
CSI 5165 Combinatorial Algorithms Fall 2003
Computer Science University of Ottawa

Homework Assignment #1 (100 points, weight 15%)
Due: Tuesday, October 7, at 9:00 a.m. (in lecture)

1. (10 points) Simple practice with combinatorial generation algorithms
Calculate the result for the following operations. Show your work.

• Subsets:
Give the Successor and the Rank of 01010110 in the Gray code G8.

• k-subsets:
Give Rank of {3, 6, 7, 9} considered as a 4-subset of {0, 1, . . . , 12} in lexicographic
and revolving-door order. What is the Successor in each of these orders?

• Permutations:
Find the rank and successor of the permutation [2, 4, 6, 7, 5, 3, 1] in lexicographic
and Trotter-Johnson order.

Unrank the rank r = 56 as a permutation of {1, 2, 3, 4, 5}, using the lexicographic
and Trotter-Johnson order.

2. (10 points) Successor algorithm for co-lex ordering of k-subsets of an n-set
In Section 2.3.2 of the textbook you can find the definition of co-lex ordering for k-
subsets of an n-set; give a Successor algorithm for this ordering.

3. (40 points) Generating k-multisets of an n-set (Exercise 2.13)
A multiset is a set with (possibly) repeated elements. A k-multiset is one that contains
k elements (counting repetitions). Thus, for example, {1, 2, 3, 1, 1, 3} is a 6-multiset.
The k-multisets of an n-set can be ordered lexicographically, by sorting the elements
in each multiset in non-decreasing order and storing the result as a list of length k.

When writing your algorithms, you will need to consider the following quantity:
Lnk = number of k-multisets of an n-set.

(a) (5 points) Give a recurrence formula for Lnk .

(b) (5 points) Give a brief algorithm which computes and stores Lmi , for all i ≤ k and
m ≤ n, on a table.

(c) (30) Develop successor, ranking and unranking algorithms for the k-multisets of
an n-set. You may simply refer to table values calculated in the previous part.

Hint: Try to adapt the algorithms for lexicographical ordering of k-subsets of an n-set.
Note that you will use quantities Lmi in place of quantities
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Example: k = 3, n = 4, L4
3 = 20

rank T ~T

0 {1, 1, 1} [1, 1, 1]
1 {1, 1, 2} [1, 1, 2]
2 {1, 1, 3} [1, 1, 3]
3 {1, 1, 4} [1, 1, 4]
4 {1, 2, 2} [1, 2, 2]
5 {1, 2, 3} [1, 2, 3]
6 {1, 2, 4} [1, 2, 4]
7 {1, 3, 3} [1, 3, 3]
8 {1, 3, 4} [1, 3, 4]
9 {1, 4, 4} [1, 4, 4]
10 {2, 2, 2} [2, 2, 2]
11 {2, 2, 3} [2, 2, 3]
12 {2, 2, 4} [2, 2, 4]
13 {2, 3, 3} [2, 3, 3]
14 {2, 3, 4} [2, 3, 4]
15 {2, 4, 4} [2, 4, 4]
16 {3, 3, 3} [3, 3, 3]
17 {3, 3, 4} [3, 3, 4]
18 {3, 4, 4} [3, 4, 4]
19 {4, 4, 4} [4, 4, 4]

4. (40 points) Backtracking for orthogonal Latin squares

A Latin square of order n is an n by n array A, whose entries are chosen from X =
{1, 2, . . . , n}, such that each symbol in X occurs in exactly one cell in each row and in
each column of A.

Two Latin squares A = (aij) and B = (bij) are said to be orthogonal if for any pair
(k, l) of elements of X, there is a unique position i, j such that aij = k and bij = l.

Write a backtracking algorithm that, given a Latin square A of order n, determines
the number of Latin squares of order n that are orthogonal to A and have entries
[1, 2, . . . , n] in the first row. Please, hand in the pseudocode, as well as a program
implementing your algorithm.

Please, make your program also print statistics on the number of (recursive) calls to
your backtrack algorithm, for each input. Efficiency and clarity count.

Run your program with the following inputs for n ≤ 4 and show printouts for your
results. Try your luck with n = 5, 6 and report any results obtained or difficulties
encountered.
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A3 =
1 2 3
2 3 1
3 1 2

A4=

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

B4 =

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

A5 =

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

A6 =

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5

Some facts: The number of Latin squares of order n which have the first row [1, 2, . . . , n]
for n = 3, 4, 5, 6 is 2, 24, 1344, 9408× 5!, respectively. This large number of candidates
suggests you should test for orthogonality on the fly. More specifically, it is not a
good idea to do a backtracking algorithm that generates each of these Latin squares
and only then checks for orthogonality with the given Latin square (there would be no
hope for n = 6). It is advisable to check for orthogonality violations while each Latin
square is being generated.
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