Homework Assignment #3 (100 points, weight 15%) Due: Tuesday, November 30

Genome Alignment and Phylogeny Reconstruction

- 1. (20 marks) (genome alignment) Consider two sequences S[1..n] and T[1..m]. We aim to find the set of all strings P such that (1) P appears exactly once in S, (2) P appears exactly once in T and its reverse complement, (3) P is maximal. Give a detailed (efficient) algorithm to find the set P. Analyse its running time.
- 2. (40 marks) (multiple sequence alignment) Consider the following set of sequences.

 S_1 = ACTCTCGATC S_2 = ACTTCGATC S_3 = ACTCTCTATC S_4 = ACTCTCTAATC

Use a matching score of +1 and mismatch/indel score of -1.

- (a) (10 marks) Compute the optimal **pairwise** global alignment for each pair of strings from the above list. You don't have to run the algorithm step by step, and may write the answer directly when obvious.
- (b) (10 marks) Compute the multiple sequence alignment for $\{S_1, S_2, S_3, S_4\}$ using the **center** star method. Please show your steps.
- (c) (20 marks) Compute the multiple sequence alignment for $\{S_1, S_2, S_3, S_4\}$ using **ClustalW**. Please show your steps.
- 3. (20 marks) For the following M, construct the corresponding ultrametric tree. Show each step.

M	S_1	S_2	S_3	S_4	S_5
S_1	0	20	20	20	8
S_2		0	16	16	20
S_3			0	10	20
$\begin{array}{c c} S_2 \\ \hline S_3 \\ \hline S_4 \\ \hline S_5 \end{array}$				0	20
S_5					0

4. (20 marks) Compute a phylogenetic tree for the following set of DNA sequences such that the total cost of your phylogenetic tree is at most twice that of the optimal solution (hint: use

the approximation algorithm given in section 7.2.1.2):

$$S_1 = ACCGT$$

 $S_2 = ACGTT$
 $S_3 = CCGTA$
 $S_4 = GTCCT$
 $S_5 = AGCTT$