;
return 7r;

The second property is used for unranking:

GRAYCODEUNRANK (n, 1)
T — 0; 8 «—rmod 2; ' — |5]:
fort < O0ton—1do
b+ ' mod 2
if (b#£0V)then T — TU{n—1};
b — b r' — [%/J,

return 7°;

Lucia Moura 22

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

2. Generating k-subsets (of an n-set)

2.1. Generating k-subsets: Lexicographical Ordering

rank T T
{1,2,3} ||
{1,2,4} ||
{1,2,5} ||
{1,3,4} ||
{1,3,5} | [1,3,5

[

[

[

[

[

{1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}

© 00 ~J O T i W N+~ O

Successor

IDEA: n = 10, SUCCESSOR({. .., 5,8,9,10})={...,6,7,8,9}

KSUBSETLEXSUCCESSOR (T, k,n)
U — f; 1 — k;
while (¢ > 0) and ((; =n —k+1i) doi ¢ — 1;
if (i=0)then U =11,2,...,k|:
else for 7 < ¢ to k do
Uj (ti—l—l)—l—j—i;
return (7;

Lucia Moura 23

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Ranking

How many subsets preceed T = [t1,to, ... tk]?

all sets [X,] with 1 < X <ty —1
(=55 ()

all sets [t1, X,...]witht; +1 < X <ty —1

-1 i
(=41 (22)

all sets [t1,...,tpe—1, X, ... withtp 1 +1 < X <t —1

tr.—1 n—q
(Ej];tk—1+1 (k—(kil)))

Thus,
k t;—1 — 9
rank(T) =Y > (n])
i=1

j=ti+1 \k —1
KSUBSETLEXRANK (T, k, n)

r «— 0;

to < O;

for i «+— 1 to k do

forj «—t;_1+1tot; —1do
r—r+ ()
return r;

Lucia Moura 24

CSI5165 - Fall 2003 Generating Elementary Combinatorial Objects

Unranking

th =z <= ¥I_ (o)<7“<E (Z_{)

1 i
tzza?(:)Ej t1+1(_2) ST_Z‘I;I 1 ()<Z] t1+1 (k—{)

KSUBSETLEXUNRANK (7, k,n)
T — 1;
for 2 < 1 to k£ do
while (r > (,_7)) do

P = (70

k—1
T —x+1;
ty <— x;
T — x4+ 1;

return 7' ;

Lucia Moura 25

