Solutions for Assignment 1

October 22, 2003

1. Answers
 a) False
 We will show by contradiction that \(f \notin O(g) \). Suppose \(f \in O(g) \), then there exist constants \(c > 0 \) and \(n_0 > 0 \) such that \(\frac{f(n)}{g(n)} \leq c \) for all \(n \geq n_0 \). But

 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} n = \infty
 \]

 which contradicts the previous statement.

 b) False
 Take \(f(n) = 1 \) and \(g(n) = n \). Then \(f_{\min}(n) = 1 \), and

 \[
 (f + g)(n) = f(n) + g(n) = n + 1
 \]

 \(f + g \notin \Theta(f_{\min}) \) since \(f + g \notin O(f_{\min}) \) (because \(\lim_{n \to \infty} \frac{f(n)+g(n)}{f_{\min}(n)} = \lim_{n \to \infty} \frac{n+1}{n} = \infty \)).

 c) True
 Suppose \(f \in O(g) \). Then we know there exist postive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \). Thus \(\frac{1}{c} f(n) \leq g(n) \) for all \(n \geq n_0 \); so there exists a constant \(d = \frac{1}{c} > 0 \) such that \(df(n) \leq g(n) \) for all \(n \geq n_0 \), which implies \(g \in \Omega(f) \).

 d) False
 Counterexample: \(f(n) = 1, g(n) = n \). In this case \(f \in O(g) \) since for \(c = 1 \) and \(n_0 = 1 \), \(f(n) = 1 \leq n = 1 \cdot g(n) \) for all \(n \geq 1 \). However \(g \notin O(f) \) since \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim n = \infty \), which is not below any constant.
2.1

• Step 1 (states q1 and q2): Go over tape 1 writing its contents to tape 2.
• Step 2 (state q3): Rewind tape 2 while keeping tape 1 in its last input symbol.
• Step 3 (state q4): Go over both tapes, tape 1 from right to left and tape 2 from left to right, comparing symbols. If symbols are equal at any point, reject. Stop when reaching leftmost point of tape 1.

Let $T(n)$ be the worst case running time of M_2. Steps 1, 2, and 3 each consists of a single scanning of the tape so $T(n) \in \Theta(n)$

2.3
2.4. Description and analysis

- Step 1: Scan the tape crossing the first and last symbols. If symbols were equal then reject.
• Step 2: Scan the tape again crossing the first symbol that is not an \(X\) and the last symbol that is not an \(X\). If original symbols were equal then reject. If no symbol other than \(X\) has been found, accept.

• Step 3: GO to step 2.

The first step can be done with a single scan of the tape, so it takes \(O(n)\) steps. Similarly step 2 takes \(O(n)\) steps. Step 2 is repeated at most \(\frac{4}{3}\) times, since at each step two symbols are transformed into \(X\). Therefore the total running time is in \(O(n^2)\)

2.5 RAM Program
We will use registers:

\[
\begin{align*}
& r_0 = \text{accumulator} \\
& r_1 = \text{store index of leftmost symbol to be examined} \\
& r_2 = \text{store index of rightmost symbol to be examined}
\end{align*}
\]

1 LOAD = 1
2 STORE 1
3 READ \(\uparrow1\)
4 STORE 2
5 LOAD 1
6 ADD = 2
7 STORE 1
8 LOAD 2
9 STORE \(\uparrow1\)
10 ADD 1
11 JZERO 16
12 LOAD 1
13 SUB 1
14 STORE 1
15 JUMP 3 \hspace{1cm} // loop 3-15 reads \(i_1, \ldots, i_n\) into \(r_3, \ldots, r_{n+2}\)
16 LOAD 1
17 SUB =1
18 STORE 2 \hspace{1cm} // \(r_2 \leftarrow n + 2\)
19 LOAD =3
20 STORE 1 \hspace{1cm} // \(r_1 \leftarrow 3\)
21 LOAD 2
22 SUB 1
23 JNEG 34 // if r2 < r1 then go to accept
24 LOAD 1
25 SUB 1
26 JZR 36 // if leftmost symbol = rightmost symbol then reject
27 LOAD 1
28 ADD =1
29 STORE 1 // r1 ← r1 + 1
30 LOAD 2
31 SUB 1
32 STORE 2 // r2 ← r2 - 1
33 JMP 21
34 LOAD =1 // accept
35 HALT
36 LOAD =0 // reject
37 HALT

2.6 Running Time
The first loop (line 3 to line 15) simply reads the input which takes time $O(n)$. The second loop (line 21 to line 33) runs for $\left\lceil \frac{n}{2} \right\rceil$ iterations, so it takes time in $O(n)$. The whole program takes time in $O(n)$.

3. Let $A \in P$, $A \neq \Sigma^*$ and $A \neq \phi$. Since $A \in P$, we know $A \in NP$. It remains to show A is NP-hard.

We need to show that $L \leq_p A$ for all $L \in NP$.

Let $L \in NP$ be an arbitrary language in NP. Since $P = NP$, we conclude $L \in P$ and so there exists a polynomial time algorithm D that decides L. We will build a reduction algorithm F (reduction from L to A) in the following way:

Algorithm $F(x)$
{ Let a be a string in A, Let b be a string in $\Sigma^* \setminus A$
if $D(x) = 1$ then return a
else return b
}
if $x \in L$ then $D(x) = 1$ and $F(x) = a \in A$.
if $x \notin L$, then $D(x) = 0$ and $F(x) = b \notin A$.

Moreover, since D runs in polynomial time and F simply calls D (polynomial time) and does a constant number of steps, F runs in polynomial
time.

4. Since HAMPATH $\in P$, there exists a polynomial time algorithm A that decides HAMPATH.

Below we describe the polynomial time algorithm B that finds a hamiltonian path from u to v, if one exists.
Algorithm B ($G = (V, E), u, v$)

```plaintext
{ 
1     if $A(G, u, v) = 0$ then 
2         output "no hamiltonian path from $u$ to $v$ exists " 
3     else 
4         { $n = |V|$ 
5             $w = u$ 
6             for $i = 1$ to $n$ do 
7                 { PATH[$i$] = $w$; 
8                     $G' \leftarrow G\setminus\{w\}$; 
9                     for each edge $(w, t)$ in $G$ coming out of $w$ do 
10                        { if ($A(G', t, v) = 1$) then 
11                            { $w = t$; 
12                                break this loop; 
13                        } 
14                     } 
15                     $G \leftarrow G'$; 
16                 } 
17             return (PATH); 
18         } 
19 }
```

The correctness of the algorithm comes from the idea that if there exists a hamiltonian path from u to v, having second vertex t, when we remove u from G, there must be hamiltonian path from t to v in the reduced graph. Iterating this principle, we can determine the sequence of the vertices in the hamiltonian path.

The algorithm runs in polynomial time, for the following reasons:

Let $T(n, m)$ be the worst case running time of algorithm A for a graph with n vertices and m edges.

- step 1 takes time $T(n, m)$
- step 2-5 takes constant time
loop in line 6 runs n times
loop in line 9 runs at most m times
therefore line 10 over all iteration run in $n \times m \times T(n, m)$
line 11-12 run in time $n \times m$
line 8 and 15 are repeated n times and each time it may take $O(n \times m)$,
so totally, it is $O(n^2 \times m)$

Thus the running time for B is in $O(n^2 \times m + n \times m \times T(n, m))$, since $T(n, m)$ is a polynomial, B runs in polynomial time.

5. Proof:
Step 1 DoubleSAT $\in NP$
Certificate: Two truth assignments
Verification Algorithm:
$A(<\phi>, y_1, y_2)$

- Evaluate formula ϕ using truth assignment given in y_1. If (y_1 is not a satisfying assignment) then return 0;
- Evaluate formula ϕ using truth assignment given in y_2. If (y_2 is not a satifying assignment) then return 0;
- If($y_1 \neq y_2$) then return 1; else return 0;

ϕ is satisfiable \iff there exist two distinct truth assignments that satisfy
ϕ \iff there exists inputs y_1, y_2 for A that causes A to return 1.

Algorithm A runs in polynomial time since the formula evaluation can be
done in linear time with the size of ϕ. Also y_1 and y_2 have size n, the number
of variables in ϕ, so these comparison also take linear time.

Step 2 We will prove SAT \leq_p DoubleSAT

Step 3 We will describe the reduction algorithm F.
Algorithm $F(<\phi>)$
{
Let $x_1, x_2, ..., x_n$ be the variable in ϕ
Build another formula ϕ_2 equivalent to ϕ but substituting variables
$x_1, x_2, ..., x_n$ by $y_1, y_2, ..., y_n$ respectively.
Create a formula ϕ' as the disjunction of ϕ and ϕ_2: $\phi' = \phi \lor \phi_2$;
return ϕ'
}
Step 4

- If $\phi \in \text{SAT}$, then there exists a satisfying assignment $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$, where $\sigma_i = 0$ or 1 for ϕ. Thus, σ satisfies ϕ and ϕ_2. Let $\tau = (\tau_1, \tau_2, ..., \tau_n)$, $\tau \neq \sigma$. Therefore $\sigma^1 = (\sigma_1, \sigma_2, ..., \sigma_n, \tau_1, \tau_2, ..., \tau_n)$ and $\sigma^2 = (\tau_1, \tau_2, ..., \tau_n, \sigma_1, \sigma_2, ..., \sigma_n)$ satisfy $\phi' = \phi \lor \phi_2$. So $\phi' \in \text{DoubleSAT}$

- If $\phi \notin \text{SAT}$, then for all truth assignments $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$, ϕ evaluates to 0. Therefore, for any truth assignment τ, ϕ_2 evaluates to 0. So $\phi' = \phi \lor \phi_2$ evaluates to 0 for any truth assignment $(\sigma_1, \sigma_2, ..., \sigma_n, \tau_1, \tau_2, ..., \tau_n)$. So $\phi' \notin \text{DoubleSAT}$

Step 5

ϕ can be copied to ϕ_2 in linear time and both can be combined with an or operation in constant time. So F runs in linear time on the size of ϕ.

8