CSI2131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

A C++ program for doing the same task:

// listcpp.cpp
#include <fstream>// to use fstream class

using namespace std; // to use standard C++ library

main() {
char ch;
fstream infile;

infile.open("A.txt",ios:in);
infile.unsetf (ios: :skipws);
// set flag so it doesn’t skip white space

infile >> ch;

while (! infile.fail()) <
cout << ch ;
infile >> ch ;

}

infile.close();

Lucia Moura

12

CSI2131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

Opening Files

Opening a file makes it ready for use by the program.
Two options for opening a file :

e open an existing file

e create a new file

When we open a file we are positioned at the beginning of the file.

How to do it in C:

FILE * outfile;
outfile = fopen("myfile.txt", "w");

The first argument indicates the physical name of the file.
The second one determines the “mode”, i.e. the way, the file is
opened. The mode can be:

"r": open an existing file for input (reading);

"w'": create a new file, or truncate existing one, for output;
"a": open a new file, or append an existing one, for ouput;
"r+": open an existing file for input and output;

"w+": create a new file, or truncate an existing one, for input and
output;
"a+": create a new file, or append an existing one, for input and

output;

"rb", "wb", "ab","r+b","w+b","a+b": same as above but
the file is open in binary mode.

Lucia Moura 15

CSI2131 - Winter 2004 Lecture 2: Fundamental File Processing Operations

How to do it in C++:

fstream outfile;
outfile.open("myfile.txt",ios: :out);

The second argument is an integer indicating the mode.
Its value is set as a “bitwise or” (operator |) of constants defined
in the class ios:

e ios::in open for input;

e ios::out open for output;

e ios::app seek to the end of file before each write;

e ios::ate initially position at the end of file;

e ios::trunc always create a new file (truncate if exists);

e i0s::binary open in binary mode (rather than text mode).

C: r W a

C++: | in out | trunc or out | out | app

C: r+ w+ a+
C++:|outlin|out|in|trunc out|in|app

All obtions above, if followed by b in C, would have |binary.
Exercise: Open a physical file "myfile.txt" associating it to
the logical file "afile" and with the following capabilities:

1. input and output (appending mode):
afile.open("myfile.txt",
ios::inlios::outlios: :app);

2. create a new file, or truncate existing one, for output:

Lucia Moura 16

CSI2131 - Winter 2004 Lecture 3: Managing Files of Records

Files as Streams of Bytes

So far we have looked at a file as a stream of bytes.
Consider the program seen in the last lecture :

#include <fstream>
using namespace std;
main() {
char ch;
fstream infile;
infile.open("A.txt",ios:in);
infile.unsetf(ios::skipws);
// set flag so it doesn’t skip white space
infile >> ch;
while (! infile.fail()) {
cout << ch;
infile >> ch;

}
infile.close();
}

Consider the file example: A.txt
87358CARROLLALICE IN WONDERLAND <nl>
03818FOLK FILE STRUCTURES <nl>
79733KNUTH THE ART OF COMPUTER PROGR<nl>
86683KNUTH SURREAL NUMBERS <nl>
18395TOLKIENTHE HOBITT <nl>

(above we are representing the invisible newline character by <nl>)

Lucia Moura 25

CSI2131 - Winter 2004

Consider the following sample program:

#include <fstream>

using namespace std;

int main() A
fstream myfile;
myfile.open("test.txt",ios::inlios::out|ios: :trunc

|ios: :binary);

myfile<<"Hello,world.\nHello, again.";
myfile.seekp(12,io0s: :beg);
myfile<<’X’<<’X’;
myfile.seekp(3,ios::cur);
myfile<<’Y’;
myfile.seekp(-2,i0s::end);
myfile<<’Z’;
myfile.close();
return O;

}

Show "test.txt" after the program is executed:

Remove ios: :binary from the specification of the opening mode.
Show test.txt after the program is executed under DOS:

Lucia Moura

Lecture 3: Managing Files of Records

36

