CSI 4105 - MIDTERM SOLUTION

Instructor: Lucia Moura

Feb 6, 2010 10:00 am Duration: 1:50 hs

Closed book

Last name: _____

First name: _____

Student number: _____

There are 4 questions and 100 marks total.

This exam paper should have 8 pages, including this cover page.

1 - Short answers	/ 25
2 – Search versus Decision problem	/ 25
3 – NP-completeness reductions	/ 25
4 – CLIQUE is NP-complete	/ 25
Total	/ 100

1 Short answers — 25 points

The questions below are of the type "true or false"; briefly justify your answer.

Note: You may use any result shown in class or in homework without proving it. You may use the fact that you know particular problems are polynomial-time solvable or NP-complete.

• For all problems $X \in \mathcal{NP}$, $X \leq_P 3D$ -MATCHING. [TRUE] Justify:

3D-MATCHING is NP-complete, and the above statement says that 3D-MATCHING is NP-hard.

• If VERTEX-COVER $\in \mathcal{P}$ then SAT $\in \mathcal{P}$. [TRUE] Justify:

Since VERTEX-COVER is NP-complete then any problem in \mathcal{NP} polytime reduces to it, in particular SAT. From SAT \leq_P VERTEX-COVER and VERTEX-COVER $\in \mathcal{P}$ it follows SAT $\in \mathcal{P}$.

• If $\mathcal{P} = \mathcal{N}\mathcal{P}$ then SHORTEST-PATH is NP-complete. [TRUE]

Any problem in \mathcal{P} is polynomial-time reducible to any other problem in \mathcal{P} . If $\mathcal{P} = \mathcal{NP}$ then the same would hold for \mathcal{NP} . Since SHORTEST-PATH $\in \mathcal{NP}$, it follows that for all $X \in \mathcal{NP}$, $X \leq_P$ SHORTEST-PATH. Therefore, SHORTEST-PATH is NP-complete.

• It is possible that INDEPENDENT-SET $\in \mathcal{P}$ and HAM-CYCLE $\notin \mathcal{P}$ [FALSE] Justify:

Similar to the second question. Since INDEPENDENT-SET is NP-complete then any problem in \mathcal{NP} polytime reduces to it, in particular HAM-CYCLE. From HAM-CYCLE \leq_P INDEPENDENT-SET and INDEPENDENT-SET $\in \mathcal{P}$ it follows HAM-CYCLE $\in \mathcal{P}$. Which contradicts HAM-CYCLE $\notin \mathcal{P}$.

• Let X_1 and X_2 be decision problems in \mathcal{NP} , and assume $\mathcal{P} \neq \mathcal{NP}$. If $X_1 \leq_P X_2$ and $X_2 \leq_P X_1$, then both X_1 and X_2 are NP-complete. [FALSE]

Justify:

We give a counterexample. Take X_1 and X_2 in \mathcal{P} . This implies $X_1 \leq_P X_2$ and $X_2 \leq_P X_1$. In addition, since $\mathcal{P} \neq \mathcal{NP}$ by assumption, then X_1 and X_2 are not NP-complete.

2 Search versus Decision problem — 25 points

Recall that 3-SAT is the following decision problem:

"Given a formula ϕ which is a conjunction of k clauses over a set of variables $\{x_1, x_2, \ldots, x_n\}$, does there exist a satisfying truth assignment for ϕ ?"

Consider the analogous problem 3-SATSEARCH that computes a satisfying assignment for ϕ , if one exists, or outputs " ϕ is unsatisfiable", otherwise.

Show that if 3-SAT can be solved in polynomial time, then 3-SATSEARCH can be solved in polynomial time.

Hint 1: Do this by providing an algorithm that solves 3-SATSEARCH by doing calls to the polynomial-time algorithm that decides 3-SAT.

Justify that your algorithm runs in polynomial time. (Note, your formulas may grow in size, and you must be careful and justify that the calls for 3-SAT have time that remain polynomial on the size of ϕ , even when using for your transformed larger formulas).

Hint 2 : One can force the value of a variable x_i in formula ϕ , by transforming ϕ into $\phi \wedge \phi'_{i,v}$, where $\phi'_{i,v}$ is given below, and uses two extra variables y and z:

- Forcing $x_i = 1$: $\phi'_{i,1} = (x_i \lor y \lor z) \land (x_i \lor y \lor \overline{z}) \land (x_i \lor \overline{y} \lor z) \land (x_i \lor \overline{y} \lor \overline{z})$
- Forcing $x_i = 0$: $\phi'_{i,0} = (\overline{x_i} \lor y \lor z) \land (\overline{x_i} \lor y \lor \overline{z}) \land (\overline{x_i} \lor \overline{y} \lor z) \land (\overline{x_i} \lor \overline{y} \lor \overline{z})$

```
Algorithm 3-SatSearchALG(\phi)
Input:
              a fomula \phi in conjunctive normal form with tree literals per clause,
              having n-variables and k-clauses.
              a truth assignment to x_1, x_2, \ldots, x_n that satisfies \phi,
Output:
              or ''\phi is not satisfiable''
If (3-SAT-ALG(\phi)='no') then return ''\phi is not satisfiable''
else
   \phi' \leftarrow \phi
   for i=1 to n do
         if (3-SAT-ALG(\phi' \wedge \phi_{i,1}')\text{=`yes'}) then
             \phi' \leftarrow \phi' \land \phi'_{i,1}; x_i \leftarrow 1;
         else
             \phi' \leftarrow \phi' \land \phi'_{i,0}; x_i \leftarrow 0;
return (x_1, x_2, \ldots, x_n)
```

(continues in the next page...)

Justification of polynomial running time: Assume 3-SAT-ALG is a polynomial-time algorithm that solves 3-SAT. The above algorithm repeats n times the loop. The loop consists of a constant number of operations and a call to 3-SAT-ALG which runs in time polynomial with its input. Over all the iterations, the input formula grows from ϕ (having n variables and k clauses) to a formula with n + 2 variables and k + 4n clauses. So each formula for which 3-SAT-ALG is called has size polynomial on the size of ϕ , and this algorithm runs in time polynomial on the size of this formula. So 3-SAT-ALG runs in time polynomial on the size of ϕ . Therefore, the above algorithm runs in polynomial time.

3 NP-completeness reductions — 25 points

In this question, you are asked to apply some reductions discussed in class to the examples given. For problems X_2 and X_2 shown in each part below, we have studied a reduction algorithm that shows that $X_1 \leq_P X_2$; you should apply the algorithms discussed in class.

Part A — 10 points $3\text{-}SAT \leq_P \text{INDEPENDENTSET}$

Consider the following instance for 3-SAT: $\phi = (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_4).$

• Give the corresponding instance for the independent set problem INDEPENDENT SET, according to the reduction algorithm for 3-SAT \leq_P INDEPENDENTSET. You need to provide (G, k), where G is a graph and k is a target size for the independent set.

k = 2

Will avoid having to draw... graph description: 6 vertices, 8 edges triangle with vertices 1, 2, 3 with labels $\overline{x}_1, x_3, \overline{x}_4$ triangle with vertices 4, 5, 6 vertices with labels x_1, x_2, x_4 . extra edges connecting $\{x_1, \overline{x}_1\}$ and $\{x_4, \overline{x}_4\}$

One possible independent set coming from the truth assignment below is vertices 1 and 6, corresponding to $\overline{x_1}$ in the irst triangle and x_4 in the second triangle.

• Give a satisfying assignment for ϕ and show how it translate to an independent set of the right size, by marking the independent set in the picture above.

 $x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1$; independent set of size 2 above.

Part B — 15 points 3-SAT \leq_P DIRECTEDHAMCYCLE

Use the same instance of 3-SAT as shown in the previous part.

• Give the corresponding instance for the directed Hamiltonian cycle problem, DIRECTED-HAMCYCLE, according to the reduction algorithm for 3-SAT \leq_P DIRECTEDHAMCY-CLE. You need to provide a graph.

This is a bit tedious to draw in the computer...

In summary, we need 4 paths with 9 vertices each. In each path, vertices 3,4 are reserved for clause 1; and 6,7 is reserved for clause 2.

Follow construction in the textbook to connect 2 clause nodes to these paths, and add edges that connect the paths and add vertices s and t accordingly.

My hamiltonian cycle, corresponding to the truth assignment in the previous page, in summary follows the order: s, P_1 from right to left picking up clause C_1 , P_2 from left to right, P_3 from left to write, P_4 from left to right picking up clause 2, t, s.

• Show a hamiltonian cycle in the graph above, corresponding to a satisfying assignment for ϕ . You may use the same satisfying assignment as in the previous question.

4 CLIQUE is NP-complete — 25 points

Recall that an **independent set** in a graph G = (V, E) is a subset $I \subseteq V$ such that for all $x, y \in I, \{x, y\} \notin E$.

A clique in a graph G' = (V', E') is a subset $C \subseteq V'$ such that for all $x, y \in C$ with $x \neq y$, $\{x, y\} \in E'$.

Consider the following decision problems:

INDSET: Given (G, k), does G have an independent set of size at least k?

CLIQUE: Given (G, k), does G have a clique of size at least k?

Recall the definition of the complement of a graph below, which in plain words say that you keep the same vertex set, but switch edges with non-edges.

The **complement** of a graph G = (V, E) is a graph $\overline{G} = (V, E')$ such that for every $x, y \in V$, $x \neq y$, we have $\{x, y\} \in E'$ if and only if $\{x, y\} \notin E$.

Part A — 10 points Let G = (V, E) be a graph, let \overline{G} be its complement graph and let $S \subseteq V$. Prove that S is an independent set of G if and only if S is a clique of \overline{G} .

Example:		
	$\{1, 2, 3\}$ is an independent set of G	$\{1,2,3\}$ is a clique of \overline{G}

Proof:

 (\Rightarrow) Let S be an independent set of G. Then, for all $x, y \in S$ we have $\{x, y\} \notin E$. Then, for all $x, y \in S$ we have $\{x, y\} \in E'$. Therefore, S is a clique in \overline{G} .

(\Leftarrow) Let S be a clique of \overline{G} . Then, for all $x, y \in S$ we have $\{x, y\} \in E'$. Then, for all $x, y \in S$ we have $\{x, y\} \notin E$. Therefore, S is an independent set in G.

Part B — 15 points Prove that CLIQUE is NP-complete, by proving that:

• (5 points) CLIQUE $\in \mathcal{NP}$.

We can build an efficient certifier for CLIQUE, whose inputs are (G,k) and a set of vertices S. The certifier checks that $|S| \ge k$ and that for all $x, y \in$ $S, x \ne y$, we have $\{x, y\} \in E(G)$. The certifier contains at most n integers smaller than or equal to n, so its size is polynomial on the size of (G, k). This algorithm runs in time $O(n^2)$.

- (10 points) CLIQUE is NP-hard. **Hint:** Reduce from INDEPENDENTSET. You may use the result in Part A, even if you did not prove it.
 - The reduction algorithm description for INDEPENDENT-SET \leq_P Clique: The reduction algorithm takes as input (G, k), calculates \overline{G} and returns (\overline{G}, k) . To calculate \overline{G} , we go over every pair of distinct vertices x, y: if x and y are not connected by an edge in G, we make them connected by an edge in \overline{G} .
 - The polynomial time of the reduction algorithm: This runs in polynomial time, since we can calculate the complement of G in $O(n^2)$.
 - The fact that yes-instances map to yes-instances and no-instances map to no-instances:

If there exists S an independent set of G of size k then by part A, S is a clique of \overline{G} of size k.

If there exists no independent set of size k in G, then for any set of vertices S with |S| = k, there exist a pair of vertices x, y with $x \neq y$ such that $\{x, y\}$ is an edge, which implies $\{x, y\}$ is not an edge in \overline{G} and S is not a clique on \overline{G} . Thus, there exists no clique of size k in \overline{G} .

... End of MIDTERM SOLUTION