1. (20 points) Let IndependentSet denote the decision problem that asks, given a graph $G = (V, E)$ and an integer k, whether G has an independent set of cardinality at least k. (Recall the definition of independent sets given in class and in the textbook).

Prove that if IndependentSet $\in \mathcal{P}$, then the problem of listing the vertices of an independent set of maximum cardinality (FindMaxIndependentSet) can be solved in polynomial time.

Hint: Design an algorithm for FindMaxIndependentSet that performs a polynomial number of steps plus makes a polynomial number of calls to the algorithm that solves IndependentSet. Justify that your algorithm does the promised job (i.e. is correct and runs in polytime).

2. (20 marks) For each of the following statements about problems and class of problems discussed in lecture, specify whether the statement is “true” or “false”; briefly justify your answer. You may use any known results.

(a) For all problems $X \in \mathcal{NP}$, we have $X \leq_p 3D-Matching$.

(b) Given the current knowledge on the theory of NP-completeness, it is still possible that $\text{HamCycle} \in \mathcal{P}$ and $\text{VertexCover} \notin \mathcal{P}$.

(c) If $\mathcal{P} = \mathcal{NP}$ then ShortestPath is NP-complete.

(d) If $\text{VertexCover} \in \mathcal{P}$ then $\text{HamCycle} \in \mathcal{P}$.

(e) (Requires extra research) Suppose that $\mathcal{P} \neq \mathcal{NP}$. Then for any problem $X \in \mathcal{NP}$ then, either $X \in \mathcal{P}$ or X is NP-complete.

3. (30 points) Textbook chapter 8 exercise 6: Show that MSFTV is NP-complete (the acronym stand for Monotone Satisfiability with Few True Values). See details of the exercise in page 507.

Hint: Remember to justify why the problem is in \mathcal{NP}, and then prove that an NP-complete problem X of your choice polynomial-time reduces to MSFTV ($X \leq_p \text{MSFTV}$).

4. (30 points) Textbook chapter 8 exercise 21: Show that FullyCompatibleConfiguration is NP-complete. See details of the exercise in page 516-517.

Hint: Remember to justify why the problem is in \mathcal{NP}, and then prove that an NP-complete problem X of your choice polynomial-time reduces to FullyCompatibleConfiguration ($X \leq_p \text{FullyCompatibleConfiguration}$).