Date: Jan 29 - Feb 1, 2001 CST 2131 Page: 1
Profs. Moura and Japkowicz Tutorial 4

From chapters 11 of “C+4 Annotation” version 4.3.1 by Frank B. Brokken
and Karel Kubat.

Inheritance

Related classes :

vehicle
A \ 4
land water ar

Definition of the class vehicle :

class vehicle

{ public:
//constructors
vehicle();
vehicle(int wt);
//interface
int getweight() const;
void setweight(int wt);

private:

// data
int weight;

+;

A class 1and can be defined as follows
class land

{ public:
void setweight(int wt);



Date: Jan 29 - Feb 1, 2001 CST 2131 Page: 2
Profs. Moura and Japkowicz Tutorial 4

private:
vehicle v;
};
void land::setweight(int wt)

{
v.setweight (wt) ;

by

There are 2 problems with this definition :

1. A semantic problem : the class 1land vehicle contains a vehicle. The
correct relationship should be : a land vehicle is a special case of a
vehicle.

2. A practical problem : needless code is introduced. land::setweight
only calls vehicle: :setweight - No extra functionality is added, so
why the extra code ?

Inheritance solves both these problems

class land: public vehicle

{ public:
//constructors
land();
land(int wt, int sp);
// interface
void setspeed(int sp);
int getspeed() const;

private:

//data
int speed;

};

By post-fixing the class name land in its definition by public vehicle, the
derivation is defined : The class 1and now contains all the functionality of
its base class vehicle plus its own specific information.

Example of the use of the derived class :



Date: Jan 29 - Feb 1, 2001 CSI 2131 Page: 3
Profs. Moura and Japkowicz Tutorial 4

land veh(1200,145);

int main()
{ cout << "Vehicle weight " << veh.getweight() << endl
<< "Speed is " << veh.getspeed() << endl;
return(0);

This example shows two features of derivation :

1. getweigth() is no direct member of a 1and. Nevertheless it is used in
veh.getweight () - This member function is an implicit, part of the

class, inherited from its “ parent” vehicle.

2. Although the derived class 1and contains the functionality of vehicle,
the private fields of vehicle remain private : The only can be ac-
cessed by member functions of vehicle itself - 1and must use vehicle’s
getweight and setweight functions to address the weight field, just
as any other code outside the vehicle class

Similarly, we can create a class auto that is derived from land - This is called
nested derivation.

Example:

class auto: public land
{ public:
//constructors
auto();
auto(int wt, int sp, char const *nm);
//interface
char const *getname() const;
void setname(char const *nm);
private:
// data
char const *name;

};

auto contains the weight, speed and name of a car



Date: Jan 29 - Feb 1, 2001 CST 2131 Page: 4
Profs. Moura and Japkowicz Tutorial 4

The Constructor of a Derived Class

Land’s constructor could be defined as follow :

land::land(int wt, int sp)
{
setweight (wt) ;
setspeed(sp);
};

- Not efficient since setweight must call vericle: :setweight.
Better way : call directly the constructor of vehicle :

land::land(int wt, int sp) : vehicle(wt)
{

setspeed(sp);
+;

Redefining Member Functions

The actions of all functions which are defined in a base class can be rede-

fined.

Let trucks be represented in two parts : The front engine and the trailer
- Both the front engine and the trailer have their own weight, but the
getweight function should return the combination weight.

Example :

class truck: public auto

{ public:
//constructors
truck();
truck(int engine_wt, int sp, char const *nm, int trailer_wt);
//interface : to set 2 weight fields
void detweight(int engine_wt, int trailer_wt);
//and returns combined weight
int getweight() const;

private:



Date: Jan 29 - Feb 1, 2001 CSI 2131 Page: 5
Profs. Moura and Japkowicz Tutorial 4

// data

//the weight of the front part
//is represented in class auto
int trailer_weight;

};

//constructor
truck: :truck(int engine_wt, int sp, char const *nm, int trailer_wt)
rauto(engine_wt,sp,nm)

{

trailer_weight = trailer_wt;

+s
We redefine functions setweight and getweight as follow :

void truck::setweight(int engine_wt, int trailer_wt)
{
trailer_weight = trailer_wt;
setweight(engine_wt); //uses auto::setweight ()
};

int truck::getweight() const
{
return (
auto::getweight() + //sum of engine part plus
trailer_weight); //the trailer

¥
Note that auto::getweight () must be void otherwise we could have infi-
nite recursion.

Multiple Inheritance

It is possible for a class to be derived not from one but from several base
classes - Such a class would inherit the functionality from more than one
‘parent’ at the same time.



Date: Jan 29 - Feb 1, 2001 CSI 2131 Page: 6
Profs. Moura and Japkowicz Tutorial 4

Example : a class engine can store information about engine (serial number,
power, type of fuel) can be defined.

class engine

{ public:
... //constructors and interface
private:
// data
char const *serial_number, *fuel_type;
int power;
+;

In order to represent an auto together with the extra information contained
in engine, we can define a new class, motorcar, derived from auto and from
engine simultaneously:

class motorcar: public auto, public engine

{ public:
//constructors
motorcar();
motorcar(int wt, int sp, char const *nm, char const *ser,
int pow, char const *fuel);
};

motorcar: :motorcar(int wt, int sp, char const *nm, char const *ser,
int pow, char const *fuel);
{
engine(ser,pow,fuel);
auto(wt,sp,nm) ;

};

- Note : semantically, this definition is a bit odd since it suggests that a
motorcaris both an auto and an engine rather than saying that a motorcar
has an engine - However, if we expressed the relationship a motorcar has
an engine, we would get duplicated code.

An example of the usefulness of inheritance for file structures (read section

4.2-5 of “File Structures : An Object-Oriented Approach with C++" by



Date: Jan 29 - Feb 1, 2001
Profs. Moura and Japkowicz

CSI 2131
Tutorial 4

Page: 7

Folk, Zoellick and Riccardi)

Prior to writing a record into a file, it might be useful to store it first into a
buffer - This is particularly useful for variable length representation putting
a length indicator at the beginning of each record : the size on the record can
be obtained while packing the record in a buffer - This size is then written
to the file followed by the content of the buffer.

There 1s a natural hierarchical organization of the different types of buffer
that can be implemented using the inheritance tools provides by C++ - The

hierarchy looks as follow :

I0Buffer
- char array for buffer value

variable length buffer
- read and write operations
for variable length records

fixed length buffer
- ead and write operations
for fixed length records

delimited field buffer
- pack and unpack operations
for delimited fields

length field buffer
- pack and unpack operations
for length-based fields

fixed field buffer
- pack and unpack operations
for fixed sized fields

class I0Buffer

-1)=0;

{ public :
I0Buffer(int maxBytes = 1000);
virtual int read(istream &)=0;
virtual int write(ostream &) const =0;
virtual int pack(const void *field, int size =
virtual int unpack(void *field, int maxbytes=-1)=0;
protected :

char * buffer;
int BufferSize;
int MaxBytes;




Date: Jan 29 - Feb 1, 2001 CSI 2131 Page: 8
Profs. Moura and Japkowicz Tutorial 4

3

Notes :

e The methods with the virtual keyword are abstract methods - each
class will define its own implemenetation.

e The keyword virtual is used in the case of multiple inheritance to
make sure that classes common to 2 different ancestors are included
only once in the ancestry of the inheriting class.

o The elements in the protected definition are visible to derived classes
but not to other classes

Almost all the members and methods of all the buffer class are identical.
The only differences are in the exact packing and unpacking and in the mi-
nor differences in read and write between the variable-length and fixed-length
record structures.

- A lot of code will be shared when using inheritance :
Example : delimited and length-based variable length records can both use
the same variable-length record read and write methods.



