
MANAGING FILES OF RECORDS

CSI2131 - Winter 2002 Managing Files of Records

Contents of today’s lecture:

• Field and record organization (textbook: Section 4.1)

• Sequential search and direct access (textbook: Section 5.1)

• Seeking (textbook: Section 2.5)

Reference: Folk, Zoellick and Riccardi, File Structures,

1998. Sections 4.1, 5.1, 2.5.

Lucia Moura 24

CSI2131 - Winter 2002 Managing Files of Records

Files as Streams of Bytes

So far we have looked at a file as a stream of bytes.

Consider the program seen in the last lecture :

// listcpp.cpp

#include <fstream.h>

main() {

char ch;

fstream infile;

infile.open("A.txt",ios:in);

infile.unsetf(ios::skipws);

// set flag so it doesn’t skip white space

infile >> ch;

while (! infile.fail()) {

cout << ch;

infile >> ch;

}

infile.close();

}

Consider the file example: A.txt

87358CARROLLALICE IN WONDERLAND <nl>

03818FOLK FILE STRUCTURES <nl>

79733KNUTH THE ART OF COMPUTER PROGR<nl>

86683KNUTH SURREAL NUMBERS <nl>

18395TOLKIENTHE HOBITT <nl>

Lucia Moura 25

CSI2131 - Winter 2002 Managing Files of Records

(above we are representing the invisible newline character by <nl>)

Every stream has an associated file position.

• When we do infile.open("A.txt",ios::in) the file

position is set at the beginning.

• The first infile >> ch; will read 8 into ch and increment the

file position.

• The next infile >> ch; will read 7 into ch and increment

the file position.

• The 38th infile >> ch; will read the newline character

(referred to as ’\n’ in C++) into ch and increment the file

position.

• The 39th infile >> ch; will read 0 into ch and increment

the file position, and so on.

A file can been seen as

1. a stream of bytes (as we have seen above); or

2. a collection of records with fields (as we will discuss next ...).

Lucia Moura 26

CSI2131 - Winter 2002 Managing Files of Records

Field and Record Organization

Definitions :

Record = a collection of related fields.

Field = the smallest logically meaningful unit of information

in a file.

Key = a subset of the fields in a record used to identify

(uniquely, usually) the record.

In our sample file “A.txt” containing information about books:

Each line of the file (corresponding to a book) is a record.

Fields in each record: ISBN Number, Author Name and Book

Title.

Primary Key: a key that uniquely identifies a record.

Example of primary key in the book file:

Secondary Keys: other keys that may be used for search

Example of secondary keys in the book file:

Note that in general not every field is a key (keys correspond to

fields, or combination of fields, that may be used in a search).

Lucia Moura 27

CSI2131 - Winter 2002 Managing Files of Records

Field Structures

1. Fixed-length fields:

Like in our file of books (field lengths are 5, 7, and 25).

87358CARROLLALICE IN WONDERLAND

03818FOLK FILE STRUCTURES

79733KNUTH THE ART OF COMPUTER PROGR

2. Field beginning with length indicator:

058735907CARROLL19ALICE IN WONDERLAND

050381804FOLK15FILE STRUCTURES

3. Place delimiter at the end of fields:

87359|CARROLL|ALICE IN WONDERLAND|

03818|FOLK|FILE STRUCTURES|

4. Store field as keyword = value (self-describing fields):

ISBN=87359|AU=CARROLL|TI=ALICE IN WONDERLAND|

ISBN=03818|AU=FOLK|TI=FILE STRUCTURES|

Although the delimiter may not always be necessary here, it is

convenient for separating a key value from the next keyword.

Lucia Moura 28

CSI2131 - Winter 2002 Managing Files of Records

Field structures: advantages and disadvantages

Type Advantages Disadvantages

Fixed Easy to Read/Store Waste space with

padding

with

length

indicator

Easy to jump ahead

to the end of the field

Long fields require

more than 1 byte to

store length (when

maximum size is >

256)

Delimited

Fields

May waste less space

than with length-

based

Have to check every

byte of field against

the delimiter

Keyword Fields are self

describing, allows for

missing fields.

Waste space with

keywords

Lucia Moura 29

CSI2131 - Winter 2002 Managing Files of Records

Record Structures

1. Fixed-length records.

It can be used with fixed-length records, but can also be

combined with any of the other variable length field structures,

in which case we use padding to reach the specified length.

Examples:

Fixed-length records combined with fixed-length fields:

87358CARROLLALICE IN WONDERLAND

03818FOLK FILE STRUCTURES

79733KNUTH THE ART OF COMPUTER PROGR

Fixed-length records combined with variable-length fields:

delimited fields:
87359|CARR0LL|ALICE IN WONDERLAND

03818|FOLK|FILE STRUCTURES

79733|KNUTH|THE ART OF COMPUTER PROGR

fields with length indicator:

058735907CARROLL19ALICE IN WONDERLAND

050381804FOLK15FILE STRUCTURES

Lucia Moura 30

CSI2131 - Winter 2002 Managing Files of Records

2. Records with fixed number of fields (variable-length)

It can be combined with any of the variable-length field

structure.

Examples: Number of fields per record = 3.

with delimited fields:

87359|CARR0LL|ALICE IN WONDERLAND|03818|FOLK|· · ·
with fields with length indicator:

058735907CARROLL19ALICE IN WONDERLAND0503818· · ·

In the situations above, how would the program detect that a

record has ended ?

3. Record beginning with length indicator.

Example:

with delimited field:
3387359|CARROLL|ALICE IN WONDERLAND

2603818|FOLK|FILE STRUCTURES

Can this method be combined with fields having length

indicator or fields having keywords?

Lucia Moura 31

CSI2131 - Winter 2002 Managing Files of Records

4. Use an index to keep track of addresses

The index keeps the byte offset for each record; this allows us to

search the index (which have fixed length records) in order to

discover the beginning of the record.

datafile:

87359|CARR0LL|ALICE IN WONDERLAND|03818|FOLK|· · ·

Complete information on the index file:

indexfile:

5. Place a delimiter at the end of the record.

The end-of-line character is a common delimiter, since it makes

the file readable at our console.

87358|CARROLL|ALICE IN WONDERLAND|<nl>

03818|FOLK|FILE STRUCTURES|<nl>

79733|KNUTH|THE ART OF COMPUTER PROGR|<nl>

Summary :

Type Advantages Disadvantages

Fixed Length

Record

Easy to jump to

the i-th record

Waste space

with padding

Variable Length

Record

Saves space

when record

sizes are diverse

Cannot jump to

the i-th record,

unless through

an index file

Lucia Moura 32

CSI2131 - Winter 2002 Managing Files of Records

Sequential Search and Direct Access

Search for a record matching a given key.

• Sequential Search

Look at records sequentially until matching record is found.

Time is in O(n) for n records.

Example when appropriate :

Pattern matching, file with few records.

• Direct Access

Being able to seek directly to the beginning of the record.

Time is in O(1) for n records.

Possible when we know the Relative Record Number (RRN):

First record has RRN 0, the next has RRN 1, etc.

Direct Access by RRN

Requires records of fixed length.

RRN = 30 (31st record)

record length = 101 bytes

So, byte offset =

Now, how to go directly to byte in a file ?

By seeking ...

Lucia Moura 33

CSI2131 - Winter 2002 Managing Files of Records

Seeking

Generic seek function :

Seek(Source_File, Offset)

Example :

Seek(infile, 3030)

Moves to byte 3030 in file.

In C style :

Function prototype:

int fseek(FILE *stream, long int offset, int origin);

origin: 0 = fseek from the beginning of file

1 = fseek from the current position

2 = fseek from the end of file

Examples of usage:

fseek(infile,0L,0); // moves to the beginning

//of the file

fseek(infile,0L,2); // moves to the end of the file

fseek(infile,-10L,1); // moves back 10 bytes from

// the current position

Lucia Moura 34

CSI2131 - Winter 2002 Managing Files of Records

In C++ :

Object of class fstream has two file pointers :

• seekg = moves the get pointer.

• seekp = moves the put pointer.

General use:

file.seekg(byte_offset,origin);

file.seekp(byte_offset,origin);

Constants defined in class ios:

origin: ios::beg = fseek from the beginning of file

ios::end = fseek from the current position

ios::cur = fseek from the end of file

The previous examples, shown in C style, become in C++ style:

infile.seekg(0,ios::beg);

infile.seekg(0,ios::end);

infile.seekg(-10,ios::cur);

Lucia Moura 35

CSI2131 - Winter 2002 Managing Files of Records

Consider the following sample program:

#include <fstream.h>

int main() {

fstream myfile;

myfile.open("test.txt",ios::in|ios::out|ios::trunc

|ios::binary);

myfile<<"Hello,world.\nHello, again.";

myfile.seekp(12,ios::beg);

myfile<<’X’<<’X’;

myfile.seekp(3,ios::cur);

myfile<<’Y’;

myfile.seekp(-2,ios::end);

myfile<<’Z’;

myfile.close();

return 0;

}

Show "test.txt" after the program is executed:

| |

Remove ios::binary from the specification of the opening mode.

Show test.txt after the program is executed under DOS:

| |

Lucia Moura 36

