Algorithms in Bioinformatics:
Lecture 09: Suffix Trees and Variants

Lucia Moura

Fall 2010

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants Lucia Moura

Summary: Suffix Trees
[]

ta Structures

Summary

Summary: Suffix Trees

Suffix trees can be built in time O(n) (see Farach's algorithm (1997), Sect 3.4).
The space requirement is O(n|.A|logn).
We saw how to solve the following problems using Suffix trees:

@ Exact string matching (is P[1..m] in T[1..n]?): after creating the suffix tree
once in O(n), each string matching takes O(m)

@ Longest repeated substring in T'[1..n]: O(n)
@ Longest common substring of S1,Sa,...,S,: O(n1 +ng + -+ nyg)

@ Substring problem: given a database of strings 77, ... T} known in advance,
check if P is a substring of one of the T; (DNA identification, US army).
Preprocessing takes O(ny + - - -+ ny) and each P can be processed in O(m).

Find maximal repeated pairs of substring in S[1..n]: O(n).
Find all MUMs (Maximal Unique Pairs) in Sy and Sz: O(ny + ng).
Find k-mismatches of P in T via LCE: O(m + nk)

Find all maximal palindromes (or complemented palindromes) of S: O(n)

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants

Lucia Moura

Related Data Structures

ary: Suffix

Suffix arrays

Suffix Array

@ suffix trees are very useful, but have a large space requirement:
O(n|A|logn) bits; where | A| is 4 for DNA and 20 for protein.

@ Manber and Myers (1993) proposed suffix arrays which requires only
nlogn bits.

@ Most applications using suffix trees can be solved using suffix arrays
with some time overhead.

e A suffix array can be built in time O(n) using O(n) bits of working
space (Hon, Sadakane and Sung, FOCS 2003).

Definition

Let S[1..n] be a string of length n over an alphabet A, with terminator $
being alphabetically smaller than all characters. A suffix array SA[1..n] is
an array of integers such that S[SA[i]..n] is lexicographically the i — th
smallest suffix of S.

Lucia Moura

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants

Related Data Structures
0@e00

Suffix arrays

Suffix Array

Suffix | Position 1 | SAi] | Suffix
acacag$ 1 1 7 $
cacag$ 2 % 1 acacag$
acag$ 3 3 3 | acag$
cag$ 4 4 5 ag$

ag$ 5 5 Z cacag$
g3 6 6 4 | cag$

3 7 6 15

(a) (b)
FIGURE 3.13: (a) The set of suffixes of S = acacag$, (b) the correspond-
g suffix array, and (c) the corresponding suffix tree. Note that the lexico-
zraphical order of the leaves in the suffix tree equals the order of the suffixes
m the suffix array.

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants Lucia Moura

Related Data Structures
[e]e] o]

Suffix arrays

Exact string matching using suffix array

For a query, check whether Q[1..m] exists in S[1..n].
Idea: binary search for @) on the suffix array.

(@) SA[] | SA[] Suffix (©) Sl | SA[] Suffix
L=1, /=0 - 7 $ mir = min(/,r)=0 - 7 s
R= t M=(L+R)/2=2
2 1 acacagS 3 =,) /1 acacag$
3 3 acag$ Q>suffix SA[M] 3 g acag$
4 15y S — 4 5 S
o We set =
S 5 2 cacag$ L=M=2, -m=3 5 2 cacag$
6 4 cag$ R=4,r=1 6 4 cag$
- 5 |6 I 7 hE i
(b) SA[i] SA4[1] Suffix (d) : [sari SA[i] Suffix
mir=min(,n=0 — 7 s mir = min(l,n=1 1 7 s
M=(L+R)/2=4 M=(L+R)/2=3
) 2 1 acacag$ m=4 L 1 acacag$
Q < suffix SAIM] 3 3 acag$; - 3 |3 acag$
B 5 a8 Qis found in SA[M] ey 5 a8
We set
L=1, 10 5 2 cacag$ 5 2 cacag$
R=M=4, =m=1 6 4 cag$ 6 4 cag$
e 6 o8 7 6 25

FIGURE 3.16: This example demonstrates how to check the existence of
Q = acag in the text S = acacag$ by performing binary search on the suffix

array of S.

: Lecture 09: Suffix Trees and Variants

Algorithms in Bioinformatic:

Related Data Structures
[e]e]e]]

Suffix arrays

Exact string matching using suffix array: algorithm

[SA _binary_search(Q)

| 1: Let L=1and R=mn;
| 2. while L < R do

| 32 Let M =(L+R)/2.

4: Find the length m of the longest common prefix of @ and suffix SA[M];
5. if m =|Q| then

6: Report suffixes SA[M] contain the occurrence of Q;

7. else if suffix SA[M] > Q then

8 set R = M;

9: else

10: set L = M;

11: end if

12: end while
13: if L > R then
14: Report @ does not exist in S;

15: end if
. . FIGURE 3.14: Checking the existence of a query @ through binary search
Runnlng time: on the suffix array of S.

Binary search does at most logn comparisons, each of which takes at most m
comparisons: O(mlogn)
Using suffix trees this could be achieved in O(m) time.

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants Lucia Moura

Related Data Structures

[JeJele)

FM-index

FM-index

When the space requirement of a suffix array is still prohibitive, then
FM-index (Ferragini and Manzini, 2000) can be used.

suffix tree suffix array | FM-index
Space requirement (in bits): | O(n|A|logn) | nlogn O(n)
Human genome requirement: | 40 GB 13 GB 1.5 GB

FM-index can be constructed in linear time.

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants

Lucia Moura

Related Data Structures

0®00
FM-index

Definition of FM-index

The FM-index consists of the 3 data structures:
@ The Burrows-Wheeler text of S[1..n] is a string BW[1..n] where:

BWIi| = S[SA[i] —1], if SA[i] #1;
— S[n), if SA[i] #1

S = acacag$
BW = gS$ccaaa

@ For every z € A, C|x] stores the total number of occurrences of
characters which are lexicographically less than z.
Cla) =1,Clc] =4,Clg| =6,C[t] =7

© A data structure that supports O(1) computation of occ(z,1)=
number of occurrences of € BW/1..i]. This is stored using
O(nloglogn/logn). [this is the trickiest part]
occ(a,5) = 1,0cc(c,4) = 2

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants Lucia Moura

Related Data Structures

[o]e] o)

FM-index

Exact string matching using FM-index: Algorithm

Algorithm BW _search(Q[1..m])
z = Q[m]; st = Clz] + 1; ed = Clz + 1];
i=m-—1;
. while st <ed and 7 > 1 do
z = Qld;
st = Claz] -+ occ(z, st — Dt
ed = C[z] + occ(z, ed);
==l
end while
. if st > ed, then pattern not found else report [st..ed].

- M bl R el

FIGURE 3.19: Given the FM-index of S, the backward search algorithm
finds range(S, Q).

Running time: O(m).

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants

Lucia Moura

Related Data Structures

000®
FM-index

Exact string matching using FM-index

A [Sulix [BWE
(a) First iteration (initial values), I 5 g
— i acacag$ $
QB3 =a 3 acag$ (
range(S, Q[3..3]) = [sp-.ep] S EEEE t
sp=Cla]+1=1+1=2 2 cacag$ a
ep=Clc] =4 4 cag$ a
6 g% a

(b) Second iteration, f;liJ ;‘lﬁi" BWTi
Q2¥3|="ca I g
i acacag$ $
range(S, Q[2..3]) = [sp/..ep’] = iracaql 5
spl = . Clel.+ occle;sp — 1) + 1. = 5 [agd &
44+0+1=5 — D cacag$ a
ep’ = Clc] + occ(c,ep) =4 +2=6 — [4 [cag¥ a
6 9% a

5 : Ale] | Suffix BWTi]
(c) Third iteration, ' T 7
Q1..3] = aca — il acacag$ S
range(S, Q[1..3]) = [sp”..ep”] = I3 Tl acags c
sp” = Cla] + occ(a,sp’ —1) +1 =1+ 5 [ag$ c
ERT 2 cacag$ a
ep” = Cla] + occ(a,ep’) =1+2=3 é ;;gg Z

FIGURE 3.20: Given the FM-index for the text S = acacag$. This fig-
ure shows the three iterations for searching pattern @ = aca using back-
ward search. (a) range(S,a) = [2.4], (b) range(S,ca) = [5..6], and (c)
range(S, aca) = [2..3].

Algorithms in Bioinformatics: Lecture 09: Suffix Trees and Variants

	Summary: Suffix Trees
	Summary

	Related Data Structures
	Suffix arrays
	FM-index

